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Fault Tolerant Scheduling of Tasks of Two Sizes under Resource
Augmentation

Dariusz R. Kowalski · Prudence W.H. Wong · Elli Zavou

Abstract Guaranteeing the eventual execution of tasks in
machines that are prone to unpredictable crashes and restarts
may be challenging, but is also of high importance. Things
become even more complicated when tasks arrive dynam-
ically and have different computational demands, i.e., pro-
cessing time (or sizes). In this paper, we focus on the online
task scheduling in such systems, considering one machine
and at least two different task sizes. More specifically, al-
gorithms are designed for two different task sizes while the
complementary bounds hold for any number of task sizes
bigger than one. We look at the latency and 1-completed
load competitiveness properties of deterministic scheduling
algorithms under worst-case scenarios. For this, we assume
an adversary, that controls the machine crashes and restarts
as well as the task arrivals of the system, including their
computational demands.

More precisely, we investigate the effect of resource
augmentation – in the form of processor speedup – in the
machine’s performance, by looking at the two efficiency
measures for different speedups. We first identify the thresh-
old of the speedup under which competitiveness cannot be
achieved by any deterministic algorithm, and above which
there exists some deterministic algorithm that is competi-
tive. We then propose an online algorithm, named γ-Burst,
that achieves both latency and 1-completed-load competi-
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tiveness when the speedup is over the threshold. This also
proves that the threshold identified is also sufficient for com-
petitiveness.
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1 Introduction

Dealing with computationally intensive jobs is becoming a
necessity rather than an additional advantage of new compu-
tational systems, i.e., cloud computing [7,20]. Some of the
multiple challenges that appear with the complexity of such
systems, include the dynamicity of job (or task) arrivals, the
diversity of their computational demands (e.g. different pro-
cessing times), the unpredictability of machine failures, as
well as the reduction of power consumption. These charac-
teristics are the norm in cloud computing, not the exception.
An in-depth study is thus required in order to have full un-
derstanding of the potential performance of such systems.

In this work, we apply speed augmentation [3,15], in-
creasing the computational power of the system in order
to overcome these unpredictabilities, even under worst-case
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scenarios. We focus on the model of a single machine prone
to crashes and restarts, and introduce resource augmenta-
tion as an alternative to using more processing entities, e.g.,
multiprocessor systems. More precisely, we assume that the
machine crashes and restarts are controlled by an omni-
scient adversary A (worst-case scenario). We also consider
a scheduler in the system, that decides the order and assigns
the injected tasks to be executed by the machine. Tasks ar-
rive dynamically and have different computational demands,
i.e. processing time (or size), also controlled by the adver-
sary A. We assume that a task i has size pi ∈ [pmin, pmax],
where pmin and pmax represent the smallest and largest pos-
sible values respectively. Note that pi becomes known to the
system at the moment of i’s arrival.

Due to the fact that scheduling decisions must be made
continuously and without knowledge of the future task ar-
rivals or machine crashes and restarts, we look at the prob-
lem as an online scheduling problem [16] and perform com-
petitive analysis [18,2] for the performance of the algo-
rithms studied. We focus on two efficiency measures: the
completed load, which is the aggregated size of all tasks that
have been executed completely, and latency, which is the
longest time a task spends in the system. Latency is also re-
ferred to as (maximum) flowtime in scheduling [8]. In some
sense, the former corresponds to the utilization of the ma-
chine, while the latter on the fairness of the scheduling algo-
rithm. In short, an algorithm is considered to be α-latency
competitive, if under any adversarial pattern, for both task
arrivals and machine crashes and restarts, its latency is at
most α times the latency of the offline optimal algorithm
OPT, under the same adversarial pattern. Similarly, it is con-
sidered to be α-completed-load competitive, if under any ad-
versarial pattern, its completed load is at least α times the
completed load of the offline optimal algorithm OPT, under
the same adversarial pattern. On the other hand, an algo-
rithm is not competitive with respect to a measure, when it
is not competitive for any bounded α.

In a previous work [6], Fernández Anta et al. have stud-
ied the problem of scheduling tasks of different computa-
tional demands in an online manner, as in this work, but
only considered the number of pending tasks and the to-
tal pending load as competitive measures. They have shown
that no deterministic algorithm for the problem under study
is competitive against the best offline solution, but becomes
competitive if resource augmentation is applied in the form
of machine speedup above a certain threshold. In particu-
lar, they define parameter s ≥ 1 to represent the machine
speedup, under which the processing time of a task i be-
comes pi/s. Nonetheless, its use increases the energy con-
sumption of the machine, and thus, by using it as well,
we aim to develop competitive algorithms that require the
smallest speedup possible. (It is understood that there is
nothing to investigate if the offline solution makes use of

resource augmentation as well). Their work has been a mo-
tivation to us, leading to the use of resource augmenta-
tion as machine speedup s, in order to overcome the non-
competitiveness of the two measures we consider in this pa-
per.

Contributions. Let us now briefly describe our contributions
on the problem introduced.

Necessary conditions for competitiveness: In Section 3,
we show the necessary conditions (in the form of threshold
values) on the value of the speedup s in order to achieve
both latency and 1-completed-load competitiveness. Influ-
enced by the work of Fernández et al. [6], we use conditions
C1: s < ρ and C2: s < 1 + γ

ρ , as defined by them, where
ρ is the ratio of the largest over the smallest task size and γ
a parameter that will be explained clearly later on. We then
show that the threshold for the machine speedup is actually
the same as for achieving pending load competitiveness. In
particular:
When speedup s satisfies both conditions C1 and C2, no
deterministic algorithm ALG is latency competitive or c-
completed load competitive, for c > 1− ρ

(1+ρ+γ)(ρ+γ) , even
in a system with a single machine and even when consider-
ing only two task sizes available. Note that this result also
holds for any number of task sizes.

Algorithm γ-Burst: In Section 4, we propose an online
algorithm, named γ-Burst, that considers only two task sizes
(pmin and pmax) and show that it achieves both latency and
1-completed-load competitiveness as soon as one of the con-
ditions does not hold.

In short, algorithm γ-Burst separates the arriving tasks
into two queues according to their size. Then, at each deci-
sion time it checks: (1) if there are no tasks of one of the
sizes, it schedules a task from the available ones, (2) else, if
there are at least γ tasks of size pmin, it schedules γ of them
and then schedules one pmax-task, (3) otherwise, it sched-
ules tasks of the two queues alternatively.

We show that as soon as condition C2 does not
hold, algorithm γ-Burst becomes latency-competitive and 1-
completed-load competitive. In particular:
Algorithm γ-Burst is both 1-latency and 1-completed-load
competitive, when run with speedup s ∈

[
1 + γ

ρ , ρ
)

, for any
given pmin and pmax task sizes. For larger speedup values,
Fernández Anta et al. [5] have already shown that other al-
gorithms are optimal. Our goal is to close the gap for the
speedup in the given range, showing that the two conditions
above are not only necessary but also sufficient to achieve
optimal competitiveness for both efficiency measures.

Our results show an interesting dichotomy in utilization
of resources (in our case, the speedup): for s < 1 + γ

ρ

and s < ρ no bounded latency competitiveness and no c-
completed load competitiveness, for c > 1− ρ

(1+ρ+γ)(ρ+γ) ,
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are possible, while for s ≥ 1 + γ
ρ (even if s < ρ) both 1-

latency competitiveness and 1-completed load competitive-
ness are achievable.

Related Work. Georgiou and Kowalski [12] studied a coop-
erative computing system of n message-passing processes
that are prone to crashes and restarts and collaborate in or-
der to complete the dynamically injected tasks. They per-
formed competitive analysis looking at the number of pend-
ing tasks but assumed only unit-length tasks. One of their
results showed that if tasks are of different lengths, even un-
der slightly restricted adversarial patterns, competitiveness
cannot be achieved.

A previous study [6], by Fernández et al., was inspired
by this result, and introduced the term of speedup with no-
tation s ≥ 1, representing the resource augmentation re-
quired to surpass the non-competitiveness. More precisely,
in [6] the authors looked at a system of multiple machines
and at least two different task sizes, i.e., p ∈ [pmin, pmax],
and defined parameter ρ = pmax

pmin
. They applied distributed

scheduling and performed worst-case analysis considering
number of pending tasks and pending load competitiveness
as their efficiency measure.

They also defined parameter γ representing the mini-
mum number of pmin-tasks that an online algorithm run-
ning with speedup s can complete in addition to a pmax,
in an interval of length (γ + 1)pmin. Then, they introduced
conditions C1: s < ρ and C2: s < 1+ γ

ρ , under which they
proved that:
No deterministic algorithm ALG is pending load competi-
tive, when run with speedup s that satisfies both conditions
C1 and C2, even in a system with a single machine.

In a recent work of Fernandez et al. [5], the authors study
the fault tolerant properties of four fundamental scheduling
algorithms - Longest In System (LIS), Shortest In System
(SIS), Largest Processing Time (LPT) and Shortest Process-
ing Time (SPT) – in a system with one machine. They fo-
cused on three efficiency measures: completed load, pend-
ing load, and latency, in order to compare the performance
of the four algorithms. However, they did not address the
general question of finding optimal solutions for each of the
considered measures, which we aim to cover in this work
with respect to latency and completed load competitiveness.
In fact, the performance of the four algorithms occurred not
to be optimal for most of the ranges of speedup, but the re-
sults are still non-obvious and interesting due to simplicity
and popularity of these algorithms.

In [11], Fernández et al. studied a different setting,
considering an unreliable communication link between two
nodes, proposing the completed load (which was called
asymptotic throughput) for the efficiency measure of packet
scheduling algorithms. They considered only two different
packet sizes, pmin and pmax, and measured the impact of

feedback mechanisms, deferred or immediate, on the com-
petitiveness of scheduling policies under adversarial link
jams. They showed that the most intuitive greedy algorithm
of scheduling the shortest packet length, is not optimal un-
der adversarial errors, and then proposed an online schedul-
ing policy that matches the upper bound of completed load.
However, they did not consider any resource augmentation,
which as we will show in this paper improves the completed-
load performance of scheduling algorithms. In [14], Jurdzin-
ski et al. extended the work done in [11], designing an al-
gorithm that makes use of additional resources by increas-
ing the transmission rate in the link, and achieves completed
load 1. In particular, it achieves at least as high throughput
as the best schedule, running however with double speedup,
i.e., s = 2. In another packet scheduling work, Andrews et
al. [4] consider an online packet scheduling problem with a
wireless channel whose conditions as well as the packet ar-
rivals are controlled by an adversary. They design schedul-
ing algorithms for the base-station in order to achieve sta-
bility in terms of the queue sizes of each user. Our work on
the other hand, does not focus on stability; we look at the
latency and completed-load instead of the pending-load.

Furthermore, our work is directly related to research
done on machine scheduling with availability constraints,
e.g., [13,17]. One of the results in the area shows the ne-
cessity of online algorithms in case of unexpected machine
breakdowns. However, most works allow preemption and
prove optimality for nearly online algorithms; ones that need
to know the time of the next task arrival or machine avail-
ability.

Last but not least, we can relate the problem of our work
with the online version of the bin packing problem [19],
where tasks are the objects to be packed and time periods
between two consecutive failures of the machine are the
bins. On this problem, thorough research has been done,
some of which we consider more related to ours. Epstein
et al. [10] is an example of studying online bin packing with
resource augmentation in the size of bins (corresponds to
the length of alive intervals in our work). The main differ-
ence with our work is the fact that we do not know a pri-
ori the bins and their sizes (duration of time intervals when
the machine is alive and active). Boyar and Ellen [9] have
looked into a similar problem, considering job scheduling
in the grid. The difference with our setting is that they con-
sider many machines, but also the fact that the arriving items
in their model are processors with bounded memory capaci-
ties, which must be used to complete a fixed number of jobs.
Then using two fixed job sizes, small and large, they show
lower and upper bounds that depend only on the fraction of
small jobs in the system.
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2 Model

Network Setting. We consider a system with one machine
prone to unpredictable crashes and restarts, with a sched-
uler that assigns the tasks to the machine following some
online algorithm (scheduling policy). The clients of the sys-
tem submit tasks of different sizes (processing times) to the
scheduler, which then decides the order of their execution
by the machine.

Tasks. Tasks are injected continuously and dynamically to
the scheduler, an operation which we assume to be con-
trolled by an adversaryA. Each task i has a unique identifier,
an arrival time ri (simultaneous arrivals are totally ordered)
and a size pi ∈ [pmin, pmax], corresponding to the process-
ing time it requires to be completed by a machine running
without additional resource augmentation, i.e., s = 1. A
task’s size becomes known at arrival, and values pmin and
pmax represent the smallest and largest sizes respectively.
Throughout the paper we use the term p-task to refer to a
task of size p, and use ρ for the ratio of the maximum over
the minimum task size, i.e., ρ = pmax

pmin
. Whenever we con-

sider only two task sizes, we will refer to them simply as the
small and large tasks. We assume that tasks are atomic with
respect to their completion: if a machine stops executing a
task before it is completed (intentionally or due to a crash),
then the machine cannot resume the execution of the task
from the point it stopped, i.e., preemption is not allowed.
Finally, we assume that tasks are independent and idempo-
tent, meaning that any execution of the same task produces
the same result. The adversary defines the arrival pattern A,
which includes triples of the identifiers, the arrival times and
the sizes of the tasks injected.

Machine crashes and restarts. Due to the unpredictable na-
ture of the machine, we consider crashes and restarts being
defined by error pattern E. We assume pattern E to be coor-
dinated with the arrival pattern A by the adversary A, in or-
der to create worst-case scenarios for the online algorithms.
Since preemption is not allowed, the task being executed at
the time of a crash is not completed, and therefore is still
considered pending in the scheduler’s queue.

Resource Augmentation. As mentioned earlier, we consider
a form of resource augmentation by speeding up the ma-
chine, but our goal is to keep this speedup s ≥ 1 as low as
possible. For a task i of size pi and machine with speedup s,
its processing time becomes pi/s.

Notations. Let us now define some more notations that we
will extensively use in the rest of the paper. Throughout
an execution, it is necessary to keep track of the injected,
completed and pending tasks. We therefore introduce corre-
sponding sets It(A),Ns

t (X,A,E) andQst (X,A,E), where

X is a scheduling algorithm, A and E the arrival and er-
ror patterns respectively, t the time instant considered and
s the speedup of the machine. Let also T = [0, t] be the
interval from the beginning of the execution to the cur-
rent time t. Then, It(A) represents the set of injected tasks
within time interval T , Ns

t (X,A,E) the set of completed
tasks within T and Qst (X,A,E) the set of pending tasks
at time instant t. Note that Qst (X,A,E) contains the tasks
that were injected by time t inclusively, but not the ones
completed before and up to time t. Note also, that It(A) =
Ns
t (X,A,E)∪Qst (X,A,E). In further sections of the paper

we omit the superscript s, and/or the subscript t, for simplic-
ity. However, the appropriate speedup and/or time instant in
each case is clearly stated.

Let us also clarify parameter γ, which was inspired
by [6] and is used throughout our work. It is defined as
the smallest integer such that an algorithm running with
speedup s can complete γ small tasks and a large task in an
interval of length (γ + 1)pmin. It hence satisfies these two
properties, which will be used later in our analysis:
Property (1) γpmin+pmax

s ≤ (γ + 1)pmin.
Property (2) κpmin+pmax

s > (κ + 1)pmin, for every non-
negative integer κ < γ.
From these properties it is derived that

γ = max{dpmax − spmin
(s− 1)pmin

e, 0} = max{dρ− s
s− 1

e, 0}.

Finally, the two conditions for the speedup threshold are
C1: s < ρ and C2: s < 1 + γ

ρ , under which we base our
work.

Efficiency Measures. We focus on two efficiency measures
in our work: the completed load, which is the aggregate
size of all tasks that have been completed successfully, and
the latency, which is the longest duration a task spends in
the system. More precisely, when considering an algorithm
ALG running with speedup s, under arrival and error pat-
ternsA and E respectively, we look at the current time t and
calculate the following:
Completed Load:

Cst (ALG, A,E) =
∑

i∈Ns
t (ALG,A,E)

pi

Latency:

Lst (ALG, A,E) =

max

{
fi − ri,∀i ∈ Ns

t (ALG, A,E)

t− ri,∀i ∈ Qst (ALG, A,E)

}
,

where fi is the time of completion of task i. Finding the
scheduling algorithm that maximizes or minimizes corre-
spondingly the above measures offline (knowing patterns A
and E a priori) is an NP-hard problem [6].
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As already mentioned, due to the dynamicity of the sys-
tem, we view this problem as an online scheduling problem.
Hence, we pursue competitive analysis using these metrics
as follows:

Consider any time t in an execution, combinations of ar-
rival and error patterns, A and E respectively, and any algo-
rithmX designed to solve the scheduling problem when run
without speedup, i.e, s = 1. An online algorithm ALG run-
ning with speedup s ≥ 1, is considered α-completed-load-
competitive if ∀t,X,A,E, it is true that Cst (ALG, A,E) ≥
α ·C1

t (X,A,E)+∆C for some parameter∆C that does not
depend on t,X,A or E; α is the completed-load competi-
tive ratio of ALG, which we denote by C(ALG). Similarly, it
is considered α-latency-competitive if ∀t,X,A,E, it is true
that Lst (ALG, A,E) ≤ α ·L1

t (X,A,E)+∆L, where ∆L is
a parameter independent of t,X,A and E. In this case, α is
the latency competitive ratio of ALG, which we denote by
L(ALG). Note that α is independent of t,X,A and E for
both metrics. However, along with ∆C and ∆L, they may
depend on system parameters pmin, pmax or s, which are
not considered inputs of the problem.

3 Non-Competitiveness

In this section, we show that under some threshold on
the value of machine speedup, competitiveness cannot be
achieved by any deterministic algorithm, neither for 1-
completed-load, nor for latency. This, implies the necessary
conditions in order to achieve competitiveness. To be exact,
we show that this threshold is the same as the one used in [6]
for the pending load competitiveness.

3.1 Completed Load.

Let us start by analyzing the completed load measure and the
conditions under which 1-completed-load-competitiveness
cannot be achieved by any deterministic scheduling algo-
rithm. We will show that it takes place if conditions C1

and C2 on speedup s hold. Even more, under these con-
ditions no deterministic algorithm is c-completed load com-
petitive, for c > 1 − ρ

(1+ρ+γ)(ρ+γ) . This result, together
with Section 4.1 presenting 1-completed load competitive
algorithm in the complementary range of speedup s, shows
a dichotomy in utilization of resources (speedup) when op-
timizing completed load measure.

To prove the negative result, we use the same adver-
sarial strategy used for the pending task analysis done by
Fernández et al. in [6]. That is, we consider any determin-
istic algorithm ALG running with speedup s ≥ 1 such that
conditions C1 and C2 hold, and define a universal offline
algorithm OFF running with no speedup (i.e., s = 1) that

is associated with specific adversarial arrival and error pat-
terns, A and E respectively. The offline algorithm and the
adversarial patterns are defined in such a way that its to-
tal amount of completed load is always the same as the total
size of the injected tasks minus at most γpmin+pmax, while
the completed load of ALG can only be a fraction of the to-
tal size of the injected tasks. The general idea is to prevent
ALG from completing a large task, and to do so we get two
types of phases: short phases, in which both ALG and OFF
perform only small tasks (OFF one more than ALG), and
long phases, in which ALG performs only small tasks while
OFF completes a large one. The details are as follows.

Description of adversarial strategy. At the beginning of the
first phase there are γ small and one large tasks injected and
the machine is activated. Let us now assume, inductively on
the number of phases, that the adversarial arrival and crash
patterns are already defined and at the beginning of phase
i ≥ 1 of algorithm ALG there are x small tasks and y large
tasks pending. We assume that the adversary does not inject
any tasks until the very end of each phase, and thus it can
simulate the scheduling choices of ALG during phase i (the
algorithm is deterministic and we assumed that the adver-
sary does not inject anything nor cause crashes before the
end of the phase). We first define parameter∆ to be the time
elapsed from the beginning of the phase until the time at
which ALG starts executing a large task (assuming the phase
is long enough). Note that, again, since ALG is determinis-
tic, the adversary knows the times at which ALG stops the
execution of a task to schedule another (if this is the case),
it can therefore adjust the crashes at the time instants it sees
fit. There are two scenarios for the phases that may occur:

Short phase. When ∆ < γpmin

s , ALG schedules a large
task sooner than γpmin/s time after the beginning of the
phase. Let κ = b∆/(pmin/s)c < γ be the number of
small tasks scheduled before the large one in the phase. Then
the adversary ends the phase by crashing the machine after
(κ + 1)pmin time from the beginning of the phase. Recall
that Property (2) of γ states that κpmin+pmax

s > (κ+1)pmin.
This means that by the end of the phase, OFF will have com-
pleted κ + 1 small tasks, while ALG will only be able to
complete κ of them and not the large task that was sched-
uled. Also, at the end of the phase, κ + 1 small tasks are
injected, to replace the ones completed by OFF.

Long phase. When ∆ ≥ γpmin

s , ALG schedules a large
task no sooner than γpmin/s time after the beginning of
the phase. In this case, the adversary ends the phase with
a crash after pmax time, so that OFF is able to complete
the large task that is pending. The machine is then crashed,
causing ALG to complete at most γ small tasks but no large
task. This is because of condition C2 : s < 1 + γ/ρ. Also,
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at the end of the phase the adversary injects a large task,
“replacing” the one that was completed by OFF.

Analyzing now the adversarial behavior described
above, we prove the following theorem.

Theorem 1 For any given pmin,pmax and s, if both con-
ditions C1 and C2 are satisfied, no deterministic algo-
rithm ALG is c-completed load competitive, for c > 1 −

ρ
(1+ρ+γ)(ρ+γ) , when run with speedup s against an adver-
sary that injects tasks of sizes c ∈ [pmin, pmax], even in a
system with a single machine.

Proof Assume that both conditions C1 and C2 are satis-
fied. Suppose, to the contrary, that there is a deterministic al-
gorithm ALG which is

(
1− ρ

(1+ρ+γ)(ρ+γ) + ε
)

-completed
load competitive, for some ε > 0, when run with on a sin-
gle machine with speedup s against an adversary that injects
tasks of sizes c ∈ [pmin, pmax]. W.l.o.g. we may consider
0 < ε < ρ

(1+ρ+γ)(ρ+γ) , as if the algorithm was competi-
tive for a larger value of ε it would still be competitive for
0 < ε < ρ

(1+ρ+γ)(ρ+γ) , by definition of competitiveness.
Let us execute algorithm ALG against the adversary de-

fined in the beginning of this section. Let T = T1+T2 be the
number of phases completed so far in the execution, where
T1 and T2 are the numbers of short and long phases respec-
tively. Let β = β(T ) = T2/T . Let us also denote the total
injected load by W = W (T ) (the sum of sizes of all the
tasks injected). Note that W (T ) grows to infinity with T , by
the definition of the adversary and phases.

Observe that

T2pmax ≤W − (γpmin + pmax) ≤ T (γpmin + pmax) .

Indeed, the first inequality comes from the properties of in-
jecting new tasks in such a way that the OFF has γ small
tasks and one large task after T2 long phases in which it
completed one large task (note that there could be more tasks
in the workload W completed by OFF in short phases). The
second inequality follows from the fact that at most γ small
tasks and one large task are injected per each phase, plus
one such combination of tasks in the very beginning of the
execution. Consequently,

T ≥ W

γpmin + pmax
− 1 . (1)

Consider sufficiently large T such that W is bigger than
2(γpmin + pmax)/ε; it exists since W = W (T ) grows to
infinity. We compute upper bounds on the competitive ratio
in two ways as follows.
1) The completed load of ALG is W − T2pmax = W −
βTpmax; that is, it is equal to the total processing time of
the tasks that have arrived, W , minus the amount of work
that OFF was able to complete in the long phases, T2pmax.

We know that ALG is not able to complete any large task,
but since there were T2 long phases, we know that at least
that many large tasks were injected in the system and OFF
was able to complete them. This is at most

W − βTpmax ≤W −
βWpmax

γpmin + pmax
+ βpmax =

W ·
(
1− βpmax

γpmin + pmax
+
βpmax
W

)
,

by applying the lower bound on T , c.f., Equation (1). Since
we assumed W > 2(γpmin + pmax)/ε, and since β ≤ 1,
the completed work of ALG is smaller than

W ·
(
1− βpmax

γpmin + pmax
+ ε/2

)
. (2)

2) On the other hand, the completed load of ALG is W −
T1pmin+T2γpmin =W −(1−β)Tpmin+βTγpmin. This
follows directly from the adversarial strategy and definition
of OFF: ALG is not able to complete as many small tasks
as OFF in the short phases (it completes one less per phase)
but is able to complete γpmin in each long phase. Thus, the
completed load of ALG is at most

W ·
(
1− pmin(1− β − βγ)

γpmin + pmax
+
pmin(1− β − βγ)

W

)
,

by applying the lower bound on T , c.f., Equation (1). This
is smaller than

W ·
(
1− pmin(1− β − βγ)

γpmin + pmax
+ ε/2

)
, (3)

since we assumed W > 2(γpmin + pmax)/ε, which in turn
is bigger than 2pmin(1− β − βγ)/ε for β ∈ [0, 1].

To summarize the above estimations, the completed load
of ALG is smaller or equal to the minimum of the two com-
puted upper bounds stated in Equations (2) and (3). Observe
that the first upper bound, W ·

(
1− βpmax

γpmin+pmax
+ ε/2

)
,

is decreasing with β growing from 0 to 1, while the second
upper bound, W ·

(
1− pmin(1−β−βγ)

γpmin+pmax
+ ε/2

)
, is increas-

ing. Therefore, the minimum of these two upper bounds is
not bigger than the values of these formulas for some β∗

for which they are equal; for other values of β, at least one
of the formulas (and so their minimum) is smaller than the
value for β∗. The value of β∗ follows from equating the two
formulas, Eq. (2) = Eq. (3), and is equal to 1

1+ρ+γ . Plugging
it into Eq. (2)

W ·
(
1− β∗pmax

γpmin + pmax
+ ε/2

)

=W ·
(
1− ρ

(1 + ρ+ γ)(ρ+ γ)
+ ε/2

)
.
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At the same time, the completed load of OFF is at least

W − γpmin − pmax =W ·
(
1− γpmin + pmax

W

)
,

by the definition of the adversarial patterns; OFF completed
all injected tasks, except the ones that are pending at the
time of observation (of length at most γpmin+pmax). Since
W > 2(γpmin+pmax)/ε, the completed load of OFF is thus
bigger than

W · (1− ε/2) .

The completed load competitiveness is therefore smaller
than

1− ρ
(1+ρ+γ)(ρ+γ) + ε/2

1− ε/2
= 1− ρ

(1 + ρ+ γ)(ρ+ γ)
+ ε′

< 1− ρ

(1 + ρ+ γ)(ρ+ γ)
+ ε ,

for some constant ε′ > 0 that depends only on ε, ρ, γ,
since ε < ρ

(1+ρ+γ)(ρ+γ) . Recall that this holds for any
sufficiently large T , and note that the difference ε − ε′ is
a positive constant that does not depend on T ; this im-
plies that the load completed by ALG is smaller than the
1− ρ

(1+ρ+γ)(ρ+γ) + ε fraction of the load completed by OFF
by an unbounded value, and thus yields contradiction with
the assumed

(
1− ρ

(1+ρ+γ)(ρ+γ) + ε
)

-completed load com-
petitiveness (even for the sense of asymptotic competitive-
ness that allows an additive constant). This completes the
proof. ut

3.2 Latency.

One may try to use the same adversarial strategy as in the
previous construction for the completed load in order to
prove that no deterministic algorithm ALG can reach arbi-
trarily larger latency than OFF, provided that the speedup
s satisfies both conditions C1 and C2. However, that
cannot be achieved due to the following algorithm ALG,
which guarantees optimal latency competitiveness under
the adversary and thus serves as a counter-example: after
a crash/restart event schedule a large task. According to
the adversarial strategy proposed in Section 3.1, only short
phases occur, whereas an offline algorithm OFF schedules
exactly one small task and then the machine crashes fol-
lowed by an injection of a new small task. It is easy to ob-
serve, that in such a case both ALG and OFF will freeze
the large task in the system, hence leading to infinite latency
with time going to infinity. More specifically, the maximum
latency of both algorithms will be t at each time t, which
means an optimal latency competitiveness.

Therefore, we define the following slightly modified ad-
versarial arrival and error patterns A and E, accompanied

by the adjusted OFF, which, as we show, prohibit any deter-
ministic algorithm of achieving (bounded) latency compet-
itiveness. The idea is to allow ALG to perform a large task
from time to time, but with (exponentially) increasing time
between two such consecutive performances.

Let us consider any deterministic algorithm ALG run-
ning under speedup s ≥ 1 and define a universal offline
algorithm OFF running with no speedup (s = 1), associated
with the adversarial arrival and error patterns A and E. The
offline algorithm OFF will behave in terms of phases and
stages as follows.

Description of adversarial strategy. A phase is a closed
time interval between a restart (beginning) and a crash (end)
point of the system’s machine, while it remains continu-
ously alive during the phase. A stage consists of consecutive
phases during which the adversary allows ALG to complete
at most one large task. We number these phases by param-
eter j; more specifically, the j-th phase of stage i will be
denoted by ji. At the beginning of the first phase there are
γ small and one large tasks injected and the machine is acti-
vated.

Let us now assume that the adversarial arrival and error
patterns are already defined and at the beginning of stage
i ≥ 1 of algorithm ALG there are x small tasks and y large
tasks pending. Let us also assume that the adversary does
not inject any tasks until the end of each phase in the stage
and simulate the scheduling choices of ALG during stage i.
We first define parameter ∆(ji) to be the time elapsed from
the beginning of phase j in stage i until the time at which
ALG starts executing a large task (assuming the phase is
long enough). Note that since ALG is deterministic, the ad-
versary knows the times at which ALG stops the execution
of a task to schedule another (if such a case), it can there-
fore adjust the crashes at the time instants it sees fit. First,
let κji = b∆(ji)/(pmin/s)c < γ be the number of small
tasks executed before a large task is scheduled in phase ji.
There are only two types of stages that may occur:

Stage Type 1. When for all phases in stage i, i.e., ∀ji, ALG
schedules a large task sooner than γpmin/s time after the
beginning of the phase, i.e., ∆(ji) <

γpmin

s , then the fol-
lowing may occur:
(a) If pmax ≤

κji
pmin+pmax

s , then the adversary crashes the
machine after pmax time and ends phase ji without injecting
any additional task. Then, exactly γ phases of length pmin
follow, after which the adversary injects a small task. Fi-
nally, the stage continuous to infinity with phases of length
pmin where one small task is injected at the end of each
phase.
(b) If pmax >

κji
pmin+pmax

s (note that we then have
pmax > (κji +1)pmin, by Property (2) of γ), then for phase
ji of the stage i:
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Fig. 1 Illustration of stage of type 1(a).

Fig. 2 Illustration of phase ji for case (i) in stage of type 1(b).

(i) if (ji − 1)pmin < 2ipmax + γpmin, the adversary
crashes the machine after (κji + 1)pmin time and ends the
phase injecting κji + 1 small tasks (as many as OFF has
managed to complete).

(ii) if (ji − 1)pmin ≥ 2ipmax + γpmin, then the adver-
sary crashes the machine after pmax time and ends the phase
by injecting a large task.

Stage Type 2. When there is a phase ji in stage i such that,
∆(ji) ≥ γpmin

s , it means that ALG schedules a large task no
sooner than γpmin/s time after the beginning of phase ji. In
such a case, the adversary crashes the machine after pmax
time, ending phase ji without injecting any more tasks. The
following phases are of length pmin. At the end of the γth

phase and the phases after that, there is exactly one small
task injected.

Properties of the Adversarial Strategy. Before continuing
with the analysis, let us explain some important properties
of the Stage Types described above, which are essential for
the proof that follows.
If a stage i is of type 1(a), as also seen in Fig. 1, OFF has
time to complete a large task in phase ji, while ALG is able
to complete only up to κji small tasks. With the following
phases of length pmin, the adversary guarantees an infinite
execution of latency 0 for OFF (after phase ji) while the
latency of ALG grows to infinity as it is never able to
complete the large tasks pending at the beginning of phase
ji.
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Fig. 3 Illustration of phase ji for case (ii) in stage of type 1(b).

Fig. 4 Illustration of stage of type 2. Note that δ is the integer corresponding to the number of small tasks completed by ALG during ∆(ji) and it
is at least equal to γ.

If a stage i is of type 1(b) and phase ji lies in case (i), as
also seen in Fig. 2, OFF has the time to complete κji + 1

small tasks, one small task more than the ones completed
by ALG before the machine is crashed. What is more, ALG
cannot complete the large task scheduled after the κji small
ones, resulting with one small task more than the ones it
had at the beginning of the phase. At the end of the phase,
the latencies of ALG and OFF increase by (κji + 1)pmin.
If a stage i is of type 1(b) and phase ji lies in case (ii),
as also seen in Fig. 3, OFF completes the large pending
task, while ALG is able to complete at least κji small
tasks in addition to the large one. However, at the end
of such a phase the latency of OFF equals the time that
the γ pending small tasks have been in the system, while

the latency of ALG is at least equal to 2ipmax. This, is
because the small tasks that are pending in the execution
of OFF at the beginning of the phase are of total size at
least 2ipmax + γpmin, and each small task is accumulated
in intuitively ≈ γpmin time (equal to the time a phase
(b)(i) lasts). Note that, such phases may occur only after
intervals of increasing length, more precisely the length of
the intervals increases by a factor of 2i in each stage i.
If a stage i is of type 2, as also seen in Fig. 4, OFF is able to
complete the large task during phase ji and then complete
the remaining small tasks (γ plus all the injected ones)
one at a time, while ALG may also complete some small
tasks, but not the large one that is pending. For the previous
(j − 1) phases the adversarial behavior followed is the
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one described in 1(b)(i); the other kinds of phases assume
completing a large task, which would make stage i of type
1 directly.

Analyzing now the adversarial behavior described
above, we prove the following lemmas, which lead to the
final theorem of the section.

Lemma 1 The phases, the adversarial pattern and algo-
rithm OFF are well-defined. In particular, at the beginning
of each phase in stages of type 1(b) and the first ji phases in
stages of type 1(a) and 2, there are exactly γ small and one
large tasks pending in the execution of OFF. For the rest of
the phases in stages of type 1(a) and 2, there are less than γ
small tasks pending in the execution of OFF.

Proof We use induction on the number of phases to show
that at the beginning of phase k in a stage of type 1(b) and
the first ji phases in a stage of type 1(a) or 2, there are ex-
actly γ small tasks and a large one pending in the execution
of OFF; therefore phase k is well defined. The specification
of the phase depends on the relation between pmax and the
number of small tasks scheduled in that phase, as well as the
sequence number of the current phase within the stage it is.

The invariant of γ small and one large tasks holds for the
first phase of the execution by definition (initial injection).
Looking at the definition of the phases in the two types of
stages mentioned, we have the following cases:
(1) Phases of case 1(b)(i) end after OFF completes (κ + 1)

small tasks, where there are exactly as many injected.
(2) Phases of case 1(b)(ii) end after OFF completes the large
task pending at the beginning, and at the end there is exactly
one large task injected.
(3) The first j−1 phases of stage types 1(a) and 2, satisfy the
∆(k) < γpmin

s and for those ones, subcase 1(b)(i) will be
followed (case 1 above), which guarantees that the invariant
holds.

For the rest of the phases in stages of types 1(a) and 2,
there are only some small tasks pending in the execution of
OFF. Looking first at stage type 1(a), phase ji will end in
pmax time, during which OFF will complete the large task
pending and after which no task will be injected for the next
γ phases of length pmin. At the beginning of those phases,
there will be exactly γ − i < γ small tasks pending in the
execution of OFF, where i = 1, 2, . . . , γ. Then, at the end
of the last phase a new small task will be injected and every
pmin time there will be a crash and an injection of a small
task, causing the rest of the execution to have phases starting
with one small task pending for OFF. Then, in a stage of type
2, after the first ji phases, the idea that follows is the same
as in stage of type 1(a), with the difference that ALG here
is able to complete exactly γ small tasks in the jthi phase,
while in scenario 1(a) only κji . The phases that follow will
be the same as the ones described above. ut

Lemma 2 The number of phases is infinite.

Proof First, by Lemma 1, consecutive phases are well de-
fined. Moreover, they are of finite length, regardless of the
stage and scenario type they are in; the alive intervals are al-
ways defined by the tasks completed by OFF in each phase,
either a large task (in stages of type 1(a), 2 or phases of
case 1(b)(ii)), or some small tasks (in stages of type 1(a), 2
or phases of case 1(b)(i)). Therefore in an infinite execution
there is an infinite amount of phases. ut

Lemma 3 Stages of type 1(a) and 2 are terminal (i.e., if
such a stage appears, it never stops), have infinite length
and cause infinite latency competitiveness for ALG.

Proof First, note that by the definition of stage types 1(a)
and 2, after the completion of a large pending task in phase
ji by OFF, there is no other large task injected during the
execution and ALG has not been able to complete it by that
time. Then, γ phases of length pmin follow, with no task
injections except the last one during which a small task ar-
rives. This means that the γ small tasks pending at the be-
ginning of phase ji have now been completed by OFF and
its latency becomes zero. On the other hand, even if ALG
has completed some small tasks, it will not be able to com-
plete the large pending task, which will increase its latency.
After the γth phase of length pmin, there are infinite phases
of length pmin that end with a crash and a single pmin-task
injection. This results in an infinite latency competitiveness
for ALG, due to the pending large task in the queue of ALG
and the fact that OFF starts performing the arriving load im-
mediately and thus keeping its queue empty. ut

Lemma 4 A stage i of type 1(b) consists of various phases
of case 1(b)(i) and a final phase of case 1(b)(ii). At the end of
the phases of case 1(b)(i), the latency of both ALG and OFF
is increased by the same value. However, at the end of the
last phase of the stage, that is of case 1(b)(ii), the latency
of ALG is increased by 2ipmax, while the latency of OFF
is bounded by the time the last injected γ small tasks were
waiting in the system.

Proof When pmax >
κji

pmin+pmax

s (and consequently
pmax > (κji + 1)pmin) a stage of type 1(b) takes place.
While (ji − 1)pmin < 2ipmax + γpmin, i.e., case 1(b)(i),
the adversary ends the phases after (κji +1)pmin time. Dur-
ing such phases, OFF completes (κji +1) small tasks, while
ALG only κji of them. In both executions there is a large
task pending, of which the latency is increased equally.

Then, as soon as (ji − 1)pmin ≥ 2ipmax + γpmin,
i.e., case 1(b)(ii), the corresponding phase has a duration of
pmax time. This allows for both ALG and OFF to complete
their large pending task, causing their latency to depend on
their small pending tasks. Regarding OFF, we know from
Lemma 1 that it has only γ of them, and they cannot have
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been injected more than γ phases ago; hence the maximum
latency will be γpmin. On the other hand, we know that the
current phase was preceded by ji − 1 phases of case 1(b)(i),
and after each of them ALG has been accumulating one
more small task. Therefore, at the beginning of phase ji it
has ji−1 small tasks more than OFF. Again, from Lemma 1
we know that each phase of case 1(b)(i) that preceded had a
duration of maximum γpmin time. That, together with the
fact that (ji − 1)pmin ≥ 2ipmax + γpmin, and the fact
that within the current phase ALG may complete up to γ
small tasks, means that its latency will be increased to at
least 2ipmax (here we use a recursive assumption that at the
end of the previous phase of case 1(b)(ii), i.e., at the end of
the last stage of type 1(b), it was 2i−1pmax). ut

Combining Lemmas 1 to 4, and the definition of the adver-
sarial arrival and error patterns above, A and E, the follow-
ing theorem follows.

Theorem 2 For any given pmin, pmax and s, if both con-
ditions C1 and C2 are satisfied, no deterministic algorithm
ALG is latency competitive when run with speedup s against
an adversary that injects tasks of sizes c ∈ [pmin, pmax],
even in a system with one single machine.

Proof Lemma 1 states that the defined adversarial strategy
and the accompanied OFF result in a valid execution of ALG
and OFF. It also upper bounds the amount of pending work
for OFF at the beginning of each phase of the execution.
Lemma 2 shows that the number of phases is actually infi-
nite, and thus infinite executions are guaranteed.

If an execution enters a stage of type 1(a) or 2, from
Lemma 3 we know that in both cases the stage will have in-
finite length and the latency of ALG will grow to infinity.
If, however, an execution stays in stages of type 1(b), from
Lemma 4 we know that the latency of ALG will continue to
grow exponentially. Hence, regardless of whether an execu-
tion eventually enters a stage of type 1(a) or (2), or remains
in an infinite execution of continuous stages of type 1(b),
the latency of ALG will grow to infinity while the latency of
OFF stays bounded, which completes the proof. ut

4 Algorithm γ-Burst

In this section, we propose an online scheduling algorithm,
named γ-Burst, which achieves both 1-completed-load and
latency competitiveness, as soon as condition C2 does not
hold. More precisely, we show that by considering only two
task sizes, pmin and pmax, and running with speedup s ∈
[1+γ/ρ, ρ), the algorithm achieves optimal competitiveness
for both measures. In fact, Fernández Anta et al. [5] have
shown that other algorithms are optimal for larger speedup,
so we aim to close the gap for the speedup in the range given.

Algorithm Description. Algorithm γ-Burst considers only
two task sizes (pmin and pmax). It separates the pending
tasks in two lists (or queues) according to their size, say
Qmax and Qmin, and sorts each of them in ascending order
according to their arrival time. This way, the first task in each
list is the one to be scheduled next. Algorithm γ-Burst takes
its scheduling decisions at the end of each stage, which in-
dicates also the beginning of a new one. A stage ends either
by being interrupted by a machine crash, or by the comple-
tion of the tasks that have been scheduled at the beginning
of the stage. The scheduling decisions are then taken (at the
beginning of each stage) as follows:
1. If there are no tasks of one of the sizes, i.e., one of the
queues of pending tasks is empty, it schedules a task from
the available ones.
2. If there are at least γ small tasks, it schedules γ of them
and then schedules a large task.
3. Otherwise, it schedules tasks of the two queues alterna-
tively, always starting with a short task after completing one
of the previous stages. Each such stage ends after a single
task is completed.
These three rules for scheduling automatically partition
stages into three types, depending on the rule number ap-
plied in the beginning. Note that the above scheduling rules
may also influence the lengths of stages. Finally, whenever
we decide to schedule a small or large task, we follow the
First-In-First-Out order within the selected queue.

The idea behind the algorithm is that, as long as there are
no machine crashes, and as long as there are enough tasks
pending, there will be consecutive executions of batches of
tasks consisting of a group of γ small tasks followed by a
large task. Therefore, as we will see in the detailed analysis
in Sections 4.1 and 4.2, the total size of γ small tasks, γpmin,
amortizes well the size of the large task that follows, which
may (or not) be interrupted. What is more, the tasks from
both lists are getting executed relatively often, provided the
queues are not empty, hence the latency will not suffer from
any “frozen” task.

4.1 Completed Load.

Let us focus first on the completed load competitiveness of
algorithm γ-Burst, for which we prove the following theo-
rem.

Theorem 3 For any given pmin, pmax and speedup satisfy-
ing condition C1 ∧ ¬C2, i.e., s ∈ [1 + γ/ρ, ρ), algorithm
γ-Burst is 1-completed-load competitive; more specifically,
∀t, C(t, γ-Burst) ≥ C(t,OPT)− (pmax + pmin).

Proof Let us consider a time instant t′ to be the first point in
the execution of γ-Burst where our claim for the total com-
pleted load does not hold, i.e. C(t′, γ-Burst) < C(t′,OPT)−
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(pmax + pmin). Let us also define time instant t∗ < t′,
being the last time before t′ at which algorithm γ-Burst
had to make a scheduling decision, i.e., the beginning of
the last stage before t′. By definition, C(t∗, γ-Burst) ≥
C(t∗,OPT) − (pmax + pmin) holds. However, it could be
the case that C(t∗, γ-Burst) < C(t∗,OPT) − α, where α <

pmax + pmin. Let us denote by T = (t∗, t′] the interval be-
tween the two time instants. We then look at the different
cases for the length of the interval for each type of stage:

(a) Stage of type 1 or 3 when scheduling a small task.

This holds when at time t∗, γ-Burst decides to schedule ex-
actly one small task before making its next decision. Ob-
serve here, that it cannot be the case that |T | > pmin/s

since it directly contradicts the definition of time instant t∗.
In such case, γ-Burst would have another scheduling deci-
sion after the pmin-task is completed, marking the beginning
of a new last stage before t′. We therefore consider the fol-
lowing: |T | ≤ pmin/s.

Algorithm γ-Burst will either be able to complete the small
task it scheduled at t∗, or not. Hence, it increases its com-
pleted load by at most pmin by time t′. At the same time,
OPT may complete at most one task (of any size) that was
scheduled before t∗ (if at t∗ there was no machine crash).
We therefore define time instant t∗∗ < t∗ to be the last time
before t∗ at which OPT scheduled this last completed task.
This means that interval T ′ = [t∗∗, t′) will have length |T ′|
equal to either pmin or pmax. Considering |T ′| = pmax, the
following inequalities hold:

C(t′, γ-Burst)

≥ C(t∗∗, γ-Burst) + γpmin + pmax −
pmin
s

≥ C(t∗∗,OPT)− pmax − pmin + γpmin + pmax −
pmin
s

= C(t∗∗,OPT) + (γ − 1)pmin +
pmin
s

≥ C(t′,OPT)− pmax + (γ − 1)pmin −
pmin
s

≥ C(t′,OPT)− (pmax + pmin)

The first inequality is due to s ≥ 1 + γ/ρ which means
that pmax ≥ γpmin+pmax

s . The second inequality comes
from the definition of time t′ and the third inequality from
the fact that OPT completes a large task. The last inequality
holds because γ ≥ 1.

Considering now |T ′| = pmin, the following holds:

C(t′, γ-Burst)

≥ C(t∗∗, γ-Burst) + spmin −
pmin
s

≥ C(t∗∗,OPT)− pmax − pmin + spmin −
pmin
s

= C(t∗∗,OPT)− pmax + (s− 1)pmin −
pmin
s

≥ C(t′,OPT)− pmin − pmax + (s− 1)pmin −
pmin
s

≥ C(t′,OPT)− (pmin + pmax)

The first inequality is due to the fact that s ≥ 1. The
second inequality comes from the definition of t′ and the
third inequality from the fact that OPT completes a small
task. The last inequality holds because s ≥ 1.
(b) Stage of type 1 or 3 when scheduling a large task.

This holds when at time t∗, γ-Burst decides to schedule ex-
actly one large task before making its next decision. Similar
to (a), it cannot be the case that |T | > pmax/s, since again
it contradicts directly the definition of time t∗. We therefore
consider the following: |T | ≤ pmax/s.

Algorithm γ-Burst is either able to complete the large task
scheduled or not; hence increasing its completed load by
at most pmax by time t′. At the same time, OPT may
complete at most one task (of any size) that was sched-
uled before t∗, plus a small task within the interval T (if
there is enough time left), resulting to a maximum com-
pletion time of pmin + pmax. Let us then define time in-
stant t∗∗ < t∗, being the last time before t∗ at which OPT
scheduled this second-to-last completed task. This means
that the interval T ′ = [t∗∗, t′) will have length |T ′| equal
to either pmax + pmin or 2pmin. Hence, considering first
|T ′| ≤ pmax + pmin, the following holds:

C(t′, γ-Burst)

≥ C(t∗∗, γ-Burst) + spmin + spmax −
pmax
s

≥ C(t∗∗,OPT)− pmax − pmin + spmin + spmax −
pmax
s

≥ C(t′,OPT)− pmax − pmin + (s− 1)(pmax + pmin)

− pmax
s

≥ C(t′,OPT)− (pmax + pmin)

The first inequality is due to the fact that s ≥ 1. The
second inequality comes from the definition of t′ and the
third from the fact that OPT completes at most pmax+pmin.
The last inequality is again true because of s ≥ 1.
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Considering now |T ′| ≤ 2pmin, the following inequali-
ties hold:

C(t′, γ-Burst)

≥ C(t∗∗, γ-Burst) + 2spmin −
pmax
s

≥ C(t∗∗,OPT)− pmax − pmin + 2spmin −
pmax
s

≥ C(t′,OPT)− 2pmin − pmax − pmin + 2spmin −
pmax
s

≥ C(t′,OPT)− (pmin + pmax) + 2(s− 1)pmin −
pmax
s

≥ C(t′,OPT)− (pmin + pmax)

The first inequality is due to s ≥ 1. The second inequal-
ity comes from the definition of t′, while the third form the
fact that OPT completes at most 2pmin. The last inequality
is again true from s ≥ 1.
(c) Stage of type 2.

This holds, when at time t∗, γ-Burst has enough tasks and
decides to schedule γ small tasks followed by a large one.
Similar to (a) and (b) before, it cannot be the case that
|T | > γpmin+pmax

s , since it contradicts directly the defini-
tion of time t∗. In this case there are four cases to examine
for the period T :

1) |T | ≤ pmin

s .

In this case, γ-Burst is able to complete up to one small task,
while OPT may complete up to one task (of any size) that
was scheduled before time t∗. Following the analysis of case
(a) above, C(t′, γ-Burst) ≥ C(t′,OPT)− (pmax + pmin).

2) pmin

s < |T | ≤ pmax

s .

In this case, γ-Burst is able to complete at most κ tasks of
size pmin, where κ =

⌊
pmax/s
pmin

⌋
=
⌊
ρ
s

⌋
and κ ≥ 1. At the

same time, OPT is able to complete tasks of total size up
to pmax + pmin for the same reasons as the ones in case
(b) above. Hence, following the definition of time instant
t∗∗ used in case (b) above and the fact that κpmin ≤ pmax

s ,
C(t′, γ-Burst) ≥ C(t′,OPT)− (pmax + pmin).

3) pmax

s < |T | ≤ γpmin

s .

In this case, γ-Burst can only complete up to γ scheduled
small tasks; more precisely, κ ≤ γ of them, where κ > 1. At
the same time, OPT is able to complete tasks of total size up
to pmax+ γpmin

s ; that is, one task of any size that was sched-
uled before t∗, and then up to total time equal to the length
of the interval. Let us define time instant t∗∗ < t∗, being the
last time before t∗ at which OPT scheduled that extra task.
This means, that the new interval T ′ = [t∗∗, t′) will have
length either |T ′| ≤ pmax+ γpmin

s or |T ′| ≤ pmin+ γpmin

s .
Considering first the case of |T ′| ≤ pmax +

γpmin

s , the fol-

lowing holds:

C(t′, γ-Burst)

≥ C(t∗∗, γ-Burst) + spmax + γpmin −
pmin
s

≥ C(t∗∗,OPT)− pmax − pmin + spmax + γpmin

− pmin
s

= C(t∗∗,OPT) + (s− 1)pmax + (γ − 1)pmin −
pmin
s

≥ C(t′,OPT)− pmax −
γpmin
s

+ (s− 1)pmax

+ (γ − 1)pmin −
pmin
s

= C(t′,OPT)− (pmax + pmin) + (s− 1)pmax

+ γpmin −
(γ + 1)pmin

s

≥ C(t′,OPT)− (pmax + pmin)

The argumentation is similar to the previous cases. The
first and last inequalities are due to the fact that s ≥ 1. The
second inequality comes from the definition of t′ and the
third inequality from the fact that OPT completes at most
pmax +

γpmin

s .
Considering now |T ′| ≤ pmin + γpmin

s , the following
holds:

C(t′, γ-Burst)

≥ C(t∗∗, γ-Burst) + spmin + γpmin −
pmin
s

≥ C(t∗∗,OPT)− pmax − pmin + spmin + γpmin

− pmin
s

= C(t∗∗,OPT)− pmax + (s+ γ − 1)pmin −
pmin
s

≥ C(t′,OPT)− pmin −
γpmin
s
− pmax

+ (s+ γ − 1)pmin −
pmin
s

= C(t′,OPT)− (pmin + pmax) + (s+ γ − 1)pmin

− (γ − 1)pmin
s

≥ C(t′,OPT)− (pmin + pmax)

Again the first and last inequalities are due to the fact
that s ≥ 1. The second inequality comes from the definition
of t′ and the third inequality form the fact that OPT com-
pletes at most pmin + γpmin

s .

4) γpmin

s < |T | ≤ γpmin+pmax

s .

In this case, γ-Burst completes the γ small tasks and it is
either able to complete the last large task scheduled, or not.
At the same time, OPT is able to complete tasks of total size
up to pmax + γpmin+pmax

s (one task of any size that was
scheduled before t∗ and then up to a total size equal to the
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length of the interval). Let us define time instant t∗∗ < t∗

as the last time before t∗ that OPT scheduled that extra task,
and interval T ′ = [t∗∗, t′) with length either |T ′| ≤ pmax +
γpmin+pmax

s or |T ′| ≤ pmin + γpmin+pmax

s . Considering
first |T ′| ≤ pmax + γpmin+pmax

s , the following holds:

C(t′, γ-Burst)

≥ C(t∗∗, γ-Burst) + spmax + γpmin + pmax − pmax
≥ C(t∗∗,OPT)− pmax − pmin + spmax + γpmin

≥ C(t′,OPT)− pmax −
γpmin + pmax

s
+ (s− 1)pmax

+ (γ − 1)pmin

= C(t′,OPT)− (pmax + pmin) + (s− 1)pmax + γpmin

− γpmin + pmax
s

≥ C(t′,OPT)− (pmax + pmin)

Again, the arguments are similar to the previous cases.
The first and last inequalities are due to the fact that s ≥ 1.
The second inequality follows from the definition of t′ and
the third comes from the fact that OPT completes at most
pmax +

γpmin+pmax

s .
Considering now |T ′| ≤ pmin + γpmin+pmax

s , the fol-
lowing holds:

C(t′, γ-Burst)

≥ C(t∗∗, γ-Burst) + spmin + γpmin + pmax − pmax
≥ C(t∗∗,OPT)− pmax − pmin + (s+ γ)pmin

≥ C(t′,OPT)− pmin −
γpmin + pmax

s
− pmax

+ (s+ γ − 1)pmin

≥ C(t′,OPT)− (pmin + pmax)

The first and last inequalities are due to s ≥ 1. The
second inequality follows from the definition of t′ and the
third from the fact that OPT completes at most pmin +
γpmin+pmax

s .
Since we have shown contradiction of the initial claim

for all possible stages, γ-Burst is 1-completed-load compet-
itive as claimed, with exact completed load competitiveness
C(t, γ-Burst) ≥ C(t,OPT) − (pmax + pmin) at all time in-
stants t. ut

4.2 Latency.

Let us now analyze the latency of algorithm γ-Burst under
the same speedup condition, s ∈ [1 + γ/ρ, ρ).

We first define a basic invariant I0, defining the 1–1 rela-
tionship of the latency of large tasks between the queues of
γ-Burst and OPT, at any time in an execution. We then de-
fine invariants I1 and I2, that characterize the general pmax-
latency of γ-Burst with respect to the latency of OPT and

its corresponding pmin-latency. (The latter concerns the la-
tency of the algorithm’s small tasks, while the former con-
cerns the latency of its large tasks.)

I0: For any 1 < i ≤ z, where z = min{|Q(pmax, γ-Burst)|,
|Q(pmax,OPT)|}, the latency of the ith large task in the
queue of γ-Burst is not bigger than the latency of the ith

large task in the queue of OPT.
I1: L(t, pmax, γ-Burst) ≤ L(t, pmax,OPT): This means

that at time t of the execution, the maximum latency of
large tasks that are pending in γ-Burst is at most equal
to the maximum latency of large tasks that are pending
in OPT.

I2: L(t, pmin, γ-Burst) ≤ max{L(t, pmin,OPT),
L(t, pmax,OPT)}: This means that the maximum la-
tency of the pending small tasks in the execution of
γ-Burst is at most equal to the maximum of the laten-
cies of the small and large tasks that are pending in the
execution of OPT at time t.

Before proving the necessary lemmas for the above
invariants, let us specify the construction of the two
queues Q(pmax, γ-Burst) and Q(pmax,OPT). When a
new large task arrives in the system, it is put at
the end of the queue, indexed as τz+1, where z =

min{|Q(pmax, γ-Burst)|, |Q(pmax,OPT)|} (as defined in
the invariant I0). At any time instant t, the large task indexed
as τ1 is the first task in the queue; the one injected the earli-
est and is pending the longest; hence has the largest latency
among the rest pending large tasks. It is also the one to be
scheduled at the next time that γ-Burst, or OPT respectively,
decides to schedule a large task.

Lemma 5 When γ-Burst runs with speedup s ∈ [1 +

γ/ρ, ρ), the invariant I0 holds at all times of the execution,
i.e. ∀t, L(t, τi, γ-Burst) ≤ L(t, τi,OPT), where τi the ith

large task in the corresponding queue.

Proof Let us define time instants tk of an execution of
γ-Burst, where k = 0, 1, 2, . . . , being the times at which
algorithm γ-Burst completed the kth large task. Let us now
focus on all tk time instants and prove by induction that in-
variant I0 holds.
Base case. At time t0 = 0, the beginning of the execution,
no algorithm has yet completed any task, and hence the in-
variant holds, L(t0, τi, γ-Burst) ≤ L(t0, τi,OPT).
Inductive Hypothesis. We assume that at time instant
tk−1 the invariant holds, i.e., L(tk−1, τi, γ-Burst) ≤
L(tk−1, τi,OPT).
Inductive Step. We now look at time instant tk, where one of
the following may occur:
(a) tk = tk−1 + pmax

s . In this case, we know that a stage
of type 2 or 4 has occurred between the two time instants,
during which γ-Burst completed exactly one large task. Dur-
ing interval (tk−1, tk] algorithm OPT could have only com-
pleted one large task, which was already scheduled before
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tk−1. Hence, every large task with index i at time tk−1 in
the queue of γ-Burst, now has index i − 1 (τi → τi−1). In
the queue of OPT, they either remain with the same index (if
no large task is completed) or they move one position on the
same way as well. From the induction hypothesis, it follows
that L(tk, τi, γ-Burst) ≤ L(tk, τi,OPT).
(b) tk = tk−1 +

pmax+κpmin

s , where:
1) κ = γ. This is the case that in the interval (tk−1, tk]

a stage of type 3 was executed by γ-Burst, during which
OPT was able to complete at most one large task as
well, that was however scheduled before tk−1. Recall that
s ≥ γpmin+pmax

pmax
. This means that L(tk, τi, γ-Burst) ≤

L(tk, τi,OPT), for τi begin the ith large task in the corre-
sponding queue.

2) κ = 1. This is the case that in the interval (tk−1, tk]
two consecutive stages of type 4 were executed by γ-Burst,
and hence a pmin followed by a large task were completed.
On the same time OPT could only complete at most one
large task, that was however scheduled before tk−1. Hence
again L(tk, τi, γ-Burst) ≤ L(tk, τi,OPT) as claimed.

3) Otherwise, it means that γ-Burst has been schedul-
ing some small tasks before scheduling the next large task,
but does not fall in cases 1) or 2). This could only happen
if the interval (tk−1, tk] starts with γ-Burst having no large
tasks pending and hence it was choosing stages of type 1,
until time instant t∗ ∈ (tk−1, tk) where some large tasks
were injected. Hence, even if OPT could have completed
some large tasks within (tk−1, tk], due to the queue con-
struction policy, it will not be able to complete any of the
newly injected large tasks within interval (t∗, tk]. Observe
that tk − t∗ = pmax

s < pmax. Hence the invariant holds
at time tk as well, even if OPT completes some large tasks.
Observe that as long as γ-Burst has no large tasks pending,
L(t, pmax, γ-Burst) = 0.
This completes the inductive step, and hence at all time in-
stants tk, the invariant I0 holds, i.e., L(tk, τi, γ-Burst) ≤
L(tk, τi,OPT) where τi the ith large task in the correspond-
ing queue.

Let us now look closer at the time when a new task π is
injected. Assume this happens at a time instant t∗. The task
will be injected at the end of both queues Q(pmax, γ-Burst)
and Q(pmax,OPT), and hence all tasks already in the
queues will keep their indexes i. Invariant I0 will continue
to hold; L(t∗, pmax, γ-Burst) ≤ L(t∗, pmax,OPT). ut

Corollary 1 When γ-Burst runs with speedup s ∈ [1 +

γ/ρ, ρ), the invariant I1 holds at all times of the execution,
i.e. ∀t, L(t, pmax, γ-Burst) ≤ L(t, pmax,OPT).

Proof Using Lemma 5, invariant I0 holds. This means that
for z = min{|Q(pmax, γ-Burst)|, |Q(pmax,OPT)|} and
1 < i ≤ z, the latency of the ith large task, denoted as
τi, in the queue of γ-Burst is not bigger than the latency of
the corresponding large task in the queue of OPT. Recall that

the pmax-latency of an algorithm is defined as the maximum
latency of all large tasks pending in its queue. Hence, at all
time instants of an execution,

L(t, pmax, γ-Burst) = L(t, τ1, γ-Burst)

≤ L(t, τ1,OPT) = L(t, pmax,OPT)

as claimed. ut

Lemma 6 When γ-Burst runs with speedup
s ∈ [1 + γ/ρ, ρ), the invariant I2 holds at all
times of the execution, i.e. ∀t, L(t, pmin, γ-Burst) ≤
max{L(t, pmin,OPT),L(t, pmax,OPT)}.

Proof Let us define time instants ti of an execution of
γ-Burst, where i = 0, 1, 2, 3 . . . , representing the end of
the ith stage. Let us now focus on these ti time instants and
prove by induction that the invariant I2 holds.
Base case: Observe that for the first time instant
t0 = 0, since it is the beginning of the execu-
tion, no algorithm may complete any task yet,
so the invariant holds; L(t0, pmin, γ-Burst) ≤
max{L(t0, pmin,OPT),L(t0, pmax,OPT)}.
Inductive Hypothesis: We assume that the invariant holds
at a time instant ti−1, i.e., L(ti−1, pmin, γ-Burst) ≤
max{L(ti−1, pmin,OPT),L(ti−1, pmax,OPT)}.
Inductive Step: We will show that it will still hold at time ti.
For that we need to consider a few cases regarding the ith

stage:

(a) Its length is equal to pmin/s.
In this case, the stage belongs in type 1 or 4 from the algo-
rithm description. Observe that during this stage, γ-Burst
executes exactly one small task while OPT is not able
to complete any task scheduled within the stage. By the
definition of speedup, s > 1, and hence OPT does
not have time to complete even a small task within at
most pmin/s time. However, it may complete a task that
was scheduled before the beginning of the stage, either
a small or a large task. At the beginning of the stage,
the pmin-latency of γ-Burst was L(ti−1, pmin, γ-Burst) ≤
max{L(ti−1, pmin,OPT),L(ti−1, pmax,OPT)}, and by
time ti OPT may only complete up to one task. Hence,
at least one of its partial latencies (pmin-latency or pmax-
latency) will be increased by pmin/s and thus the pmin-
latency of γ-Burst will still be at most equal to the max-
imum of the two latencies. Note that since γ-Burst com-
pletes a small task, its pmin-latency might decrease or stay
the same as at time ti−1 depending on the arrival time of
the first small task that is still pending at time ti. Therefore,
L(ti, pmin, γ-Burst) ≤ L(ti−1, pmin, γ-Burst). Combining
it with the inductive assumption, the following holds:

L(ti, pmin, γ-Burst) ≤ max

{
L(ti−1, pmin,OPT)
L(ti−1, pmax,OPT)

}
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< max

{
L(ti−1, pmin,OPT) + pmin/s

L(ti−1, pmax,OPT) + pmin/s

}

≤ max{L(ti, pmin,OPT),L(ti, pmax,OPT)}.

(b) Its length is equal to pmax/s.
In this case, the stage belongs in type 2 or 4 from the al-
gorithm description. During this stage γ-Burst executes a
large task, while OPT may complete some small tasks and no
large ones. In particular, it may complete up to

⌊
pmax/s
pmin

⌋
=⌊

ρ
s

⌋
small tasks. Since γ-Burst does not complete any

small tasks during this stage, its pmin-latency increases
by the length of the period, i.e., L(ti, pmin, γ-Burst) =

L(ti−1, pmin, γ-Burst)+pmax/s. On the other hand, OPT’s
pmin-latency may decrease with the completion of some of
the small tasks. Nonetheless, since the pmax-latency of OPT
increases by pmax/s, the pmin-latency of γ-Burst will still
be at most equal to the maximum of the two latencies:

L(ti, pmin, γ-Burst) = L(ti−1, pmin, γ-Burst) + pmax/s

≤ L(ti−1, pmax,OPT) + pmax/s = L(ti, pmax,OPT)

≤ max{L(ti, pmin,OPT),L(ti, pmax,OPT)}.

(c) Its length is equal to γpmin+pmax

s .
In this case the stage is of type 3 from the algorithm de-
scription. During this stage γ-Burst executes γ small tasks
followed by a large one. Since condition C2 is not satisfied,
i.e. s ≥ γ

ρ + 1, and since s ≥ γ+ρ
γ+1 (follows from the defi-

nition of parameter γ), OPT is able to complete only up to
γ small tasks and no large ones within the stage. The pmin-
latency of γ-Burst may decrease due to the γ small tasks that
were completed. However, OPT’s pmin-latency may also
decrease, since up to the same number of small tasks may
be completed. Note that even in the case that it does not de-
crease, OPT’s pmax-latency will increase by the length of
the period, i.e. γpmin+pmax

s . This increases the maximum
of the two partial latencies of OPT and hence the following
holds:

L(ti, pmin, γ-Burst) ≤ L(ti−1, pmin, γ-Burst)

≤ L(ti−1, pmax,OPT)

< L(ti−1, pmax,OPT)+
γpmin + pmax

s
= L(ti, pmax,OPT)

≤ max{L(ti, pmin,OPT),L(ti, pmax,OPT)}.

(d) The stage has ended due to a machine crash.
This case leaves at least one task from the scheduled ones
incomplete. If the stage was of type 1,2 or 4, then γ-Burst
was not able to complete any task and hence both its partial
latencies will be increased by the length of the stage. On the
same time, only in the case of γ-Burst executing a large task,

OPT would have been able to complete at most bρs c tasks of
processing time pmin. As shown above, the invariant I2 will
be preserved true at the end of the stage. If the stage was of
type 3, then regardless of the time of the machine crash and
the number of small tasks that γ-Burst was able to complete,
OPT’s pmax-latency will increase by the actual length of the
stage. Hence, even if the pmin-latency of both γ-Burst and
OPT decreases, the following will hold:

L(ti, pmin, γ-Burst) ≤
max{L(ti, pmin,OPT),L(ti, pmax,OPT)}.

As claimed, all cases for the ith stage guarantee the in-
variant I2, which completes the proof. ut

Theorem 4 For any given pmin, pmax and speedup satis-
fying condition C1 ∧ ¬C2, i.e. s ∈ [1 + γ/ρ, ρ), algo-
rithm γ-Burst is 1-latency competitive, i.e L(t, γ-Burst) ≤
L(t,OPT).

Proof From Lemmas 1 and 6, the latency of γ-Burst is

L(t, γ-Burst)

= max{L(t, pmax, γ-Burst),L(t, pmin, γ-Burst)}
≤ max{L(t, pmax,OPT),L(t, pmin,OPT)}
= L(t,OPT)

as claimed. ut

5 Conclusions

To conclude, in this paper we develop a detailed study on the
latency and completed load competitiveness of determinis-
tic online scheduling algorithms in a system with a machine
of unpredictable crashes and restarts. More precisely, we
looked at the worst-case combinations of adversarial task
arrivals and machine crashes and restarts, and used resource
augmentation – in the form of machine speedup – in order
to guarantee latency and 1-completed-load competitiveness.

Our major contribution is showing that a specific amount
of resource augmentation is necessary in order to achieve
both latency competitiveness and 1-completed-load compet-
itiveness. To be exact, we showed that if s < min{ρ, 1 +

γ/ρ}, no deterministic algorithm can be latency competitive
or 1-completed-load competitive. Even more, for this range
of speedup s no deterministic algorithm is c-completed load
competitive, for c > 1 − ρ

(1+ρ+γ)(ρ+γ) . We then proposed
an online algorithm, named γ-Burst, for the case of two
task sizes, pmin and pmax. We showed, that as soon as
s ≥ 1 + γ/ρ (even if s < ρ), our algorithm guarantees
1-latency and 1-completed-load competitiveness. These re-
sults, together with the corresponding bounds on compet-
itiveness, show an interesting dichotomy in utilization of
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resources (in this case, the speedup) when optimizing la-
tency and completed load measures in dynamic fault-prone
scheduling.

A non-trivial future line that we believe worth of fur-
ther investigation, is to study systems with more than one
machines prone to crashes and restarts, and applying re-
source augmentation to achieve competitiveness. It would
be interesting to find a clear relationship between the nec-
essary speedup and the amount of reachable competitive-
ness in such systems. Another future line could be to restrict
the power of the adversary (e.g., bounded number of simul-
taneously crashes machines) and see whether with smaller
speedup we can achieve better competitiveness. Accommo-
dating dependent tasks in the considered setting could give
another challenging twist to the problem. Here, by depen-
dent task we should understand all kinds of dependencies,
even having deadlines or other restrictions not necessarily
with respect to other tasks, but also to various system pa-
rameters. Finally, we believe that exploring total flowtime
as presented in other scheduling works, i.e., [1], as a future
measure would give a nice comparison with our current re-
sults on latency competitiveness.
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