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1 Introduction

The problem. We study an interval scheduling problem in which each job j is associated
with a time interval Ij = [sj , tj ], a minimum required bandwidth aj , a maximum required
bandwidth bj , and a weight wj , where sj , tj , aj , bj and wj are all integers. The length
of the interval Ij is denoted by |Ij | and is defined as tj − sj . We are given an integer W
that denotes the number of colors (amount of bandwidth) available. We denote the set
of available colors as Λ = [0,W − 1]. A coloring c is to assign to each job j a subset c(j)
of the set Λ of colors during the whole interval Ij . A coloring c is valid if (1) for any
job j the number of colors assigned is between aj and bj , i.e., aj ≤ |c(j)| ≤ bj ; and (2)
each color is assigned at each time to at most one interval, i.e., for any two jobs j1 and
j2 with Ij1 and Ij2 overlapping, we have c(j1) ∩ c(j2) = ∅.

The weighted bandwidth allocated to a job j is defined as |Ij | ·wj · |c(j)|. The weighted
bandwidth of a coloring is the sum of the weighted bandwidth of all jobs. The objective
of the problem is to find a valid coloring such that the weighted bandwidth is maximum.

We say that a coloring c is contiguous if for each job j, the set of colors assigned
to j forms an interval, i.e., c(j) = {x, x + 1, x + 2, · · · , y}, for some integers 0 ≤ x ≤
y < W . We say that c is circularly contiguous if the set of colors c(j) forms an interval
c(j) = {x, x + 1, · · · , y} for 0 ≤ x ≤ y < W or forms a circular interval, i.e., c(j) =
{x, x+ 1, · · · ,W − 1, 0, 1, · · · y}, for some integers 0 ≤ y < x < W . We can then define
variants of the problem requiring the coloring to be contiguous or circularly contiguous.

Motivation. Bandwidth allocation is common in many network applications such as
content distribution networks or mobile clients, which require bandwidth reservations
to support hangovers for streaming video [1, 2]. In particular our problem is motivated
by the DWDM (dense wavelength division multiplexing) network [4, 5, 7]. In optical
networks, high-speed signals are sent through optical fibers using WDM technology in
which a signal transmitted from a source to a destination is given some wavelength. The
spectrum of light that can be transmitted through the fiber is divided into frequency
intervals. When the underlying network topology is a path, it is in analogy to the time
line while the available wavelength is in analogy to the available colors in our scheduling
problem.
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2 Maximizing weighted bandwidth

We first consider non-contiguous coloring of intervals. If the minimum and maximum
required bandwidth aj and bj are zero and W , respectively, for every job j, the problem
is trivial and can be solved by finding a subset of non-overlapping intervals such that
the total weighted bandwidth is maximum. In other words, we have to find a maximum
weight independent set in the intersection graph of the input intervals.

When aj > 0 and bj = W , the problem becomes non-trivial. Any valid coloring can
be considered as the union of two disjoint colorings c1 and c2 where c1 assigns exactly aj
colors to each job j and c2 assigns additional colors to the jobs. The weighted bandwidth
of c1 is fixed at

∑

j |Ij | · wj · aj and so the question is to find a coloring c2 that gives
the maximum weighted bandwidth. We describe the idea of finding c2 here. Suppose λ

is a certain color in the coloring c1. Consider the set of jobs colored with λ from left to
right. The time interval between two such jobs forms a gap, in which the best we can
do is to find a maximum weight independent set in this gap and color them λ.

Roughly speaking, we use this idea of “gap” to construct a gap graph that represents
all possible gaps as a bipartite graph. The two sets of vertices in the bipartite graph are
the sets of ending points and starting points of jobs in the input, respectively. The end
point of a job j1 is connected to the start point of another job j2 and the edge weight is
the maximum weight independent set in the gap [t1, s2]. We then show that the problem
can be reduced to finding a maximum weighted matching in this gap graph satisfying
certain properties. As we can find maximum weighted matching in polynomial time, our
problem can be solved in polynomial time. Thus we get:

Theorem 1 There is a polynomial time algorithm that finds a (non-contiguous) coloring
with maximum weighted bandwidth when aj ≥ 0 and bj = W for all jobs j.

We further consider the special case when the weight of jobs is the same as the
interval size, i.e., wj = |Ij |. Compared to arbitrary weight, we can release the restriction
that bj = W and we can show:

Lemma 2 When wj = |Ij |, the problem with aj ≥ 0 and bj ≤ W can be reduced to a
minimum cost maximum flow problem, and is thus solvable in polynomial time.

3 Contiguous coloring

The optimal coloring found in Section 2 may not be contiguous. In this section we
consider contiguous coloring. We first observe that our problem is NP-hard as it gen-
eralizes the NP-hard problem interval coloring of interval graphs, which is also known
as the dynamic storage allocation problem [3] or the ship-building problem [6]. Let ℓt
be the number of jobs whose intervals contain a certain time unit [t, t + 1]. We call ℓt
the load at t. A contiguous coloring c defines a permutation of the ℓt jobs and divides
the W available colors into ℓt segments. There are ℓt! permutations and the number of

possible color assignment is

(

W

ℓt

)

for each permutation. This gives rise to a dynamic

programming approach to solve the problem. We consider, from left to right, each time
unit (some time units can be skipped if there is no start and finish of jobs) and keep track
of all the possible colorings so far. In each step [t, t+ 1], for each coloring c for [t, t+ 1]
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as described above, we identify all existing colors that “agree”1 with c and choose the
one that results in the maximum weighted bandwidth. We thus get:

Theorem 3 There is a polynomial time dynamic programming algorithm that finds an
optimal contiguous coloring when the load ℓt is bounded by a constant for all t.

We also consider circularly contiguous coloring. We show that a circularly contiguous
coloring can be converted to a contiguous coloring with a constant degradation to the
weighted bandwidth obtained, as follows.

Theorem 4 There is a randomized polynomial time algorithm that converts a valid
circularly contiguous coloring cc to a valid contiguous coloring c such that the weighted
bandwidth of c is at least 3

4
of that of cc, when aj = 1 for all j.

We note that this algorithm can be derandomized.
Finally we consider a special instance named “proper” instance. A set of jobs is

proper if no job whose interval is properly contained in another job. In this case we
show that any coloring for a proper instance can be converted to a circularly contiguous
coloring with the same weighted bandwidth. Together with Theorem 1, this implies:

Theorem 5 For proper instances, there is a polynomial time algorithm that finds an
optimal circularly contiguous coloring.

Combining Theorems 4 and 5, we have:

Corollary 6 For proper instances, there is a polynomial time randomized algorithm for
contiguous coloring with approximation ratio 4

3
, when aj = 1 for all j.

Similar to Lemma 4, this algorithm can be derandomized.
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1Two partial colorings agree with each other if they give the same color to each job that both of them

color.
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