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Abstract. We consider the problem of minimizing the number of ADMs in optical networks. All
previous theoretical studies of this problem dealt with the off-line case, where all the lightpaths are given
in advance. In a real-life situation, the requests (lightpaths) arrive at the network on-line, and we have
to assign them wavelengths so as to minimize the switching cost. This study is thus of great importance
in the theory of optical networks. We present a deterministic on-line algorithm for the problem, and
show its competitive ratio to be 7

4
. We show that this result is best possible in general. Moreover, we

show that even for the ring topology network there is no on-line algorithm with competitive ratio better
than 7

4
. We show that on path topology the competitive ratio of the algorithm is 3

2
. This is optimal for

in this topology. The lower bound on ring topology does not hold when the ring is of bounded size. We
analyze the triangle topology and show a tight bound of 5

3
for it. The analyses of the upper bounds, as

well as those for the lower bounds, are all using a variety of proof techniques, which are of interest by
their own, and which might prove helpful in future research on the topic.
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1 Introduction

1.1 Background

Optical wavelength-division multiplexing (WDM) is today the most promising technology that enables us
to deal with the enormous growth of traffic in communication networks, like the Internet. A communication
between a pair of nodes is done via a lightpath, which is assigned a certain wavelength. In graph-theoretic
terms, a lightpath is a simple path in the network, with a color assigned to it.

Given a WDM network G = (V, E) comprising optical nodes and a set of full-duplex lightpaths P =
{p1, p2, ..., pN} of G, the wavelength assignment (WLA) task is to assign a wavelength to each lightpath pi.
Most of the studies in optical networks dealt with the issue of assigning colors to lightpaths, so that every
two lightpaths that share an edge get different colors.

When the various parameters comprising the switching mechanism in these networks became clearer, the
focus of studies shifted, and today a large portion of the studies concentrates on the total hardware cost.
The key point here is that each lightpath uses two Add-Drop Multiplexers (ADMs), one at each endpoint. If
two adjacent lightpaths, i.e. lightpaths sharing a common endpoint, are assigned the same wavelength, then
they can use the same ADM. Because ADMs are designed to be used mainly in ring and path networks in
which the degree of a node is at most two, an ADM may be shared by at most two lightpaths. The total cost
considered is the total number of ADMs. A more detailed technical explanation can be found in [GLS98].

Lightpaths sharing ADMs in a common endpoint can be thought as concatenated, so that they form
longer paths or cycles. These paths/cycles do not use any edge e ∈ E twice, for otherwise they cannot use
the same wavelength which is a necessary condition to share ADMs.

⋆ A preliminary version of this paper appeared in [SWZ07].
⋆⋆ This research was partly supported by the EU Project “Graphs and Algorithms in Communication Networks

(GRAAL)” - COST Action TIST 293.



The motivation for the on-line problem stems from the need to utilize the cost of use of the optical
network. We assume that the switching equipment is installed in the network. Once a lightpath arrives, we
need to assign it two ADMs, and our target is to determine which wavelength to assign to it so that we
minimize the cost, measured by the total number of ADMs used.

1.2 Previous Work

Minimizing the number of ADMs in optical networks is a main research topic in recent studies. The problem
was introduced in [GLS98] for the ring topology. An approximation algorithm for the ring topology with
approximation ratio of 3

2 was presented in [CW02], and was improved in [SZ04,EL04] to 10
7 + ǫ and 10

7 ,
respectively.

For general topology [EMZ02] described an algorithm with approximation ratio of 8
5 . The same problem

was studied in [CFW02] and an algorithm with an approximation ratio of 3
2 +ǫ was presented. This algorithm

is further analyzed in [FSZ06].
The problem of on-line path coloring is studied in earlier works, such as [LV98]. The problem studied in

these works has a different objective function, namely the number of colors.
All previous theoretical studies on the problem of minimizing the number of switches dealt with the

off-line case, where all the lightpaths are given in advance. An on-line algorithm is said to be c-competitive
if for any sequence of lightpaths, the number of ADMs used is at most c times that used by the optimal
off-line algorithm (see [BEY98]).

Recently in [BBMELH08] a similar on-line scenario is considered, although in a quite different setting.

1.3 Our Contribution

We present an on-line algorithm with competitive ratio of 7
4 for any network topology. We prove that no

deterministic on-line algorithm has a competitive ratio better than 7
4 even if the topology is a ring.

We show that the same algorithm has a competitive ratio of 3
2 in path topologies, and that this is also a

lower bound for on-line algorithms in this topology.
The lower bound on ring topology does not hold when the ring is of a bounded size. We study the triangle

topology, and show a tight bound of 5
3 for the competitive ratio on this topology, using another algorithm.

The analyses of the upper bounds, as well as those for the lower bounds, use a variety of proof techniques,
which are of interest on their own, and which might prove helpful in future research on the topic.

In Section 2 we describe the problem and some preliminary results. The algorithm and its competitive
analysis are presented in Section 3. In Section 4 we present lower bounds for the competitive ratio of the
problem on general topology, ring and path topologies. In Section 5 we present tight bounds for triangle
networks. We conclude with discussion and open problems in Section 6.

2 Preliminaries

An instance α of the problem is a pair α = (G, P ) where G = (V, E) is an undirected graph and P is a
set of simple paths in G. In an on-line instance, the graph G is known in advance and the set P of paths
is given on-line. In this case we denote P = {p1, p2, ..., pN} where pi is the i-th path of the input and
Pi = {pj ∈ P |j ≤ i} consists of the first i paths of the input.

Given such an instance we define the following:

Definition 2.1 The paths p, p′ ∈ P are conflicting or overlapping if they have an edge in common. This is
denoted as p ≍ p′. The graph of the relation ≍ is called the conflict graph of (G, P ).

Definition 2.2 A proper coloring (or wavelength assignment) of P is a function w : P 7→ N, such that
w(p) 6= w(p′) whenever p ≍ p′.

Note that w is a proper coloring if and only if for any color c ∈ N, w−1(c) is an independent set in the
conflict graph.

Definition 2.3 A valid chain (resp. cycle) of α = (G, P ) is a path (resp.cycle) formed by the concatenation
of distinct paths pi0 , pi1 , ..., pik−1

∈ P that do not go over the same edge twice. Note that the paths of a valid
chain (resp. cycle) constitute an independent set of the conflict graph.
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Fig. 2. The shareability and conflict graphs for the input in Figure 1.

Definition 2.4 A solution S of an instance α = (G, P ) is a set of valid chains and valid cycles of P such
that each p ∈ P appears in exactly one of these sets.

In the sequel we introduce the shareability graph, which together with the conflict graph constitutes
another (dual) representation of the instance α. In the sequel, except one exception, we will use the dual
representation of the problem.

Definition 2.5 The shareability graph of an instance α = (G, P ), is the edge-labelled multi-graph Gα =
(P, Eα) such that there is an edge e = (p, q) labelled u in Eα if and only if p 6≍ q, and u is a common
endpoint of p and q in G.

Example: Let α = (G, P ) be the instance in Figure 1. Its shareability graph Gα = (Vα, Eα) is the graph
at the left side of Figure 2. In this instance P = {p, q, r, s}, and it constitutes the set of nodes of Gα. The
edges together with their labels are Eα = {(q, r, u), (p, r, w), (p, q, x), (p, s, x)}, because p and q can be joined
in their common endpoint x, etc.. Note that, for instance (q, s, x) /∈ Eα, because although q and s share
a common endpoint x, they cannot be concatenated, because they have the edge (x, u) in common. The
corresponding conflict graph is the graph at the right side of Figure 2. It has the same node set and one
edge, namely (q, s). The paths q, s ∈ P are conflicting because they have a common edge, i.e. (u, x).

Note that the edges of the conflict graph are not in Eα. This immediately follows from the definitions.
Note also that, for any node v of Gα, the set of labels of the edges adjacent to v is of size at most two.

Definition 2.6 A valid chain (resp. cycle) of Gα is a simple path pi0 , pi1 , ..., pik−1
of Gα, such that any two

consecutive edges in the path (resp. cycle) have distinct labels and its node set is properly colorable with one
color (in G), or in other words constitutes an independent set of the conflict graph.

Note that the valid chains and cycles of Gα correspond to valid chains and cycles of the instance α. In the
above example the chain p, s which is the concatenation of the paths p and s in the graph G, corresponds
to the simple path p, s in Gα and the cycle p, q, r which is a cycle formed by the concatenation of three
paths in G corresponds to the cycle p, q, r in Gα. Note that no two consecutive labels are equal in this cycle.
On the other hand the paths q, p, s cannot be concatenated to form a chain, because this would require the
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Fig. 3. The sharing graph of the solution S = {(s, p, r), (q)} for the input in Figure 1. The thick lines are the edges
in the sharing graph.

connection of p to both q and s at node x. The corresponding path q, p, s in Gα is not a valid chain because
the edges (q, p) and (p, s) have the same label, namely x.

Definition 2.7 The sharing graph of a solution S of an instance α = (G, P ), is the following subgraph
Gα,S = (P, ES) of Gα. Two lightpaths p, q ∈ P are connected with an edge labelled u in ES if and only if they
are consecutive in a chain or cycle in the solution S, and their common endpoint is u ∈ V . We will usually
omit the index α and simply write GS . We denote by d(p) the degree of node p in GS.

In our example, S = {(s, p, r), (q)} is a solution with two chains. The sharing graph of this solution is
depicted in Figure 3. Note that for a chain of size at most two, the distinct labelling condition is satisfied
vacuously, and the independent set condition is satisfied because no edge of Gα can be an edge of the conflict
graph.

For any solution S, we partition the set of lightpaths P into disjoint subsets depending on the degree of
the corresponding node in GS . We define:

∀i ∈ {0, 1, 2} , Di(S)
def
= {p ∈ P | d(p) = i}

and

di(S)
def
= |Di(S)| .

Note that d0(S) + d1(S) + d2(S) = |P | = N.
An edge (p, q) ∈ ES with label u corresponds to a concatenation of two paths with the same color at their

common endpoint u. Therefore these two endpoints can share an ADM operating at node u, thus saving one
ADM. We conclude that every edge of ES corresponds to a saving of one ADM. When no ADMs are shared,
each path needs two ADMs, a total of 2N ADMs. Therefore the cost of a solution S is

cost(S) = 2 |P | − |ES | = 2N − |ES | .

The objective is to find a solution S such that cost(S) is minimum, in other words |ES | is maximum.
The following definitions and Lemma appeared in [FSZ06], we repeat them here for completeness.
Given a solution S, d(p) ≤ 2 for every node p ∈ P . Therefore, the connected components of GS are either

paths or cycles. Note that an isolated node is a special case of a path. Let PS be the set of the connected
components of GS that are paths. Clearly, |ES | = N − |PS |. Therefore

cost(S) = 2N − |ES | = N + |PS |

Let S∗ be a solution with minimum cost. For any solution S we define

ǫ(S)
def
=

d0(S) − d2(S) − 2 |PS∗ |

N
.

Lemma 2.1 For any solution S

cost(S) = cost(S∗) +
1

2
N(1 + ǫ(S)).



Proof. Clearly |ES∗ | = N − |PS∗ |. On the other hand 2 |ES | is the sum of the degrees of the nodes in GS ,
namely

2 |ES | = d1(S) + 2d2(S) = N − d0(S) + d2(S)

We conclude:

cost(S) − cost(S∗) = |ES∗ | − |ES | = N − |PS∗ | −
N − d0(S) + d2(S)

2

=
N

2
+

d0(S) − d2(S) − 2 |PS∗ |

2

=
1

2
N

(

1 +
d0(S) − d2(S) − 2 |PS∗ |

N

)

⊓⊔

3 Upper Bounds

In this section we first describe an on-line algorithm, and then show that it is 7
4 -competitive on any network

topology and 3
2 -competitive on path topology.

3.1 Algorithm Online-MinADM

In a general network, when the lightpaths are given one-by-one, we adopt a simple coloring procedure.
Basically, a new lightpath with endpoints u and v looks for free ADM at its endpoints. A free ADM in u
is an ADM serving one lightpath ending in u, but not sharing an edge with the lightpath to be colored. If
there are two of the same color, then it first tries to make a cycle with the existing lightpaths, and if this
is impossible then it makes a path. If there are free ADMs (at one endpoint, or at both endpoints but of
different colors), then it tries to connect to any of them. Otherwise - when there is no free ADM - it is
assigned a new color.

When we attempt to color some lightpath pi, a color λ is said to be feasible for pi, if there is no other
lightpath with the same color overlapping with pi. In other words λ is feasible for pi, if we can assign
w(pi) = λ and w is a proper coloring for Pi.

When a lightpath pi with endpoints ui and vi arrives,

– If there exists a chain of lightpaths of the same color λ whose endpoints are ui, vi and λ is feasible for pi

then, assign w(pi) = λ.

– Otherwise, if there exists a chain of lightpaths of the same color λ having one endpoint from {ui, vi} and
λ is feasible for pi then, assign w(pi) = λ.

– Otherwise, assign w(pi) = λ′, where λ′ is an unused color.

Note that, as in the last clause the algorithm resorts to an unused color, it will never construct two chains
with the same color. Therefore in the first clause, the algorithm necessarily closes a cycle.

Suppose in the example in Figure 1 the lightpaths arrive in the order of p, q, r, s. Algorithm Online-

MinADM would color p, q, r with one color and s with another.

Algorithm Online-MinADM is obviously correct: w is a proper coloring for Pi, because if pi is colored
by one of the first two cases, then it is checked by the algorithm for feasibility, otherwise w(pi) is assigned an
unused color, therefore no other path, in particular no path pj conflicting with pi may have w(pj) = w(pi).

In this and the following section we prove the following theorem.

Theorem 3.1 Algorithm Online-MinADM is optimal for

– general topology, with competitive ratio of 7
4 ,

– ring topology, with competitive ratio of 7
4 ,

– path topology, with competitive ratio of 3
2 .
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3.2 Analysis for General Topology

Lemma 3.1 The competitive ratio of Online-MinADM is at least 7
4 .

Proof. Let G be a cycle of three nodes V = {v1, v2, v3}, E = {e1, e2, e3} where e1 = (v1, v2), e2 = (v2, v3), e3 =
(v3, v1) and let P = {p1, p2, p3, p4} where p1 = (e3), p2 = (e1), p3 = (e2, e3), p4 = (e1, e2). Figure 4 shows the
network and the paths. The optimal solution assigns w(p1) = w(p4) = λ1 and w(p2) = w(p3) = λ2, and uses
4 ADMs. Recall that Online-MinADM receives the paths of the input one at a time. It assigns w(p1) = λ1,
then w(p2) = λ1 because λ1 is feasible for p2, then w(p3) = λ2 because λ1 is not feasible for p3 and finally
w(p4) = λ3, because neither λ1 nor λ2 are feasible for p4. It uses 7 ADMs in total. ⊓⊔

Although the above Lemma is a corollary of Lemma 4.1, the above proof for this special case is provided
for ease of exposure.

In the sequel S is a solution returned by the Online-MinADM and S∗ is an optimal solution.

Lemma 3.2 The competitive ratio of Online-MinADM is at most 7
4 .

Proof. We direct each edge of GS∗ , such that each path becomes a directed path and each cycle becomes

a directed cycle. The direction chosen for every path (resp. cycle) is arbitrary. Let
−→
G S∗ be the digraph

obtained by this process. Unless otherwise stated, din(p) and dout(p) denote the in and out degrees of p in
−→
G S∗ , respectively. Clearly, ∀p ∈ P , din(p) ≤ 1 and dout(p) ≤ 1. The following definitions refer to

−→
G S∗ :

LAST ∗ is the set of nodes that do not have successors in
−→
G S∗ , namely

LAST ∗ def
= {p ∈ P |dout(p) = 0} .

Note that |LAST ∗| = |PS∗ |.
The functions Next∗ and Prev∗ are defined as expected: Next∗ (resp. Prev∗) maps a node p to the next

(resp. previous) node in
−→
G S∗ whenever such a node exists, namely:

Next∗ : P \ LAST ∗ 7→ P

and Next∗(p) is the unique node u such that there is an edge from p to u in
−→
G S∗ . Prev∗ = Next∗−1.

With these definitions in hand, we partition D0(S), i.e. the set of isolated nodes of GS∗ , into sets A, B, C
and D using the following classification procedure CLASSIFY. This procedure makes use of both graphs

GS∗ and
−→
G S∗:

CLASSIFY(p ∈ D0(S)) {
If p ∈ LAST ∗ then {

p ∈ A; fA(p) = p;



} else {
q = Next∗(p);
If q ∈ D2(S) then {

p ∈ B; fB(p) = q;
} else if q ∈ D1(S) then {

p ∈ C; fC(p) = {p, q};
} else { // q ∈ D0(S)

p ∈ D;
}

}
}

It is immediate from the code that CLASSIFY is a classification procedure: it partitions D0(S) into
A ⊎ B ⊎ C ⊎ D. Moreover it is also immediate from the code that fA : A 7→ LAST ∗, fB : B 7→ D2(S) and
fC : C 7→ 2P .

We first show that D = ∅. Assume, by contradiction that p ∈ D for some p ∈ D0(S). Then there is
q ∈ D0(S) such that q = Next∗(p), therefore (p, q) ∈ ES∗ ⊆ Eα. Online-MinADM assigned unique colors
to each of p and q. Assume without loss of generality that q comes later than p in the input sequence. p is
assigned a unique color, therefore it is the only element in its chain. Then w(p) is feasible for q. Then the
algorithm should assign w(q) = w(p), a contradiction.

fA(p) = p, therefore it is a one-to-one function, i.e. |A| ≤ |LAST ∗| = |PS∗ |.
fB(p) = Next∗(p). Next∗ is one-to-one, therefore fB is one-to-one, i.e. |B| ≤ |D2(S)| = d2(S).
We will now show that the sets fC(p) are pairwise disjoint. Note that fC(p) = {p, q} where p ∈ D0(S)

and q /∈ D0(S). Assume that fC(p)∩fC(p′) 6= ∅. Let fC(p) = {p, q} and fC(p′) = {p′, q′}. Then either p = p′

or q = q′. In the latter case q = Next∗(p) = Next∗(p′) = q′, then p = p′. In both cases, we have p = p′. We
conclude that if p 6= p′, fC(p) ∩ fC(p) = ∅. As the sets fC(p) contain exactly 2 elements, we have |C| ≤ N

2 .

We have d0(S) = |D0(S)| = |A| + |B| + |C| + |D| ≤ |PS∗ | + d2(S) + N
2 . Then

ǫ(S) =
d0(S) − d2(S) − 2 |PS∗ |

N
≤

1

2
.

Substituting this in Lemma 2.1 and recalling that cost(S∗) ≥ N we get

Cost(S) ≤ Cost(S∗) +
1

2
N

(

1 +
1

2

)

= Cost(S∗) +
3

4
N ≤

7

4
Cost(S∗).

⊓⊔

Note: The reader is referred to [WCLF00], Lemma 4, that gives a bound on related off-line algorithms
for ring networks, its proof can be applied to derive an alternative proof of Lemma 3.2. We believe that
our proof supplies more insight into the structure of the solution obtained by the on-line algorithm and its
relation to an optimal solution.

3.3 Analysis for Path Topology

Lemma 3.3 Online-MinADM is 3
2 -competitive in path topology.

Proof. Let V = {v1, v2, ...} be the nodes of the path from left to right, and σi (resp. τi) be the set of paths
having vi as their right (resp. left) endpoint. It is well known that the number of ADMs used by an optimal
solution is Σi max {|σi| , |τi|}. In an optimal solution, at each node vi, exactly min {|σi| , |τi|} pairs of paths
are assigned one color per pair. In fact these pairs constitute a maximum matching MMi of the complete
bipartite graph (σi, τi, σi × τi). The solution saves |MMi| = min {|σi| , |τi|} ADMs at node vi, in other words
ES∗ = ⊎iMMi. Note that every matching of a complete bipartite graph can be augmented to a maximum
matching. Recall that S is the output of the algorithm. Let S∗ be an optimal solution, such that the matching
in each node is obtained by augmenting the matching done by S to a maximum matching, i.e. ES ⊆ ES∗ .

We will now define a function f : (ES∗ \ ES) 7→ ES . In the following discussion, consult Figure 5.
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Let e = (pi, pj) ∈ ES∗ \ES . e ∈ ES∗ = ⊎iMMi. Let e ∈ MMk for some node vk ∈ V . Assume without loss
of generality that i < j, i.e. path pi appears before pj in the input. As e /∈ ES , none of pi, pj are paired with
any path at node vk. Therefore when pj appears in the input w(pi) is feasible for pj, if it is not assigned color
w(pi), this can be only because it is assigned color w(pj) = w(pi′ ), for some i′ < j. Let the common node
of pj and pi′ be vk′ . Then e′ = (pj , pi′) ∈ ES . We define f(e) = e′. Note that e′ is defined uniquely because
there cannot be a third path except pj and pi′ getting the same color and ending at node vk′ . Necessarily
k′ 6= k, because we know that pj is not paired at node vk.

We claim that f is one-to-one. Assume, by contradiction that there is some e′′ 6= e, such that f(e′′) = e′.
Then e′′ ∈ ES∗ , therefore e′′ ∈ MMk′′ for some node vk′′ . By the construction of f , k′′ is the other endpoint
of pi′ . Let e′′ = (pi′ , pi′′). By the discussion in the previous paragraph, symmetrically it follows that j < i′,
a contradiction. Therefore f is one-to-one, i.e. |ES∗ | − |ES | = |ES∗ \ ES | ≤ |ES |, thus |ES | ≥

1
2 |ES∗ |.

We conclude as follows. Cost(S) − Cost(S∗) = |ES∗ | − |ES | ≤
|ES∗ |

2 ≤ N
2 ≤ Cost(S∗)

2 , therefore:

Cost(S) ≤
3

2
Cost(S∗).

⊓⊔

4 Lower Bounds

4.1 General Topology

Lemma 4.1 There is no deterministic on-line algorithm with competitive ratio < 7
4 .

Proof. Assume ALG is a deterministic on-line algorithm, with competitive ratio ρ. We show that ρ ≥ 7
4 . For

colors we use numbers 1, 2, .... The color assigned to a lightpath a by ALG is denoted by w(a). We use the
network depicted in Figure 6. The first lightpath in the input is EFG. Without loss of generality, assume
w(EFG) = 1.

A B C

HG

E D
F

K M

A B C

HG

E D
F

K M

21

y

Fig. 6. A network used for the proof of the 7

4
lower bound on general topology.



The second lightpath in the input is BDG. First assume w(BDG) = 1. In this case if lightpath EABDG
arrives, we have w(EABDG) = 2, then when lightpath GFEAB arrives we have w(GFEAB) = 3. ALG
thus uses 7 ADMs, while it is easy to see the an optimal solution can use only 4 ADMs, thus ρ ≥ 7

4 , a
contradiction. Hence, w(BDG) = 2.

When the third lightpath in the input y=BAE arrives the situation is as depicted in the right hand side
of Figure 6. It is clear that w(y) 6= 3, since otherwise ρ ≥ 6

3 > 7
4 , a contradiction. Thus w(y) = 1 or w(y) = 2.

– case a: w(y) = 1
Let z=EFKMHG be the next lightpath in the input sequence. Clearly w(z) 6= 1. Hence w(z) = 2 or
w(z) = 3.

• w(z) = 2
In this case, when lightpaths GFEAB, EABDG, BDGFE and EABCDG arrive, we get w(GFEAB) =
3, w(EABDG) = 4, w(BDGFE) = 5, w(EABCDG) = 6, and ρ = 14

8 = 7
4 , a contradiction.

• w(z) = 3
In this case, for u=EABDCHG we have w(u) = 4, and ρ ≥ 9

5 > 7
4 , a contradiction.

– case b: w(y) = 2
Let z=BDCHG. Clearly w(z) 6= 2. Hence w(z) = 1 or w(z) = 3.

• w(z) = 1
When lightpaths EABDG, GFEAB, GKFEAB, and EFGDB arrive, we have w(EABDG) = 3, w(GFEAB) =
4, w(GKFEAB) = 5, w(EFGDB) = 6, and ρ ≥ 14

8 = 7
4 , a contradiction.

• w(z) = 3
For u=GHMKFEAB we have w(u) = 4. Then ρ ≥ 9

5 > 7
4 , a contradiction.

⊓⊔

4.2 Ring Topology

The result in Lemma 4.1 can be proven, though asymptotically even for ring topologies.

Lemma 4.2 No deterministic on-line algorithm has a competitive ratio better than 7/4, even for the ring
topology.

Overview. We first give the intuitive ideas behind the adversary. Suppose we divide the ring into four
segments A, B, C and D. The adversary first requests lightpaths A and C.

1. If the on-line algorithm assigns the same color to A and C, we then request two lightpaths (B, C, D)
and (D, A, B). The on-line algorithm has to use 2 new colors and thus uses 8 ADMs while the off-line
algorithm can use 4 ADMs.

2. If the on-line algorithm assigns different colors to A and C, we then request B.
(a) If the on-line algorithm assigns a third color to B, we further request D forcing the on-line algorithm

to use at least 7 ADMs and the off-line algorithm to use 4 ADMs only.
(b) If the on-line algorithm assigns one of the colors of A or C, w.l.o.g., assume the color of A is assigned,

the adversary requests two lightpaths (B, C, D) and (C, D, A). Neither of these can share ADMs with
existing lightpaths. The on-line algorithm uses 7 ADMs for lightpaths A, B, (B, C, D), and (C, D, A)
plus 2 ADMs for C. The off-line algorithm uses 4 ADMs for A, B, (B, C, D), and (C, D, A) plus 2
ADMs for C.

The only problematic case for the adversary is 2(b). In this case the adversary then repeats in stages, taking
the lightpaths A, B, (B, C, D) as the first stage, C as the second stage and proceed to the second stage
by requesting A and repeating the above process k times, for some arbitrary large value k. If the on-line
algorithm does not reuse any color from previous stages, then the on-line algorithm uses at least 7k+2 ADMs
and the off-line algorithm uses at most 4k +2 ADMs. With sufficiently large k, this gives a competitive ratio
at least 7

4 − ǫ for any ǫ > 0. The question is how the adversary can force the on-line algorithm not to reuse
colors in previous stages.

The rough idea is to shift the endpoints of the four segments A, B, C and D. By shifting the segment
endpoints in a careful manner, we attempt to ensure lightpaths released in a certain stage either cannot share
a common endpoint or cannot share a common color (due to overlapping edges) of lightpaths in previous
stages. In this case, we can ensure no sharing of colors is possible across stages. In the following description,



3n/4 n/4

n/2

n−1 0

(a) The ring

n−1

w2

0 w1

w3n/2−1n/2

w1

(b) Case 1 when i = 0, j = 0.

w3
n/2−1

w2

w4

w1

w1

n−1 0

n/2

(c) Case 2 when i = 0, j = 0.

w3

n/2−1

w4

n−1 0 w1

w2

n/2

(d) Case 4 when i = 0, j = 0.

n−1

n/2

1

n/2−2

(e) The case when i = 1, j = 0.

Fig. 7. Different cases for the 7/4 lower bound for the ring topology.

the adversary runs in stages. In Stage k, the ring is partitioned into four (not necessarily equal) segments,
Ak, Bk, Ck, and Dk. In subsequent stages, Ak and Ck keep shrinking while Bk and Dk keep extending. The
extent of the shrink and extension in each stage is governed by how the on-line algorithm responds to the
adversary. Details are as follows.

The adversary. Consider a ring with n nodes, named 0, 1, · · · , n − 1 (see Figure 7 (a)). For simplicity,
we assume that n is a multiple of 4. The adversary runs in stages, requesting lightpaths which are segments
of the ring. For any 0 ≤ i, j < n/4, we define the following segments. Note that addition and substraction
are all modulo n.

– Ai,j = 〈i, i + 1, · · · , n/2 − 1 − i〉
– Bi,j = 〈n/2 − 1 − i, n/2− i, · · · , n/2 + j〉
– Ci,j = 〈n/2 + j, n/2 + j + 1, · · · , n − 1 − j〉
– Di,j = 〈n − 1 − j, n − j, · · · , i〉

For example, when i = j = 0, the four segments are A0,0 = 〈0, 1, · · · , n/2 − 1〉, B0,0 = 〈n/2 − 1, n/2〉,
C0,0 = 〈n/2, n/2 + 1, · · · , n − 1〉, and D0,0 = 〈n − 1, 0〉. As i and j increase, Ai,j and Ci,j shrink while Bi,j



and Di,j extend. For any lightpath X , we denote the complement of X as X̄ (X and X̄ do not overlap and
they together cover the ring).

Let k denote the current stage number, starting from 0. Starting from i = j = 0, the adversary runs as
long as i < n/4 and j < n/4. In each stage, some of the lightpaths requested in this stage will be marked.
Later on, we will show that marked lightpaths cannot share ADM with lightpaths in other stages (they
either overlap or do not share common node). At the end of each stage, at least one of the values i and j is
increased, so both Bk and Dk extend in each stage while at least one of Ak and Ck shrinks.

1. Set k = i = j = 0.
2. Set Ak = Ai,j , Bk = Bi,j , Ck = Ci,j , Dk = Di,j .
3. Release two requests one for lightpath Ak and the other Ck if there is no such lightpaths released so far.
4. If w(Ak) = w(Ck), // Case 1 (see Figure 7 (b))

– Request lightpaths Āk and C̄k.
The on-line algorithm has to use two different colors other than w(Ak).

– Mark Ak, Ck, Āk and C̄k.
– Increment both i and j by 1.

I.e., both Ak and Ck shrink in the next stage.
5. Otherwise, i.e., w(Ak) 6= w(Ck), then request Bk.

(a) If w(Ak) = w(Bk), // Case 2 (see Figure 7 (c); and Figure 7 (e) for the next round)
– Request Āk and B̄k.

The on-line algorithm has to use two different colors other than w(Ak) and w(Ck).
– Mark Ak, Bk, Āk and B̄k.

I.e., only Ck is not marked.
– Increment i by 1 and keep j unchanged.

I.e., only Ak shrinks in the next stage.
(b) If w(Bk) = w(Ck), // Case 3, symmetric to the previous case

– Request B̄k and C̄k.
– Mark Bk, Ck, B̄k and C̄k.
– Increment j by 1 and keep i unchanged.

(c) If w(Ak), w(Bk), and w(Ck) are all different, // Case 4 (see Figure 7 (d))
– Request Dk.
– Mark Ak, Bk, Ck, Dk.
– Increment both i and j by 1.

I.e., both Ak and Ck shrink in the next stage.
6. Increment k by 1 and repeat from Step 2 if i < n/4 and j < n/4.

Note that the total number of stages is between n/4 and n/2.

Analysis. The following observation and lemmas together prove Lemma 4.2. Observation 4.1 is a direct
consequence of how the requests are released.

Observation 4.1 At the end of each stage, at most one lightpath is unmarked.

Lemma 4.3 Consider a particular stage k, we have sk ≥ (7/4)s∗k, where sk and s∗k are the number of ADMs
used by the online algorithm and the optimal off-line algorithm, respectively, for the lightpaths marked in this
stage.

Proof. We consider the ratio by cases. Case 1: sk = 8 and s∗k = 4. Cases 2 and 3: sk = 7 and s∗k = 4. Case
4: sk ≥ 7 and s∗k = 4. Therefore, the lemma follows. ⊓⊔

Lemma 4.4 Suppose s and s∗ are the number of ADM switches used by the online algorithm and the optimal
off-line algorithm. Then s/s∗ ≥ 7/4 − O(1/n).

Proof. Note that s∗ ≤
∑

k s∗k + 2 since at most one lightpath is left unmarked at the end of the last stage.
On the other hand, we claim that s ≥

∑

k sk. With this claim, the fact that there are between n/4 and
n/2 stages and Lemma 4.3, the lemma follows. To prove the claim, we will show that for any two lightpaths
marked in two stages, they cannot share the same color.

Consider Stage k. If Stage k is of Case 1 or 4, then lightpaths requested in later stages do not share any
common node with the lightpaths in Stage k. If Stage k is of Case 2 (the argument for Case 3 is similar),
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Fig. 8. Adversary for deterministic on-line algorithms in the path topology.

we can observe that among the marked lightpaths in Stage k, Ak and Āk do not share any common node
with lightpaths in later stages. While B̄k may share a common node with lightpaths in later stages, B̄k also
share a common edge with all these lightpaths and cannot share ADMs.

The remaining case is Bk. Suppose h > k. First, Bk ≍ Bh, Bk ≍ Āh and Bk ≍ C̄h. Since w(Bk) = w(Ak),
Ak ≍ Ah and Ak ≍ B̄h, Bk cannot share the same color as either Ah or B̄h. Further, if Stage h is of Case 3,
we need to consider Bk and Ch. Note that w(Ch) = w(Bh) and Bh ≍ Bk, so again Bk cannot share the same
color with Ch. Therefore, we can conclude that any lightpath marked in Stage k cannot share the same color
with any lightpath marked in Stage h for h > k. ⊓⊔

4.3 Path Topology

Lemma 4.5 For any ǫ > 0, there is no (3
2 − ǫ)-competitive deterministic algorithm for path topology.

Proof. Consult Figure 8 for the following description of the adversary. Let G be a path with 2k nodes
u1, v1, u2, v2, ..., uk, vk. Let ALG be any deterministic algorithm. The value of k will be determined later.

The adversary works in two phases. In the first phase the input is a1, a2, ..., ak where ∀i, ai = (ui, vi).
In the second phase the input depends on the decisions made by ALG during the first phase. For every
1 ≤ i < k, if w(ai) = w(ai+1) then the input contains two paths bi = (u1, ui+1) and b′i = (vi, vk), otherwise
the input contains one path ci = (vi, ui+1). In Figure 8 the case w(a1) = w(a2) 6= w(a3) is depicted.

Let 0 ≤ x ≤ k − 1 be the number of times w(ai) = w(ai+1) is satisfied. Then w(ai) 6= w(ai+1) is satisfied
k − 1 − x times.

During the first phase the algorithm uses 2k ADMs, one for each node.
For the paths bi and b′i, let λ = w(ai)(= w(ai+1)). λ is not feasible neither for bi nor for b′i. Then the

algorithm assigns other colors to bi and b′i, and it uses 4 ADMs, for a total of 4x ADMs.
For the path ci, let λ = w(ai) and λ′ = w(ai+1)(6= λ), coloring ci with one of these colors ALG uses one

ADM, otherwise it uses 2 ADMs. Therefore for the paths ci, ALG uses at least k − 1 − x ADMs.
Summing up, we get that ALG uses at least 2k + 4x + (k − 1 − x) = 3(k + x) − 1 ADMs.
On the other hand the following solution is possible. For any consecutive paths ci, ci+1, ..., ci+j color such

that w(bi−1) = w(ai) = w(ci) = w(ai+1) = w(ci+1) = ... = w(ci+j) = w(ai+j+1) = w(b′i+j+1). This solutions
use 2k + 2x ADMs, one ADM at each ui, vi, x additional ADMs at u1, and x additional ADMs at vk.

Therefore the competitive ratio of ALG is at least 3(k+x)−1
2(k+x) = 3

2 −
1

2(k+x) ≥ 3
2 −

1
2k . For any ǫ > 0 we can

choose k > 1
2ǫ , so that the competitive ratio of ALG is bigger then 3

2 − ǫ. ⊓⊔

5 Triangle Topology

In the previous sections we have shown that algorithm Online-MinADM has an optimal competitive ratio,
in general topologies, ring and path topologies. In this section we show an example of topology for which
Online-MinADM is not optimal. Note that the proof of Lemma 3.1 implies that Online-MinADM is
7
4 -competitive in the triangle topology. We will show in this section a tight bound of 5

3 for this topology.
Note that the lower bound proof for ring networks requires the ring to be of unbounded size. The proof



does not hold for rings of a bounded size. In this section we show that this lower bound does not hold for
triangles, and give an optimal algorithm for this topology.

Lemma 5.1 There is no on-line algorithm with competitive ratio < 5
3 for triangle topology.

Proof. Consider a triangle with edge set {e1, e2, e3}. We will use the following adversary.

Release two lightpaths each of length 1, on edges e1 and e2. If w(e1) = w(e2), then we continue as in
Lemma 3.1, namely release two lightpaths of length 2 each {(e2, e3), (e1, e3)}, and we get a competitive ratio
of 7/4 > 5/3.

Otherwise w(e1) 6= w(e2), w.l.o.g. assume w(e1) = 1, w(e2) = 2. Release a lightpath on edge e3. If
w(e3) /∈ {1, 2} then the competitive ratio is 6/3 = 2 > 5/3, otherwise w.l.o.g w(e3) = 1. In this case we have
w(e1) = w(e3) = 1 using 3 ADMs, w(e2) = 2 using 2 ADMs, for a total of 5 ADMs. The competitive ratio
is 5/3. ⊓⊔

5.1 Algorithm Online-Triangle

For the triangle topology, let us name the three edges in the triangle network e1, e2, and e3. There are only
six types of lightpaths, namely, (e1), (e2), (e3), (e1, e2), (e2, e3) and (e1, e3). For any lightpath p, we say that
p is length-1 if it contains one edge, and length-2 if it contains two edges.

We now present another algorithm Online-Triangle and show that it is 5/3-competitive for triangle
topology. Roughly speaking, the algorithm gives highest priority to a pair of length-2 and length-1 lightpaths
to share the same color whenever possible. For length-1 lightpaths, we have seen in the lower bound of
Online-MinADM in Lemma 3.1 that, if an on-line algorithm always colors two adjacent length-1 lightpaths
with the same color, the competitive ratio of the algorithm is at least 7

4 . To overcome this barrier, when
a length-1 lightpath, say pi = (e1), arrives, Online-Triangle does not always color pi with an adjacent
length-1 lightpath using the same color. However, if we color three length-1 lightpaths on a cycle each with
a different color, this will result in a competitive ratio of 2. Therefore, if there are two lightpaths pj = (e2)
and pk = (e3) with different colors, then Online-Triangle should color pi with either of these colors if
it is feasible. We formalize this concept by “marking” the three lightpaths to represent they are grouped
together and should not be further considered when other length-1 lightpaths arrive. As we will show below,
only length-1 lightpaths are marked.

Formally, the algorithm runs as follows. When a request of lightpath pi with endpoints ui and vi arrives,

1. In case pi is length-2,

– If there exists a length-1 (marked or unmarked) lightpath with color λ with endpoints ui, vi, and λ
is feasible for pi, then assign w(pi) = λ.

– Otherwise, assign w(pi) = λ′, where λ′ is an unused color.

2. In case pi is length-1,

– If there exists a length-2 lightpath with color λ with endpoints ui, vi, and λ is feasible for pi, then
assign w(pi) = λ.

– Otherwise, if there exists a valid chain of two unmarked length-1 lightpaths with different colors λ1

and λ2 with endpoints ui, vi, and λ1 or λ2 is feasible for pi (w.l.o.g. assume λ1 is feasible), then
assign w(pi) = λ1 and mark all three lightpaths involved.

– Otherwise, assign w(pi) = λ′, where λ′ is an unused color.

Example: Suppose P = {p1, p2, · · · , p7} where pi is, in order, (e1), (e2), (e3), (e2), (e1), (e3), (e1, e3).
Then Online-Triangle will first assign w(p1) = λ1, w(p2) = λ2, w(p3) = λ1 and mark all three p1, p2

and p3. Next, we assign w(p4) = λ3 because there is no unmarked lightpath available. We further assign
w(p5) = λ4 and w(p6) = λ3. Finally, we assign w(p7) = λ2 because p7 and p2 form a cycle.

5.2 Analysis of Online-Triangle

To analyze the performance of Online-Triangle, we first observe how lightpaths are colored in an optimal
solution. The proof of the following lemma follows immediately from the definitions.



Lemma 5.2 The optimal solution S∗ always colors (e1, e2) and (e3) with the same color if possible and
similarly for the two other symmetric cases. Any remaining length-2 lightpath is colored a distinct color. If
there are some length-1 lightpaths remained after this, cycles of three length-1 lightpaths are colored the same
color; followed by chains of two length-1 lightpaths with same color and finally remaining length-1 lightpaths
with distinct colors. It can be verified such coloring uses the minimum number of ADMs.

Overview. We then compare S and S∗ as follows. We first give a rough idea before formally prove it in
Lemma 5.3. Roughly speaking, we consider different cases of how S and S∗ color certain set of lightpaths
and then compare the ratio case by case. In S, a length-2 lightpath X can always share an ADM with a
length-1 lightpath unless the length-1 lightpath has been marked and assigned a color the same as another
length-1 lightpath, say Y , which overlaps with X . In this case, S∗ also has to use extra ADMs for this
length-1 lightpath Y , and S∗ and S will be shown to use a comparable number of ADMs. As mentioned
before, Online-Triangle does not always color adjacent length-1 lightpaths using same color to avoid the
7
4 lower bound. Nevertheless, in S, there is no marked cycle of length-1 lightpaths with three different colors.
So for any marked cycle, S uses at most 5 ADMs while S∗ uses at least 3, which will be shown later to be
the worst case leading to the 5

3 -competitive ratio. When S∗ has a chain of two length-1 lightpaths with the
same color (using 3 ADMs), S needs at most 4 ADMS, giving a ratio of at most 4

3 .
Consider the solution S, the lightpaths can be partitioned into five disjoint sets according to how they

are colored. We define these five sets, namely A, B, C, D and E, in this order and any lightpaths that
have been classified in a set defined earlier would not be further considered in sets defined later. Let A be
the set of cycles containing a length-1 lightpath and a length-2 lightpath with the same color; B be the set
of remaining length-2 lightpaths (all with distinct colors). Then the lightpaths left are all length-1. Among
these, let C be the set of marked cycles (i.e., two length-1 lightpaths of same color and a third lightpath of a
different color); D be the set of remaining marked chains with two length-1 lightpaths of same color. Finally
E contains the rest of the length-1 lightpaths. See Figure 9(a) for an illustration. In the example given above,
A contains p7 and p2; C contains p4, p5 and p6; D contains p1 and p3; B and E are empty. We denote the
cardinality of A, B, C, D, and E by a, b, c, d and e, respectively. Note that cost(S) = 2a+2b+5c+3d+2e.
We then make the following observations.

Property 1 W.l.o.g. the solution S∗ satisfies (i) while S satisfies (ii) and (iii).

i. In S∗, every length-2 lightpath forms a cycle with a corresponding length-1 lightpath with the same
color.

ii. In S, d ≤ a
iii. In S, b ≤ 2d; hence, b ≤ 2a.

Proof. (i) For any input sequence of lightpaths, if the number of lightpaths (e1, e2) is more than e3, by
Lemma 5.2, some lightpaths (e1, e2) in S∗ will be colored a distinct color without sharing ADMs with other
lightpaths; at least the same number of these lightpaths are also colored a distinct color in the solution S
returned by Online-Triangle. Removing these lightpaths from the input sequence only increases the ratio
cost(S)/cost(S∗). Therefore, we can assume without loss of generality that the number of lightpaths (ei, ej)
in P is at most that of (ek) where i, j, k are all different. In other words, in S∗, every length-2 lightpath
forms a cycle with a corresponding length-1 lightpath with the same color.

(ii) According to the way Online-Triangle colors lightpaths, we observe that d ≤ a because each chain
in D corresponds to one cycle in A.

(iii) Furthermore, by Lemma 5.2, S∗ colors every lightpath X in B using the same color as some length-1
lightpath Y . Note that Y is in D, otherwise, Online-Triangle would have colored X and Y with the same
color and then X is not in B. Since every chain in D contains two length-1 lightpaths, it may be paired with
two length-2 lightpaths in B in S∗, therefore, we have b ≤ 2d, implying that b ≤ 2a, by (ii). ⊓⊔

Analysis. We are now ready to prove the competitive ratio of Online-Triangle in the triangle topology.
The proof is a case analysis of the four cases depending on the set B.

Lemma 5.3 Online-Triangle is 5
3 -competitive in the triangle topology.

Proof. We consider four cases depending on the set B. It is useful to recall that Online-Triangle gives
highest priority to color a length-2 lightpath and a length-1 lightpath that can form a cycle. The only case



such length-2 lightpath cannot form a cycle of same color is only when all the length-1 lightpaths that are
its complement have all been assigned the same color as another length-1 lightpath.

Case 1: B is empty, in other words, every length-2 lightpath is colored the same color as a length-1
lightpath (see Figure 9(b)); by Property 1 (i), this is also the case in S∗. Suppose there are s1, s2 and
s3 length-1 lightpaths (e1), (e2), (e3), respectively, apart from those that have the same color as some
length-2 lightpaths and belong to set A. W.l.o.g., we assume that s1 ≥ s2 ≥ s3. For length-1 lightpaths, by
Lemma 5.2, S∗ colors all possible cycles of 3 lightpaths in the same color using 3 ADMs, then chains of 2
lightpaths with same color using 3 ADMs, and finally 1 lightpath with its own color using 2 ADMs. S∗ uses
2a + 3s3 + 3(s2 − s3) + 2(s1 − s2) ADMs. On the other hand, for S, c = s3 and S uses 5 ADMs for C while
D and E together contain (s2 − s3)+ (s1 − s3) length-1 lightpaths. So S uses at most 2(s2 − s3) +2(s1 − s3)
ADMs for D and E. Therefore S uses at most 2a + 5s3 + 4(s2 − s3) + 2(s1 − s2) ADMs. We conclude that
cost(S)
cost(S∗) ≤ 2a+5s3+4(s2−s3)+2(s1−s2)

2a+3s3+3(s2−s3)+2(s1−s2) ≤ 5
3 .

Case 2: B contains all three types of length-2 lightpaths (see Figure 9(c)). In this case, both C and E
must be empty, otherwise, there exists a length-2 lightpath p ∈ B that Online-Triangle can color p with
its complement in C or E to form a cycle and p should be in A instead. So, cost(S) = 2a + 2b + 3d. In this
case S∗ outperforms S by grouping lightpaths in B with lightpaths in D. Even if so, there are still 2d − b
length-1 lightpaths left unpaired in D because there are a + 2d length-1 lightpaths in P , a + b of them share

ADMs with A and B. Therefore, cost(S∗) ≥ 2a + 2b + (2d − b) = 2a + 2d + b. Then cost(S)
cost(S∗) ≤ 2a+2b+3d

2a+2d+b =

2 − 2a+d
2a+2d+b ≤ 2 − 2a+d

4a+2d = 3
2 ; the last inequality is due to b ≤ 2a, Property 1 (iii).

Case 3: B contains two types of length-2 lightpaths only, w.l.o.g., assume they are (e1, e2) and (e2, e3) (see
Figure 9(d)). To simplify the discussion, we assume B contains the same number of each of them; the other
case can be handled similarly. According to how Online-Triangle assigns color, C only contains the cycle
consisting of (e2) with one color and (e1), (e3) with another color; otherwise, there exists a lightpath p ∈ B
that Online-Triangle would assign the same color as its complement in C to form a cycle and then p
should be in A instead. Similarly, E only contains (e2). In S∗, lightpaths in B must be colored the same
color as some lightpaths in C or D (by Lemma 5.2). The number of (e2) left after all length-2 lightpaths are
colored in S∗ equals to c+d+e, while the total number of (e1) and (e3) left equals to 2c+d− b. The number
of cycles formed from the remaining length-1 lightpaths is at most 2c+d−b

2 . Therefore, cost(S∗) ≥ (2a+2b)+
3(2c+d−b)

2 + 2(c + d + e − 2c+d−b
2 ) = 2a + 3b/2 + 3c + 5d/2 + 2e. Hence, cost(S)

cost(S∗) ≤ 2a+2b+5c+3d+2e
2a+3b/2+3c+5d/2+2e ≤ 5

3 .

Case 4: B contains one type of length-2 lightpaths only; w.l.o.g., assume it is (e1, e2) (see Figure 9(e)).
Then C does not contain the cycle consisting of (e3) with one color and (e1), (e2) with another color while
E does not contain the lightpath (e3). In S∗, lightpaths in B must be colored the same color as some
lightpaths in C or D (by Lemma 5.2). The number of (e3) left after all length-2 lightpaths are colored in S∗

equals to c + d − b, while the total number of (e1) and (e2) left equals to 2c + d + e. Therefore, cost(S∗) ≥

(2a+2b)+3(c+d−b)+ 3(2c+d+e−2(c+d−b))
2 = 2a+2b+3c+3d/2+3e/2 ≥ (6a/5+4d/5)+2b+3c+3d/2+3e/2

because d ≤ a, by Property 1 (ii). Then cost(S)
cost(S∗) ≤ 2a+2b+5c+3d+2e

6a/5+2b+3c+23d/10+3e/2 ≤ 5
3 . ⊓⊔

Theorem 5.1 Algorithm Online-Triangle is optimal for triangle topology, with competitive ratio of 5
3 .

6 Conclusion and Possible Improvements

In this paper we presented an on-line algorithm with competitive ratio of 7
4 for any network topology, and

proved that no algorithm has a competitive ratio better than 7
4 , even if the topology is a ring. We showed

that the same algorithm has a competitive ratio of 3
2 in path topologies, and that this is also a lower bound

for any on-line algorithm on this topology. The lower bound on ring topology does not hold when the ring
is of a bounded size; we showed an optimal bound of 5

3 for the competitive ratio for the triangle topology,
using a different algorithm as a first attempt to provide tight bounds for rings of bounded size. The analyses
of the upper bounds, as well as those for the lower bounds, are all using a variety of proof techniques, which
are of interest by their own, and which might prove helpful in future research on the topic.

Our bounds pertain to deterministic on-line algorithms. It may be interesting to explore probabilistic
algorithms and obtain better bounds. Following our study, it might be interesting to determine the exact
complexity of the on-line problem for tree topologies, as a function of some parameter of the tree, and of
networks (e.g., rings or paths) of bounded size. An important extension is to consider the on-line version of
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Fig. 9. Different cases for the analysis of Online-Triangle.

the problem when grooming is allowed; in graph-theoretic terms, this amounts to coloring the paths so that
at most g of them are crossing any edge, and where each ADM can serve up to g paths that come from at
most two of its adjacent edges (see [GRS98,ZM03]). Another direction of extension is to the case where more
involved switching functions are under consideration.
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