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Abstract

In this paper, we introduce new geometric ad-hoc routing algorithms to route
queries in static sensor networks. For single-source-queries routing, we utilise a cen-
tralised mechanism to accomplish a query using an asymptotically optimal number
of transmissions O(c), where c is the length of the shortest path between the source
and the destination. For multiple-source-queries routing, the number of transmis-
sions for each query is bounded by O(clogn), where n is the number of nodes in
the network. For both single-source and multiple-source queries, the routing stage
is preceded by preprocessing stages requiring O(nD) and O(n2D) transmissions,
respectively, where D is the diameter of the network. Our algorithm improves the
complexity of the currently best known algorithms in terms of the number of trans-
missions for each query. The preprocessing is worthwhile if it is followed by frequent
queries. We could also imagine that there is an extra initial power (say, batteries)
available during the preprocessing stage or alternatively the positions of the sen-
sors are known in advance and the preprocessing can be done before the sensors
are deployed in the field. It is also worth mentioning that a lower bound of Q(c?)

transmissions has been proved if preprocessing is not allowed [19].

*A preliminary version of this paper appears in the Proceedings of the 5th IEEE International Work-
shop on Algorithms for Wireless, Mobile, Ad Hoc and Sensor Networks, (WMAN), 2005.
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1 Introduction

Wireless ad-hoc sensor network [1,2,22, 25, 26] is one of the fastest growing technologies
emerged in recent years. A sensor network consists of a large number of densely and
arbitrarily deployed sensor nodes. The sensor nodes are self-organised and cooperate
among themselves such that the sensor network is able to monitor an area of interest.
Sensor networks have found applications in various areas such as environmental, medical,
and military.

Sensor networks differ from traditional networks and other ad-hoc networks in many
aspects. Sensor nodes usually have strong constraints like small transmission range, lim-
ited power, limited memory, and limited computational capacity. Multi-hop transmission
is involved in sensor networks when two sensor nodes outside of transmission range com-
municate via intermediate nodes. Due to the limited memory, the topology of the sensor
network is usually unknown to the sensor nodes. Because of the power constraint, sensor
networks have to minimise the number of transmissions used in communication as more
transmissions result in higher power consumption.

In this paper, we study geometric ad-hoc routing [18-20] in sensor networks. The
problem is to route a message from a source to a destination via some intermediate
nodes. We call this communication a query. In geometric ad-hoc routing, it is assumed
that each sensor node is aware of its own and its neighbours’ coordinates |3, 5, 23]; and
the source node of a query knows the position of the destination. Other than that, the
topology of the sensor network is unknown to the sensor nodes. Note that having position
information in the sensor nodes (e.g., GPS [12]) becomes more and more realistic with
increasing availability of inexpensive positioning systems [18]. The objective of the routing
algorithm is to minimise the total number of transmissions sent for each query, where a
transmission is involved whenever a message is sent from a node to any of its neighbours.
The problem is non-trivial because although the coordinates of the destination node is
known to the source node, the source node has no idea of what routing paths are available
and which is the best path to route the query; this is because each node only has local

information about its neighbours but no global information about the network topology.

1.1 Previous work

The simplest routing algorithm used in sensor networks is the flooding algorithm [4, 14] in
which every node, upon receiving a message, forwards the message to all of its neighbours.
The major problem of employing flooding algorithms in sensor network is that it is difficult
for a sensor node to make sure that the same message will not be forwarded more than

once because a sensor node cannot keep track of all messages it has received so far with



its limited memory. As a result, termination of flooding cannot be controlled easily. In
addition, the total number of transmissions used to route a query from the source to the
destination can be huge; the lifetime of the sensor network would be much reduced by a
flooding algorithm.

Another simple algorithm is the greedy algorithm [9,13, 15, 24| in which a node for-
wards a message to the neighbour node that is the closest to the destination node. How-
ever, it has been observed that greedy algorithm does not guarantee that the query can
ultimately reach the destination [19].

More recent work on geometric routing tries to exploit structural properties of the
graph representing the network; algorithms with bounded number of transmissions are
derived. These include face routing by Kranakis et al. [16], which uses O(n) transmissions
for a network with n nodes. Later this algorithm is enhanced to adaptive face routing [19],
the number of transmissions used is bounded by O(c?), where c is the length of the
shortest path between the source and the destination. However, both algorithms are not
applicable in practice. Kuhn et al. |18, 20| combined face routing and greedy routing, and
came up with an algorithm, called GOAFR™' which also uses O(c?) transmissions and
this algorithm can be implemented practically. A lower bound of £2(c?) transmissions has
been proved to be necessary to finish geometric routing [19], implying that GOAFR™ is
asymptotically optimal. The above algorithms work on Unit Disk Graph that possesses
Gabriel Graph properties [20]. Geometric routing in directed graphs was also studied [6].
In this paper, we assume symmetric transmission power for the sensor nodes and we focus

on undirected graphs.

1.2 Our results

In this paper, we adopt the Unit Disk Graph [7] with the Q(1)-model assumption (also
called civilized graph [8]) to model a sensor network [19,20| (formal definition to be
given in Section 2). We study two variants of the geometric routing problem: single-
source-queries routing and multiple-source-queries routing. For the former, there is a
distinguished source node and it has a number of queries to be routed to different des-
tination nodes; for the latter, each sensor node can be a source node and it might have
queries to route to different destination nodes. In either case, we know neither the short-
est path C between a source s and a destination ¢ nor its length ¢ in advance. Note that
the shortest path may be much longer than the Euclidean distance between s and t (see
Figure 1).

For single-source-queries routing, we present an algorithm whose total number of
transmissions used is O(c) for each query. For multiple-source-queries routing, we extend

the algorithm for single-source-queries routing to a new algorithm which takes O(clogn)
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Figure 1: The shortest path C from s to ¢ may be much longer than the Euclidean
distance between s and t.

transmissions for each query, where n is the number of nodes in the network. Note that
the result for single-source queries routing holds even when the memory of each sen-
sor node is limited to O(1) number of registers (precise network model will be given in
Section 2); as for multiple-source queries, the result holds when the memory is limited
to O(log nlog D) number of registers, where D is the diameter of the network, yet this can
be reduced to O(1) with a poly-logarithmic transmission overhead (details will be given
in Remark 12). For both single-source and multiple-source routing, the routing stage is
preceded by preprocessing procedures requiring O(nD) and O(n?D) transmissions, re-
spectively, where D is the diameter of the network. Note that a lower bound of Q(c?)
transmissions has been proved if preprocessing is not allowed [19]. The preprocessing is
worthwhile if it is followed by frequent queries. For example, in a network in the form
of a grid with length d, the number of nodes in the network is O(d?). The preprocess-
ing requires O(d?) and O(d°) transmissions respectively while the previous best solution
takes O(d?) transmissions [18-20], thus, the preprocessing is worthwhile when on average
there are Q(d) = Q(y/n) queries per node. We could also imagine that there is an extra
initial power (say, batteries) available during the preprocessing stage or alternatively the
positions of the sensors are known in advance and the preprocessing can be done before

the sensors are deployed in the field.

1.3 Organisation of the paper

The rest of the paper is organised as follows. In section 2, we recall the formal definition
of the network model. Later in section 3, we present a solution for single-source-queries
routing, in which all queries originate from a distinguished central node. The solution
comprises a preprocessing stage followed by an asymptotically optimal (in terms of trans-
missions) routing stage. Finally in section 4, we show how to perform almost optimal

queries originating from any node of the network.



2 Model

In this section, we recall the formal definition of the network model [18-20]. A sensor
network is represented as a collection of n nodes arbitrarily distributed in the Euclidean
plane R?. Precisely, a sensor network is modelled as a graph G = (V, E), with the set of
nodes V' C R? and the set of wireless undirected connections E. We assume that every
node in V has the same transmission range, i.e., we adopt here the Unit Disk Graph
model. In this model, neighbouring nodes with edges connected are at distance at most 1.
We also adopt the £2(1) model [19] which assumes that the distance between nodes cannot
fall beneath a constant minimum bound (such a graph is also called a civilized graph [8]).
It is known that civilized graph has bounded degree (e.g., see [17]).

As mentioned earlier, in geometric routing, every node knows its own and its neigh-
bours’ coordinates. We consider both single-source-queries (centralised routing) as well
as multiple-source-queries (distributed routing), where a query is defined as follows: A
source node s wants to communicate via exchange of a control message with a destination
node ¢, knowing only its coordinates (z;,y;) in R?. Note that s is aware of neither the
topology of G nor the shortest path between s and t. Furthermore, we assume that the
network is static [14, 21, 25|. In this context our paper differs from the previous model [18-
20], which assumes that the network is temporarily static i.e., it does not change for the
duration of each query, though between any two queries, the network topology can change
arbitrarily. In sensor networks the complexity of a solution is usually expressed in terms of
the total number of transmissions rather than the time required to complete a particular
task. This is due to the concern of limited power of the sensor nodes.

Our model is summarised as follows:
1. The graph representing the network is a Unit Disk graph with Q(1)-assumption.

2. Each node v € V knows its coordinates (x,,y,) as well as the coordinates of its

neighbours.
3. The source node s knows (x, %), the coordinates of the destination node ¢.
4. Each node has O(1) number of neighbours.

5. Each node’s memory is limited to O(1) number of registers (each able to store an

integer /real number) used to keep local information.

6. Nodes exchange messages in size limited to O(1) integers/reals.



3 Single-source-queries routing

In single-source-queries routing, a distinguished source node s wants to communicate
with a destination node ¢, knowing only the coordinates (z;,v;) of the destination node
in R%. Note that s is neither aware of the topology of the graph nor of the shortest path

between s and ¢. This is due to the lack of memory in the nodes of the network.

3.1 The outline of our algorithm

Our algorithm consists of two phases: a preprocessing phase and a routing phase. In the
preprocessing phase, we run the procedure called SINGLEPREPROCESS(). The objective
of this procedure is to store, for any node ¢, a copy of its information (including a post
order number of ¢ in the BFS spanning tree rooted at the source node s) in a “special”
node m such that it is easy to find a path from s to m according to the coordinates of ¢
(precisely, (1) if the distance between s and ¢ is ¢, the distance between s and m is bounded
by O(c); (2) according to the coordinates (zy, y;), the source node s can communicate with
the node m in a limited number of transmissions bounded by O(c)). In the routing phase,
we run the procedure called SINGLEROUTING(). For a given destination node ¢, we first
find the node m, and then communicate with the node ¢ using an asymptotically optimal
number of transmissions O(c) according to the additional information (the post order
number of ¢) stored in the node m.

Note that the preprocessing procedure is done only once. After that the source node s
can query any other nodes of the network using an asymptotically optimal number of

transmissions.

3.2 Data structures for handling single-source-queries

In our querying systems, we use several objects/data structures, including

e Breadth first search tree (BFS) B rooted in the source node s, spanning all nodes
in G. We assume that each node (z,y) € G learns about its BFS level bfs(z,y) in

B during the construction of B.

e P(xz,y) denotes the post order number of the node (z,y) in B. This post order
number is used as the physical address of the node.

e Pre-super levels
The BFS levels in B are split into [log D| + 1 pre-super levels such that each pre-
super level is composed of a number of consecutive BFS levels. More formally the

i-th pre-super level contains BFS levels from 2° to 2071 —1, fori = 1,--- | |log D] —1.
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Figure 2: The BFS tree rooted at the source node s is divided into super levels. The
shaded levels are the borders chosen in the corresponding super levels. The images [;
stored in the borders are replicated to the search path.

Level 0 contains BFS levels 0 and 1. Level |log D] contains BFS levels from 2l°&

to D. The pre-super levels are used in the construction of super levels.

e Super levels and borders
In each pre-super level with even index, say 2i, we choose a BFS level with the
smallest number of nodes. This BFS level forms the i-th border. The borders
split the BF'S levels of B into (%} super levels. The i-th super level contains
the BFS levels between the i-th and the (i + 1)-th border (but not including the
(i + 1)-th border). Each node (z,y) in B is aware of its super level, denoted as
S(x,y) € [0, [%} —1]. (The reason we choose a level with the smallest number
of nodes to be the border is that we want to bound the number of nodes in the

border in terms of ¢; this property will be used in the proof of Lemma 3.)



e Image
Each node (x,y) generates an image containing the key in the form of a 3-tuple
(S(z,y),x,y) and the content P(x,y). The image is denoted by I(z,y) = ((S(x,y),

z,9), P(z,y))-

e A priority queue PQ is a heap-like structure embedded into the BFS tree B to
rearrange the images according to their keys. L.e, the key of an image stored in a
parent is smaller than those stored in its children. P(Q) is used to sort the images

within super levels in B.

Using this priority queue, we rearrange the images within a particular super level,
say the i-th one such that images with smaller keys are placed in nodes with
smaller post order number. Le, if two images I(z1,y1) = ((¢,21,21), P(z1,v1)) and
I(z9,y2) = ((i,22,y2), P(x9,y2)) with the lexicographic order (z1,y;) < (z2,ys) *
are moved to two locations (uy,v1) and (ug,vy) in super level i, respectively, then
P(uy,v1) < P(ug,vy).

Lemma 1. If a node u belongs to the i-th super level, then the image of u will be

stored at a node v in the i-th super level as well.

Proof. Follows directly from the sorting step above. O

Corollary 2. If the distance between s and t is c, then the distance between s and

the node m used to store the image of t is bounded by O(c).

e A search path is the longest connected path in the BFS tree B which starts from the
source node. The images stored in the nodes in the ¢-th border will be replicated to
the nodes along the search path in the i-th super level correspondingly (see Figure 2
for an example). The following lemma shows that replication requires O(1) memory

in each node.

Lemma 3. The nodes in the search path need O(1) memory to store all the images

of the nodes in the borders.

Proof. 1t is obvious that the size of the image in each node is of size O(1). So we
only need to prove that for every i, the number of nodes in the i-th border is O(1)
times of the number of nodes on the search path segment within the i-th super
level; we denote this search path segment as P;. We prove this by contradiction.
We assume on the contrary that there are w(r) number of nodes in the border,

where r = 2%, Then the number of nodes in the first i super levels is w(r?) because

'We say that (z1,y1) < (z2,y2) iff 21 < 22 or 71 = x5 and y; < yo.
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the border contains the smallest number of nodes in the corresponding pre-super
level and there are at least Q(r) BFS levels in that pre-super level. It contradicts to
the result of [18], which states that in a Unit Disk graph with constant degree, there
are O(r?) number of nodes in a region with radius r. Therefore the assumption is
not true. The number of nodes in the i-th border must be at most O(r). The
number of nodes on P; is greater than or equal to the radius r. Therefore the
number of nodes in the i-th border is less than O(1) times the number of nodes
on P, O

3.3 Preprocessing in single-source-queries routing

In this section, we describe an O(nD)-transmissions preprocessing procedure for single-
source-queries routing. Procedure SINGLEPREPROCESS() creates the data structures

discussed in section 3.2. The number of transmissions involved is bounded in Lemma 4.

Procedure SINGLEPREPROCESS(s)
1. Create BFS spanning tree B rooted at the source node s;
2. Give the post order number to each node in B;
3. Construct the search path;
4. Split the BFS levels in B into the pre-super levels;
5. Construct the borders and the super levels in B;

6. Sort the nodes in each super level, using the sorting step (described in Section 3.2)

and the priority queue PQ (described in Section 3.2).

Lemma 4. The number of transmissions required to complete SINGLEPREPROCESS(S)
can be bounded by O(nD).

Proof. Step 1 involves construction of BFS tree, which can be done by having each node
(starting from the source node) sending a message to its neighbours to label the BFS
level if the neighbours have not been labelled yet. This takes O(n) time as each node has
a constant number of neighbours. It is easy to observe that Steps 2 and 4 take O(n) and
O(1) transmissions, respectively, as Step 2 is achieved by a post order traversal. Step 3
can be done by finding a leaf node with the largest BFS label, which takes O(n + D)
transmissions. We now show that Step 5, which finds a level with the smallest number of
nodes within a particular pre-super level, can be done using O(nD) transmissions. First,

computing the number of nodes in a BFS level can be done by a postorder traversal,
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which takes O(n) transmissions; in other words, computing for all BFS levels takes O(nD)
transmissions. This information can be stored in the node along the search path in the
same BFS level. To find the border, we find along the search path within a particular
pre-super level the smallest number of nodes; this can be done using O(D) transmissions.
As a result, Step 5 can be done in O(nD) transmissions.

The most tricky part is Step 6. Consider the i-th super level.  We implement a
priority queue for all the nodes in this super level by using a heap-like structure in which
the degree of the node may vary but is bounded by a constant (as defined in Section 3.2).
The priority queue is embedded in the subtree T" of B, where T contains all levels from
the root to the bottommost BFS level in the i-th super level. The nodes in the i-th super
level are inserted one by one into the heap embedded in 7" according to the lexicographic
order of their coordinates. Each insertion takes at most O(2%) transmissions because
there are O(2%) levels in T.. Hence, the construction of this priority queue takes O(n 2%
transmissions.

With this priority queue, we can retrieve the nodes in increasing lexicographic order
in O(n 2%*) transmissions. The corresponding images are then placed in the nodes in
the ¢-th super level with post order number according to the lexicographic order. The
placement can be done by knowing the post order numbers of the roots and the size of
the subtrees containing nodes in the i-th super level and rooted at the nodes in the i-th
border. The post order numbers can be retrieved from the segment of the search path
in the i-th super level, and the size of subtrees can be obtained from the corresponding
roots. Therefore, the placement of each image takes O(2%) transmissions; and a total
of O(n2*) transmissions is required to place all images in concern. Summing up the
number of transmissions for all super levels, the total number of transmissions involved in
Procedure SINGLEPREPROCESS() is O(3 (i< og pjoy 7 2%) = O(nD). Hence, the lemma
follows. O

3.4 Procedure SINGLEROUTING

After the preprocessing, we enter the routing phase. The following procedure describes

how the routing between the source node s and any destination node ¢ runs.

Procedure SINGLEROUTING(s, t)
1. Set i = 0; (starting from the first super level)
2. While ¢ has not been found

(a) Find the first node on the search path in the i-th super level, of which the
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image is greater than (zy,y;); we call this image crucial image I(x.,y.) (recall

that the images stored in the search path are in ascending order);
(b) Copy this crucial image in the query and route the query back to s;
(c) Go to the corresponding node u on the border which stores I(x.,y.);

(d) Go through the subtree routed at w; if we find I(zy,y;), then go back to s and
route to t using P(x;,y;) and the procedure terminates; otherwise, continue

with the next super level;

(e) Seti=1i+1;

Theorem 5. For any destination node t, communication between the source node s and t
can be completed using O(c) transmissions, where c¢ is the length of the shortest path

from s to t.

Proof. By the construction of the super levels and borders, we know that the i-th border
lies within the 2i-th pre-super level, i.e., between the 2%-th and the 2%*!'-th BFS levels.
Therefore, the i-th super level contains at most (220+D+!1 — 22) BFS levels, i.e., O(2%)
levels. Procedure SINGLEROUTING() iterates through the super levels until reaching the
deepest super level, say k that is just above the destination t; in other words, the BFS
level of ¢ (i.e., ¢) is at least 2%*. Therefore, the number of super levels tried by Procedure
SINGLEROUTING() is at most [(logc)/2]. Together with Corollary 2, the total number
of transmissions required is O(3 ;< 1oge)21 2°) = O(c)- O

4 Multiple-source-queries routing

In multiple-source-queries routing, each sensor node can be a source node and it might
have queries to route to different destination nodes. Unlike single-source-queries rout-
ing, there is no single distinguished source node. A simple way to exploit the algorithm
for single-source-queries would be to choose one central node r such that every com-
munication between s and ¢ is done via r. Yet there is no guarantee that the length
of the route via r is comparable with the length of the shortest path between s and t.
Therefore, in this section, we describe another algorithm to accomplish almost optimal
multiple-source-queries.

Roughly speaking, we divide the graph into clusters (which may overlap with each
other); a node is chosen in each cluster as the central node and communication between
the nodes in the same cluster will be handled, as in the single-source-queries case, between
the nodes and the central node. To ensure that the nodes communicate within clusters

efficiently (not using too many transmissions), the clusters have to be constructed in a

11



way to preserve local distances between the nodes. For any pair of source and destination
nodes s; and ¢; being a distance d; apart, (1) they are both contained in some cluster with
diameter comparable with d;; and (2) the source node s; can locate this cluster using a

number of transmissions that is also comparable with d;; more precisely, both quantities
are O(d;logn).

4.1 Preprocessing for multiple-source-queries routing

In this section, we are going to describe a preprocessing for multiple-source-queries rout-
ing. We first construct a set of clusters as mentioned above and then apply the procedure
SINGLEPREPROCESS() to each of the clusters.

4.1.1 Construction of clusters

We adopt the clusters concept as used by Gasieniec et al. [11], and Gaber and Man-
sour [10]. Initially we pick an arbitrary node r € V as the central node of the graph G
and construct a BFS tree in G with respect to r. Let R be the radius of GG, which is the
maximum distance between r and any other node; note that R < D. The construction of

clusters takes a parameter d, and we will run the construction for d = 1,2, 22, ..., 299%,

Definition 6. A partition 7(z) of the graph G is a division of V into groups, each of
which comprises 4d consecutive BFS levels, where the first group starts from BFS level x.
Precisely, fori=1,2,3,---, [%1, the i-th group, denoted as G;(x), contains all nodes
at BFS levels j with x + (i — 1) -4d < j < x +i-4d — 1. The 2-partition of the graph G
comprises two different partitions: w(0) which starts with the group G1(0), and w(2d)
which starts with the group G1(2d).

Note that BFS levels 0,1,--- ,2 — 1 are excluded from the partition 7(x). For any
group G;(x), its top level is x + (i — 1) - 4d, and its bottom level is x + i - 4d — 1. Note
that G;(z) is not necessarily connected. In each group G;(x), we first construct some

pre-clusters, based on which we construct the clusters.

Definition 7. For each node u belonging to the top level of G;(z), the pre-cluster S is

defined to be the set of all nodes in G;(z) whose distance in G from u is at most 4d.

Now we briefly describe the idea of Gasieniec et al. [11] of how to construct the clusters
by growing appropriate pre-clusters. The growing algorithm executes in O(logn) stages.
In Stage j, where 1 < j < logn, a collection of clusters C? would be created. An arbitrary
pre-cluster is chosen as a core of a new cluster CJ. The core CJ is extended, by adding
a layer of all pre-clusters that intersect with C or are at distance at most 1 from C3,

to form a new core and is then further extended similarly. The extension continues as
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long as the number of new nodes to be added is at least the number of nodes already
present in the core Cg; otherwise, the extension of Cg is terminated and the pre-clusters
in the new layer are promoted for consideration in Stage 7+ 1. We then grow the clusters
C{, Og, -+ similarly until all pre-clusters are either included in a cluster or promoted to
Stage j + 1.

Note that each cluster is a union of some pre-clusters; each pre-cluster belongs to
exactly one cluster; and each cluster is a connected sub-graph of G. A more detailed

analysis of the growing process gives the following lemma.

Lemma 8. [11| For every d considered, (a) the diameter of each cluster is O(dlogn),
(b) every node only belongs to O(logn) number of clusters, and (c) for any two nodes
whose shortest path between them s of length d, then in at least one of the partitions of

the 2-partition, there exists at least one cluster that contains both nodes.

Lemma 9. The number of transmissions required to construct all clusters for different
values of d is O(n*D).

Proof. The crucial step in the construction is the growing of a core cluster. First consider
the growing for a particular d value. In Stage 1, to grow a core cluster, we start traversal
from the (newly added) nodes in the core cluster for distance 4d to reach all other pre-
clusters that have intersection or with distance one apart. This can be done by using
O(n/nd) transmissions, where n’ is the number of (newly added) nodes in the core cluster.
Notice that the clusters constructed in the same stage are all disjoint. Therefore, Stage 1
requires at most O(n?d) transmissions. After Stage 1, there are at most n/2 nodes
remaining. Therefore, the number of transmissions required for a particular d value is
O(X o<j<ropn((n/27)?d)) = O(n?d). Hence, the total number of transmissions required is
O(ZogiglogR(W’QQi)) = O(n’R) = O(n’D). u

4.1.2 Applying SINGLEPREPROCESS() in the clusters

After constructing the clusters, we apply Procedure SINGLEPREPROCESS() to each of
these clusters. This is done by arbitrarily picking one node r in each cluster, say the
central node of the first pre-cluster chosen in the corresponding cluster; and then applying
SINGLEPREPROCESS(r). To apply SINGLEPREPROCESS(r) successfully, every node u
in the graph has to store the cluster ID of the clusters to which u belongs and the
corresponding root of the BFS tree for each cluster; this is achieved by keeping track
of which neighbour is the parent of v in the BFS tree. The following lemmas state the
number of transmissions required for this preprocessing and the memory requirement

needed in each node.
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Lemma 10. Applying SINGLEPREPROCESS() to all clusters requires O(nD log® n) trans-

MISSIONS.

Proof. By Lemma 4, applying SINGLEPREPROCESS() on a cluster of size n’ and diameter
dlogn takes O(n'dlogn) transmissions. By Lemma 8 (b), every node belongs to at most
O(logn) clusters. Therefore, the total number of transmissions required for applying
SINGLEPREPROCESS() for a particular d is O(ndlog®n). Counting all d values we use,
the total number of transmissions for applying SINGLEPREPROCESS() is O(nD log® n);

thus, the lemma follows. O

Lemma 11. For any node u in the graph, the memory size required to store the infor-

mation of all clusters that u belongs to is O(lognlog D).

Proof. By Lemma 8 (b) and the fact that there are O(log D) different d values, a node
only belongs to O(lognlog D) clusters. Each node only needs O(1) memory to store
information about the clusters they belong, including cluster ID and root of the BFS tree
of the cluster. Together with Lemma 3 which states that O(1) memory is required for one

cluster, the total memory size required is O(lognlog D); thus, the lemma follows. O

Remark 12. The multiple-source-queries can be performed in constant space with a poly-

logarithmic transmission overhead.

The memory consumption in each node of the network can be reduced to a constant
in the following way. Note that the O(lognlog D) space requirement comes from the
need of use of the clustering system, where each node has to remember the clusters to
which it belongs. In the space efficient solution the set of single nodes is replaced by the
set, of super-nodes, where each super-node is a small cluster of neighbouring nodes of size
©(lognlog D). The set of super-nodes is computed as follows. We first build a spanning
tree Ts in G = (V, E'). Then the algorithm partitions the set of nodes into super-nodes by
cutting branches of T of size O(lognlog D). This is always feasible since the maximum
degree of T is O(1). The super-nodes (each based on a branch from 7Ts) form the set of
nodes V in the new graph G = (V, E). In G, for any v,w € V, a pair (v, w) € E iff there
exist 7,y € V, s.t., x € v,y € w and (z,y) € E. Note that the maximum degree in G is
bounded by O(lognlog D). The original nodes in each super-node play a role of single
cells in a distributed memory. The new graph G can be preprocessed similarly as G.
Note that the number of super-nodes in G and the diameter of G can only be decreased
comparing to that of G. The number of clusters a super-node resides in is still bounded by
O(lognlog D). As for the tree structure constructed for G (as described in Section 3.2),
the maximum dept is not increased as compared with that for G while the maximum

degree is bounded by O(lognlog D). The additional information a super-node requires
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to store can be distributed evenly within each super-node, s.t., each original node stores
information about a constant number of the clusters. However on the downside there will
be a poly-logarithmic transmission overhead related to the larger degree and to the cost
of internal search for an appropriate information in the distributed memory of each super-
node. This is because a distance d in G may now correspond to a distance O(dlogn log D)

in (G, and this at most increases the number of transmissions by a poly-logarithmic factor.

4.2 Procedure MULTIROUTING

After the construction of clusters and the preprocessing, we enter the routing stage.
Procedure MULTIROUTING () describes how the routing between any pair of source s and

destination ¢ runs.

Procedure MULTIROUTING(s, t)
1. Set d = 1;
2. While the cluster containing both s and ¢ has not been found

(a) For every cluster with diameter O(dlogn) that s belongs to
i. Based on the BFS tree in this cluster, s sends a message to the root r with
information including the coordinates of the destination ¢;
ii. Apply SINGLEROUTING(r,1);
iii. If ¢ can be found, the routing is completed and the procedure terminates;

otherwise, continue with the next cluster;

(b) Set d =2 xd;
The following theorem gives the performance of Procedure MULTIROUTING ().

Theorem 13. For any pair of source s and destination t, the communication between s
and t can be completed using O(clogn) transmissions, where c is the length of the shortest

path from s to t.

Proof. Procedure MULTIROUTING() starts from d = 1 and doubles d in each iteration.
By Lemma 8(c), the largest value of d tried by MULTIROUTING is at most 2¢. Together
with Theorem 5, the total number of transmissions required is O(Zogigﬂog 2] 2'logn) =
O(clogn). Thus, the theorem follows. O
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