
Improved Results on Online Dynamic Bin Packing ∗

Mihai Burcea (Speaker) †‡ Prudence W.H. Wong † Fencol C.C. Yung †

1 Introduction

Bin packing is an NP-hard [10] classical combinatorial optimization problem. The ob-
jective is to pack a set of items into a minimum number of unit-size bins such that
the total size of the items in a bin does not exceed the bin capacity. The problem has
been studied extensively both in the offline and online settings [7, 8, 5]. In the online
setting [11, 12], items may arrive at arbitrary time; item arrival time and item size are
only known when an item arrives.

Online dynamic bin packing. Most existing work focuses on “static” bin packing in
the sense that items do not depart. In some potential applications like warehouse storage,
a more realistic model takes into consideration of dynamic arrival and departures of
items. In dynamic bin packing (DBP) [6] items arrive over time, reside for some period
of time, and may depart at arbitrary time. Each item has to be assigned to a bin from
the time it arrives until it departs. The objective is to minimize the maximum number
of bins used over all time. In the online setting, the size and arrival time is only known
when an item arrives and the departure time is only known when the item departs.

Previous work also focuses on item size being an arbitrary real number in (0, 1] that
must be packed into unit-sized bins. We refer to this type of item as a general size item.
However, in some applications item size is not represented by general size items. Bar-
Noy et al. [2] initiated the study of the unit fraction bin packing problem, a restricted
version where all sizes of items are of the form 1

k , for some integer k. The problem was
motivated by the window scheduling problem [1, 2].

Our contributions. Our main contribution is to improve the lower bound of 1-
dimensional online dynamic bin packing of general size items for any deterministic online
algorithm from 2.5 [4] to 8/3 ∼ 2.666. Furthermore, we study 2- and 3-dimensional on-
line dynamic bin packing of unit fraction (UF) items. We obtain competitive ratios of
6.7850 and 21.6108 for 2-D and 3-D UF items, respectively. These are in contrast to
upper bounds of 7.788 and 22.788 obtained in [13] for 2-D and 3-D general size items,
respectively.

Notations and definitions. We denote by s-item a 1-D item of size s. For 2-D items,
we use the notation T(w, h) to refer to the type of items with width w and height h. We
use ‘∗’ to mean that the length can take any value at most 1, e.g., T(∗, ∗) refers to all

∗The results appear in ISAAC 2012 and CIAC 2013.
†{m.burcea,pwong}@liverpool.ac.uk, ccyung@graduate.hku.hk. Department of Computer Sci-

ence, University of Liverpool, Ashton Building, Ashton Street, Liverpool, L69 3BX, UK.
‡Supported by EPSRC Studentship.

1



items. The parameters w (and h) may take an expression ≤ x meaning that the width
is at most x. In a similar way we use the notation T(x1, x2, x3) for 3-D items.

When packing a new item to a bin, repacking of existing items within the same bin
is permitted, however migration to other bins and rotation of items are not allowed.

2 An 8/3 Lower Bound for 1-D Online DBP

We consider the 1-D online dynamic bin packing problem of general size items, where
each item is represented by a real number in (0, 1]. We improve the lower bound from
2.5 [4] (previously 2.388 [6] and 2.428 [3]) to 8/3 ∼ 2.666 (Theorem 1). The improvement
stems from an adversarial sequence that forces an online algorithm A to open 2s bins
with items having a total size of s only.

Suppose we have s bins each with an 1
3 -item. If we want to force A to open s new

bins using items of size 2
3 , we may need to release 2s such items because each existing

bin can pack one item. The maximum load in total including the 1
3 -items would be

s(1 + 2
3). On the other hand, if the original s bins have items of size from 1

3 , 1
3+δ,

1
3+2δ, · · ·, 1

3+(s−1)δ, for some small δ > 0, we can force A to open s new bins with a
smaller maximum load at any time as follows. First release items of size 2

3−(s−1)δ until
A opens a new bin. At most s + 1 such items are required. We then let all items of
size 2

3−(s−1)δ depart except the last one packed in the new bin. Next we release items
of size 2

3−(s−2)δ. At most s items are required to force A to open a new bin. We can
repeat this process, for 1 ≤ i ≤ s, with no more than s−i+2 items of size 2

3−(s−i)δ to
force A to open a new bin. At any time, the total load of all items not departed is at
most s+ 2

3 , versus s(1 + 2
3) in the former case.

Based on the above observations, two operations are designed, namely, Op-Inc and
Op-Comp. Op-Inc forces A to open bins each with one item of increasing size. Op-Comp
then releases items of complementary size, ensuring that an item released in Op-Inc can
be packed with a corresponding item released in Op-Comp into the same bin by an
optimal offline algorithm.

Op-Inc and Op-Comp. The aim of Op-Inc is to make A open at least s more bins,
for some s > 0, such that each new bin contains one item with item size increasing over
the s bins. The items to be released have size in the range [x, x+ε], for some small ε,
such that x + ε < 1

2 . The adversary releases items of size x, x + ε
s , x + 2ε

s , · · ·. Let
zi = x+ iε

s . In each step i, the adversary releases zi-items until A opens a new bin. We
then let zi-items depart except exactly one item of size zi, for 0 ≤ i < s, in the i-th new
bin opened by A. At the end, Op-Inc opened s bins, each with increasing load from x
to x+ (s−1)ε

s .

Op-Comp is designed to work with Op-Inc and assumes that there are s existing bins
each with load in the range [x, x + (s−1)ε

s ] where x < x + (s−1)ε
s < 1

2 . The items to be

released have size in the range [1 − (x + (s−1)ε
s ), 1 − x]. Starting from the largest load

x+ (s−1)ε
s , in Step i, for 1 ≤ i ≤ s, we release items of size wi = 1−(x+ (s−i)ε

s ) until A
opens a new bin. Note that such items can only be packed in the first s + 1 − i bins.
We then let all wi-items depart except the one packed in the new bin. Using these two
operations, we can design an adversary to obtain the following lower bound.

Theorem 1 No deterministic online algorithm can be better than 8/3-competitive.

2



3 2-D and 3-D Online DBP of Unit Fraction Items

We extend the study of 2-D and 3-D online dynamic bin packing problem [13, 9] to
unit fraction items. We adopt the typical approach of dividing items into classes and
analyzing each class individually. The bin assignment algorithm that we use for 2-D
and 3-D items is the First-Fit (FF) algorithm. When a new item R arrives, if there are
occupied bins in which the item can be repacked, FF assigns R to the bin which has
been occupied for the longest time.

For 2-D we consider the following classes of items. Class 1 contains T(≤1
3 ,≤1)-items.

Class 2 contains types T(1,≤1
2),T(12 ,≤

1
2). Class 3 contains types T(1, 1),T(12 , 1). Over-

all, the three classes cover all 2-D UF items and the overall competitive ratio (6.7850) is
the sum of the competitive ratios of the three classes (2.8258, 2.4593, 1.5, respectively).

For 3-D we divide the items into Class 1 (T(> 1
2 , ∗, ∗)-items), Class 2 (T(≤ 1

2 , >
1
2 , ∗)-items), Class 3 (T(≤ 1

2 , (
1
3 ,

1
2 ], ∗)-items), and Class 4 (T(≤ 1

2 ,≤
1
3 , ∗)-items). The

competitive ratios for the four classes are 6.7850, 4.8258, 4, and 6, respectively.

Theorem 2 There is a 6.7850-competitive algorithm and a 21.6108-competitive algo-
rithm for 2-D and 3-D unit fraction items, respectively.

References

[1] A. Bar-Noy and R. E. Ladner. Windows scheduling problems for broadcast systems. SIAM
J. Comput., 32:1091–1113, April 2003.

[2] A. Bar-Noy, R. E. Ladner, and T. Tamir. Windows scheduling as a restricted version of bin
packing. ACM Trans. Algorithms, 3, August 2007.

[3] J. W.-T. Chan, T. W. Lam, and P. W. H. Wong. Dynamic bin packing of unit fractions
items. Theoretical Computer Science, 409(3):172–206, 2008.

[4] J. W.-T. Chan, P. W. H. Wong, and F. C. C. Yung. On dynamic bin packing: An improved
lower bound and resource augmentation analysis. Algorithmica, 53(2):172–206, 2009.

[5] E. G. Coffman, Jr., G. Galambos, S. Martello, and D. Vigo. Bin packing approximation
algorithms: Combinatorial analysis. In Handbook of Combinatorial Optimization. Kluwer
Academic Publishers, 1998.

[6] E. G. Coffman Jr., M. R. Garey, and D. S. Johnson. Dynamic bin packing. SIAM J.
Comput., 12(2):227–258, 1983.

[7] E. G. Coffman, Jr., M. R. Garey, and D. S. Johnson. Bin packing approximation algorithms:
A survey. In Approximation Algorithms for NP-Hard Problems, pages 46–93. PWS, 1996.

[8] J. Csirik and G. J. Woeginger. On-line packing and covering problems. In On-line
Algorithms—The State of the Art, pages 147–177, 1996.

[9] L. Epstein and M. Levy. Dynamic multi-dimensional bin packing. Journal of Discrete
Algorithms, 8:356–372, 2010.

[10] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman, San Francisco, 1979.

[11] S. S. Seiden. On the online bin packing problem. J. ACM, 49(5):640–671, 2002.

[12] A. van Vliet. An improved lower bound for on-line bin packing algorithms. Information
Processing Letters, 43(5):277–284, 1992.

[13] P. W. H. Wong and F. C. C. Yung. Competitive multi-dimensional dynamic bin packing
via L-shape bin packing. In WAOA 2009, pages 242–254, 2010.

3


