
On-line Windows Scheduling of
Temporary Items

Wun-Tat Chan1? and Prudence W.H. Wong2

1 Department of Computer Science, University of Hong Kong, Hong Kong
wtchan@cs.hku.hk

2 Department of Computer Science, University of Liverpool, UK
pwong@csc.liv.ac.uk

Abstract. In this paper we study on-line windows scheduling (WS) of
temporary items. In a broadcasting system, there are some broadcast
channels, each can broadcast one item in one time unit. Upon the arrival
of an item with a window w, where w is a positive integer, the item
has to be scheduled on a channel such that it will be broadcasted in the
channel at least once every w time units until its departure. With the
on-line input of these temporary items, the problem is to minimize the
maximum number of channels used over all time. We give a 5-competitive
on-line algorithm and show that there is a lower bound of 2 − ε for any
ε > 0 on the competitive ratio of any on-line algorithm.

1 Introduction

In this paper we study on-line windows scheduling (WS) [3, 4] of temporary items
(i.e., items may depart). We are the first to consider temporary items in the
problem. A temporary item may have unknown duration, i.e., the item departs
at unpredictable time; or known duration, i.e., the departure time is known when
the item arrives. In a broadcasting system, there are some broadcast channels,
each can broadcast one item in one time unit. An item i comes with a window wi,
where wi is a positive integer. When item i arrives, it has to be scheduled on
one of the channels such that it will be broadcasted at least once every wi time
units. Reschedule of the item to other channels is not allowed. For example,
suppose two items with windows equals to 2 and 3, respectively, arrive one after
the other. Then we can schedule them in the same channel with the broadcast
sequence 〈2, 3〉 or 〈2, 2, 3〉 repeatedly. The objective of the problem is to minimize
the maximum number of channels used over all time.

WS can be applied to push-based broadcasting systems. In a push-based
system, servers broadcast pages on broadcast channels to clients. Clients who
wish to receive the pages will listen to the channels and select what information
they want to receive. If the quality of service is measured by the average response
time [1, 2], servers broadcast more popular pages more frequently. Yet, in some
business model, the servers sell their service to information providers who request
? This research was supported in part by Hong Kong RGC Grant HKU-5172/03E.



the pages to be broadcasted regularly [5, 11]. The frequency of broadcasting a
page is proportional to the amount paid by the provider. The servers may receive
additional requests by providers over time, while a provider may withdraw from
the service at any time; this is modeled by temporary items. Another related
application is video-on-demand systems: many requests of a popular movie are
received over a short period of time. To reduce the server bandwidth requirement
without sacrificing the response time, the pyramid broadcasting paradigm [14,
15] and its variants [12, 13] are adopted. The movie is partitioned into equal size
segments, each can be broadcasted in one time unit, and segment i is broadcasted
every i time units. Then any client can view the movie uninterruptedly by waiting
for at most one time unit.

Related work: WS with permanent items (i.e., the items never depart) was first
studied by Bar-Noy and Ladner [3], where they gave an off-line approximation
algorithm which uses H +O(lnH) channels, for H =

∑
i 1/wi. The NP-hardness

of the problem was proved later [4]. An on-line algorithm was also given which
uses H + O(

√
H) channels [4].

As pointed out in [4], WS is a restricted version of a bin packing problem,
called the unit fraction bin packing (UFBP). UFBP is to pack all items, each
with a width 1/wi for some positive integer wi, into minimum number of unit-
capacity bins. It can be observed in the following that WS is a restricted version
of UFBP. Suppose we have three items with wi equal to 2, 3, and 6. They can
be packed in the same bin because 1/2 + 1/3 + 1/6 = 1. Yet we cannot schedule
to broadcast them in the same channel [8]. It has been shown in the pinwheel
problem3 [7, 8, 10] that if the sum of 1/wi is less than or equal to 3/4, the items
can be scheduled on one channel [10], otherwise, it might not be possible to do
so. Bar-Noy et al. [4] gave an off-line algorithm for UFBP that uses H + 1 bins,
where H =

∑
i 1/wi. They also gave an on-line algorithm that uses H +O(

√
H)

bins and a lower bound of H + Ω(lnH).
Coffman et al. [9] has studied the unit-capacity bin packing problem with

temporary items, where the item width can be any real number less than or
equal to 1. When the largest item width is 1, they showed that first-fit is 2.897-
competitive and no on-line algorithm is better than 2.5-competitive. When the
largest item width is less than 1/k for an integer k, they gave a general upper
bound in terms of k for first-fit and a general lower bound in terms of k for any
on-line algorithm. Note that the upper bound of UFBP with temporary items
follows from the upper bound results of Coffman et al. but the lower bound does
not.

Our contribution: Similar to other study on on-line problems, we measure the
performance of an on-line algorithm in terms of competitive ratio (see [6] for a
survey). In this paper we give the first upper and lower bounds on the competi-
tive ratio of WS with temporary items. We observe that the competitive ratios
depend on a value α which is the minimum of wi. Precisely, we show that any

3 The pinwheel problem is to determine whether the given items can be scheduled in
one single channel and give the schedule if the answer is yes.



on-line algorithm has a competitive ratio at least 1 + 1/α − ε for any ε > 0.
In contrast to the case of permanent items in which there is an algorithm that
uses at most H + O(

√
H) channels, the 1 + 1/α − ε lower bound demonstrates

that WS with temporary items is “harder” than WS with permanent items. This
lower bound applies to both known and unknown duration, yet the adversary for
unknown duration is simpler as expected. As for upper bound, we give an on-line
algorithm W that is 5-competitive when α = 1, and (2+2/(α∗−1))-competitive
when α ≥ 2, where α∗ is the largest power of 2 that is smaller than or equal to
α. These upper bounds also hold for both known and unknown duration.

Organization of the paper: The rest of the paper is organized as follows. In
Section 2, we give some preliminaries. In Section 3, we present the lower bound
for UFBP and WS. The lower bound for WS is based on the lower bound for
UFBP. In Section 4, we present the on-line algorithm W for WS and analyze its
performance. Finally, we give a conclusion in Section 5.

2 Preliminaries

In this section, we give a precise definition of the on-line problems of UFBP and
WS with temporary items, and the necessary notations for further discussion.

On-line UFBP: The input is a sequence σ of items. Item i is represented as a 3-
tuple (ai, di, 1/wi), where ai, di, and wi are positive integers with ai denoting the
arrival time, di the departure time, and 1/wi the width of item i. For unknown
duration, di is not specified when item i arrives. All items are to be packed in
unit-capacity bins. The objective of the problem is to minimize the maximum
number of bins used over all time.

On-line WS: The input is a sequence σ of items for broadcast. Item i is repre-
sented as a 3-tuple (ai, di, wi), where ai, di, and wi are positive integers denoting
the arrival time, the departure time, and the window of item i, respectively. We
assume that di ≥ ai + wi − 1, i.e., an item that arrives should be broadcasted
at least once. For unknown duration, di is not specified when item i arrives.
Each item takes one unit of time to broadcast, i.e., if an item is broadcasted
in the beginning of time t, the client can receive the item at the end of time
t. Item i must be scheduled on a broadcast channel between the time interval
[ai, di] such that for any ai ≤ t1 ≤ t2 ≤ di and t2− t1 + 1 ≥ wi, item i should be
broadcasted at least once in the sub-interval [t1, t2]. Note that in this definition,
the first broadcast of item i must be within the time interval [ai, ai + wi − 1],
i.e., there are at most wi−1 time units allowed between the arrival time and the
first broadcast of an item. Similarly, we assume that in the unknown duration
case, item i should announce its departure at or before time di − wi + 1. The
objective of the problem is to minimize the maximum number of channels used
over all time. Define the load of a channel at time t to be the sum of 1/wi for
all item i scheduled in the channel that have arrived but not yet departed.

Both the above problems are on-line problems in the sense that at any time t,
there is no information on the items arriving after t. Given a WS (UFBP, resp.)



algorithm W, we analyze its performance using competitive analysis. Given a
sequence σ of items, let W(σ, t) be the number of channels (bins, resp.) used
by W at time t. We say that W is c-competitive if there exists a constant k such
that for any input sequence σ, we have

max
t
W(σ, t) ≤ c ·max

t
O(σ, t) + k,

where O is the optimal off-line algorithm of WS (UFBP, resp.)
Remarks: Notice that any on-line algorithm for WS with unknown duration

always maintains the load of every channel to be at most 1 because it has to
guarantee that all items scheduled on a channel can be broadcasted within their
windows (even if none of the items depart). Therefore, we also restrict our at-
tention to those off-line algorithms that maintain, at any time, the load of every
channel to be at most 1.

3 Lower bound results

In this section we present lower bounds for UFBP and WS with temporary
items. The lower bound for UFBP is easier to construct, based on which we can
construct the lower bound for WS. Precisely, we show that for both UFBP and
WS, no on-line algorithm is better than (1 + 1/α− ε)-competitive, for any ε > 0
and α = mini{wi}, this is true for both known and unknown duration. Yet the
adversary for known duration is more complicated as expected and is based on
the adversary for unknown duration. We will give the details of the lower bound
for UFBP, the lower bound for WS can be proved similarly and will be outlined
at the end of this section.

Lower bound for UFBP We first consider the case of unknown duration.
Given any on-line algorithm A, we construct a sequence of items of widths
either 1/y or 1/α for some y and α such that y is much greater than α. The
adversary works in three stages as follows.

1. Items with wi = y are released at time ai = i until at least y bins are used
by A and the number of items m released is a multiple of y. Consider the
minimum such m.

2. The adversary retains one item in each of any y occupied bins and let all the
other m− y items depart.

3. Finally, α(m− y)/y items with wi = α are released.

Notice that at most y2 items with wi = y are sufficient to force the on-line
algorithm to use at least y bins in Stage 1. Thus, m ≤ y2. The following lemma
gives a lower bound on the number of bins used by the on-line algorithm after
Stage 3.

Lemma 1. A uses at least y + max{0, (m− y)/y − y(α− 1)/α} bins.



Proof. Notice that after Stage 2, at most α−1 items of width 1/α can be packed
in each of the y occupied bins. The total width of the items released in Stage 3
is equal to (m − y)/y. Therefore, if (m − y)/y > y(α − 1)/α, A needs at least
(m−y)/y−y(α−1)/α additional new bins to pack all items released in Stage 3.
Hence, the number of bins used is at least y + max{0, (m− y)/y − y(α− 1)/α},
and the lemma follows. ut

The following theorem shows the lower bound on the competitive ratio for
UFBP with unknown duration. Roughly speaking, we establish the lower bound
by showing that there is an off-line algorithm that uses m/y bins at any time
and then compare the number of bins used by the on-line algorithm with m/y.

Theorem 1. Any on-line algorithm for UFBP with unknown duration is at least
(1 + 1/α− ε)-competitive for any ε > 0 and α = mini{wi}.
Proof. First we show that there is an off-line algorithm O that uses m/y bins
at any time. In Stage 1, O packs the y non-departing items (i.e., those remain
after Stage 2) in the same bin and the other m− y items in another (m− y)/y
bins. In Stage 3, α(m − y)/y items of width 1/α are released. These items are
packed by O into the (m − y)/y bins that become empty after Stage 2. Thus,
the number of bins used by O at any time is 1 + (m− y)/y = m/y.

Then, we analyze the number of bins used by any on-line algorithm A. There
are two cases to consider. (1) Suppose that (m−y)/y ≤ y(α−1)/α. By Lemma 1,
no new bins are needed in Stage 3 and the maximum number of bins used by A
at any time is y. By simple mathematics, the inequality can be rearranged as
y2/m ≥ 1/(1+1/y− 1/α). Therefore, the ratio of the maximum number of bins
used by A to that used by O is y/(m/y), which is at least 1/(1 + 1/y − 1/α) ≥
1+1/α for y ≥ (α+1)/(α+1/α−1). (2) Suppose that (m−y)/y > y(α−1)/α. The
maximum number of bins used by A at any time is y+(m−y)/y−y(α−1)/α =
m/y + y(1/α − 1/y) ≥ m/y + (m/y)(1/α − 1/y). The latter inequality holds
because m ≤ y2. Therefore, the ratio of the maximum number of bins used by A
to that used by O is at least 1 + 1/α − 1/y. By letting ε = 1/y, the ratios in
both case are at least 1 + 1/α− ε, thus, the theorem holds. ut

We then modify the adversary such that it also works for known duration. The
major issue is that we have to determine the departure time of the items when
they arrive such that at the end of Stage 2, the on-line algorithm uses y bins,
each containing exactly one item of width 1/y. Then, using a similar argument
in Theorem 1, we can prove the same lower bound for known duration. Roughly
speaking, the departure time of the item i, for i ≥ 2, depends on how the on-line
algorithm pack item (i− 1), in particular, whether item (i− 1) is packed in an
empty bin or not. The details are as follows.

To set the departure time di of item i arriving at time i, we need to consider
how the on-line algorithm A packs the items arrived so far. We capture this
information by two values βi−1 and γi−1 (to be defined). For any time t, let It

be the set of items arrived at or before t and Ft ⊆ It be the set of items that A
opens an empty bin for. We define βt = mini∈Ft{di} and γt = maxi∈It−Ft{di}.



Now, we describe how to set the departure times. Firstly, we set d1 = L for
some large constant L to be defined later. Note that β1 = L and γ1 = 0. Next,
we set d2 = (β1 + γ1)/2 = L/2. If A packs item 2 in the same bin as item 1,
we have β2 = L and γ2 = L/2. Otherwise, we have β2 = L/2 and γ2 = 0. In
general, we set di = (βi−1 + γi−1)/2. Notice that Stage 2 ends at time γm and
Stage 3 starts at time γm +1. For the adversary to work, we need to ensure that
di is an integer and di > m for all 1 ≤ i ≤ m, which can be proved to hold if
L ≥ 2y+dlogm+1e. The details will be given in the full paper.

The following lemma gives an invariant about the departure times.

Lemma 2. For any time 1 ≤ t ≤ γm, we have βt > γt.

Proof. We first consider the case where 1 ≤ t ≤ m. We prove the lemma by a
stronger claim that (1) if item t is packed in an empty bin by A, then βt = dt,
otherwise, γt = dt; and (2) βt > γt. We prove the claim by an induction on t. The
claim holds for t = 1 because d1 = β1 = L and γ1 = 0. Assume the claim holds
for some t < k ≤ m. At time k, item k arrives. Since dk = (βk−1 + γk−1)/2 and
βk−1 > γk−1, we have γk−1 < dk < βk−1. If item k is packed in an empty bin,
then βk = min{dk, βk−1} = dk and γk = γk−1. Otherwise, γk = max{dk, γk−1} =
dk and βk = βk−1. For both cases, we have βk > γk, thus, the claim holds.

For any m < t ≤ γm, there is no item released at time t. Therefore, we have
βt = βm > γm = γt. Combining with the above claim, the lemma follows. ut

Using the invariant of Lemma 2 and a similar argument as Theorem 1, we
have the following theorem.

Theorem 2. Any on-line algorithm for UFBP with known duration is at least
(1 + 1/α− ε)-competitive for any ε > 0 and α = mini{wi}.
Proof. Notice that with known duration, we can have an off-line algorithm using
the same number of bins as the one given in the proof of Theorem 1. As a result,
we only need to consider the number of bins used by any on-line algorithm.
By Lemma 2, we can see that at time γm + 1 each of the y occupied bins has
exactly one item of width 1/y. By Lemma 1, the on-line algorithm uses at least
y + max{0, (m − y)/y − y(a − 1)/α} bins. Following the same argument as in
Theorem 1, we can prove that every on-line algorithm for UFBP with known
duration has competitive ratio at least 1+1/α−ε for any ε > 0 and α = mini{wi}.

ut

Lower bound for WS To prove the lower bound for WS, we modify the
adversary for UFBP such that a bin is considered as a channel and an item
of width 1/w becomes an item of window w. Then, we have an adversary for
the on-line WS. Based on the modified adversary, we can derive the following
theorem.

Theorem 3. Any on-line algorithms for WS is at least (1+1/α−ε)-competitive
for any ε > 0 and α = mini{wi}. This holds for both known and unknown
duration cases.



a

b

c d

Fig. 1. The schedule corresponding to this broadcast tree is 〈a b a c a b a d〉.

4 Upper bound results

In this section, we give an on-line algorithm W for the WS problem and analyze
its performance. We focus on the unknown duration case, the result carries for
the known duration case. Roughly speaking, the on-line algorithm W rounds
each item window w down to w′ which is a power of two (e.g., we round the
window of 7 down to 4) and then schedule the item according to w′. Note that
if any item is broadcasted at least once in every interval of w′, it is broadcasted
at least once in every interval of w. As a result, we can first focus on scheduling
items with windows that are powers of two.

4.1 Broadcast trees - representation of schedules

Similar to the work by Bar-Noy et al. [4], we represent a broadcast schedule
on m channels by a forest of m binary trees. The schedule on each channel is
represented by a binary tree in which all nodes have exactly zero or two children.
We call this binary tree a broadcast tree. Given any broadcast tree, the schedule
is to alternately broadcast an item from the left and right subtrees; items from
each subtree T is selected alternately from the left and right subtrees of T in
a recursive manner. For example, in Figure 1, the broadcast tree represents a
schedule that alternates between the item a and the items on the right subtree;
when selecting the right subtree, we alternate between the item b and items
on the right subtree recursively. The corresponding schedule is 〈a b a c a b a d〉.
Notice that a leaf at depth d represents an item scheduled with window w = 2d.

To ease the discussion of the on-line algorithm W, we give some definitions
on broadcast trees. We say that a leaf is open if there is no item assigned to
the leaf, otherwise, it is closed. An open leaf is represented by an unfilled circle
and closed by filled circle. We label a leaf at depth d by 2d. See Figure 2 (a) for
an example. The load of a broadcast tree is defined to be the sum of reciprocal
of the labels of all closed leaves in the tree. A lace binary tree of height h is a
binary tree in which for each depth from 1 to h − 1, there is a single leaf and
for depth h, there are two leaves. Note that there are more than one different
lace binary tree of height h > 2. The tree in Figure 2 (c) is a lace binary tree of
height 3.



8a 8c 8d

2

8b

(a)

8a 8d

2

(b)

8a

2

(c)

8d

4

Fig. 2. Appropriate rearrangement is necessary after departure of items. (a) Broadcast
tree for the sequence {8a, 8b, 8c, 8d, 2}. (b) Items 8b and 8c depart; a new item 4 cannot
be included into the tree. (c) The item 4 can be included if the tree is restructured.

4.2 The on-line algorithm W
The on-line algorithm by Bar-Noy et al. expands an existing broadcast tree or
opens a new broadcast tree when items arrive. Our on-line algorithm W handles
newly arrived items similarly. Yet when items depart, we have to rearrange a
broadcast tree wisely to make sure that new items can still be inserted to a
broadcast tree as long as the tree is not very full. We illustrate the need for
proper rearrangement in the following example. Suppose there are 4 items of
window 8 and 1 item of window 2 arriving and the broadcast tree is as shown in
Figure 2 (a). Later the second and third items of window 8 depart and another
item of window 4 arrives. Figure 2 (b) shows the broadcast tree after the items
depart if we do not rearrange the tree properly; we cannot include the item of
window 4 into the tree. Yet if we rearrange the tree as in Figure 2 (c), we are
able to include the new item into the tree.

Now, we describe the on-line algorithm W. The on-line algorithm W at-
tempts to maintain an invariant on the structure of the broadcast trees: for
every broadcast tree, there is at most one open leaf at each depth. To keep this
invariant, the on-line algorithmW modifies the structure according to the arrival
and departure of items as follows.

Arrival: When an item with window w arrives, round it down to the nearest
power of 2, say w′ = 2v. If there is an open leaf at depth v in some broadcast
tree, schedule the item to that leaf. Otherwise, let u < v be the maximum
value such that there is an open leaf at depth u in some broadcast tree. If
no such u exists, open a new tree with one open leaf (in this case u = 0).
Let ` be the leaf selected. Append a lace subtree of height v − u with all
leaves open to the tree to replace ` and then schedule the new item to one
of the open leaves at depth v in the resulting tree. See Figure 3 (a)-(d) for
examples.

Departure: When an item at depth v of a broadcast tree is going to depart in
the next 2v time, the corresponding leaf ` will become open. If there is no



8a 8b 8c8a 8b

8c8a 8b

(a) (b) (c)

4 4

8a

4 4

(d)

(e) (g)

8c8a 8b

(f)

8c8a 8b

Fig. 3. (a)-(d) Evolution of the broadcast tree for the sequence {4, 8a, 8b, 8c}. Note
that the lace binary trees inserted are chosen for better drawing effect only. (e)-(g)
Evolution of the broadcast tree when the item 4 departs.

other open leaf at depth v of the tree, no restructuring is needed. Otherwise,
there is exactly one other open leaf f . Let `′ be the node, a closed leaf or
an internal node, that shares the same parent p with ` in the tree. Detach
the subtree rooted at `′ and replace f by this subtree. Remove ` and make p
an open leaf. Then we repeat the restructuring similarly at depth v − 1 and
upper depth, if necessary, by considering p as the new open leaf. See Figure 3
(e)-(f) for an example.

Remarks: When we transit from the old to the new broadcast schedule, the
interval between the broadcast of an item that has been moved is altered. To
make sure that the interval is still smaller than or equal to its window size,
we will broadcast the item once more at the original time slot (which becomes
an empty slot in the new schedule), if necessary. This can be proved that the
remedy guarantees the broadcast interval to be at most the window size of the
moved item, and the transition lasts for at most 2v time units. The details will
be given in the full paper.

4.3 Analysis of the on-line algorithm W

In this section, we analyze the performance of the on-line algorithm W. Roughly
speaking, we show that when the on-line algorithm W opens a new broadcast
tree for an item, the load in each existing broadcast tree is reasonably close to 1.
Since the optimal off-line algorithm can schedule in each channel items with
load at most 1, we can show that the number of channels used by the on-line



algorithm W is at most a constant times that is used by the optimal off-line
algorithm. The first step is to show in Lemmas 3 and 4 that a broadcast tree is
reasonably full whenever we cannot schedule a new item in the tree.

Lemma 3. For every broadcast tree, there is at most one open leaf at each depth
at any time.

Proof. The proof is by induction on time. Initially, there is only one open leaf
at depth zero (the root of the first broadcast tree). When a new item arrives, we
either close an open leaf or replace an open leaf ` with a lace tree. Note that `
is chosen in a way that its depth is the largest among all candidate open leaves.
That means there is no open leaf on each depth corresponding to the added lace
tree. Furthermore, the lace tree only contains one single leaf in each depth except
the bottommost one in which one of the two open leaves is assigned to the new
item. As a result, adding a new item to a broadcast tree keeps the invariant.

When an item departs, a closed leaf becomes open. If there is no other open
leaf at the same depth, the number of open leave is then one. If there is another
open leaf at the same depth, the broadcast tree will be restructured so that the
two open leaves are attached to the same parent. The two open leaves will be
removed and then the number of open leaves will become zero. However, the
parent of the two open leaves is made open, thus increase the number of open
leaves at that depth. The restructuring procedure is repeated, if necessary, and
thus keeping at most one open leaf at other depth. ut
Lemma 4. If a new item with window 2v cannot be scheduled in a broadcast
tree T , the load of T is at least 1− 1/2v.

Proof. By the definition of the on-line algorithm W, there is no open leaf at
depth v′ ≤ v. By Lemma 3, there is at most one open leaf at depth greater than
v. Notice that a broadcast tree with all leaves closed has a load of 1. Therefore,
the total load of T is at least 1−∑

u>v 1/2u ≥ 1− 1/2v. ut
Based on the above two lemmas, we can derive the competitive ratio of the

on-line algorithm W as follows.

Theorem 4. The on-line algorithm W is 2+2/(α∗−1)-competitive when α∗ ≥
2, where α∗ is the largest power of 2 smaller than or equal to mini{wi}. This
holds for both known and unknown duration cases.

Proof. Suppose the on-line algorithm W opens a new broadcast tree for a new
item with window w and w′ = 2v is the corresponding round down window.
For any broadcast tree T in the forest, by Lemma 4, the total load of T is at
least 1 − 1/2v. Thus, the total load of the corresponding channel is at least
(1− 1/2v)/2 = 1/2− 1/2v+1 (because of the round down to nearest power of 2).

Let m be the number of channels used by the on-line algorithm W. Then the
total load of items, and hence the number of channels used by the optimal off-line
algorithm is at least (m−1)(1/2−1/2v+1). Therefore, by taking an appropriate
additive constant, the competitive ratio is at most 1/(1/2−1/2v+1) = 2+2/(2v−
1) ≥ 2 + 2/(α∗ − 1). Thus, the theorem follows. ut



Theorem 5. The on-line algorithm W is 5-competitive when mini{wi} = 1.
This holds for both known and unknown duration cases.

Proof. At any instance, suppose the on-line algorithm W uses n channels for
items with window 1 and m channels for items with other window values. Then
the optimal off-line algorithm must use at least n channels at this instance.
Furthermore, consider the moment when the on-line algorithm W opens the
m-th channels for item with window w > 1, using a similar argument as in
Theorem 4, the optimal off-line algorithm needs at least (m − 1)/4 channels
(set α∗ = 2 in the formula in Theorem 4). In other words, the optimal off-line
algorithm uses at least max{n, (m−1)/4} channels while the on-line algorithmW
uses m + n channels. The worst case ratio is obtained when n = (m − 1)/4; by
taking appropriate additive constant, the competitive ratio is at most 5 and the
theorem follows. ut

5 Conclusion

In this paper we study on-line windows scheduling of temporary items. We have
given a 5-competitive on-line algorithm and showed that there is a lower bound
of 2 − ε for any ε > 0 on the competitive ratio of any on-line algorithm. An
immediate open question is whether we can close the gap. Another interesting
problem is to schedule as many items as possible when the number of channels
is fixed; this involves admission control.

References

[1] S. Acharya, M. Franklin, and S. Zdonik. Dissemination-based data delivery using
broadcast disks. IEEE Personal Communications, 2(6):50–60, 1995.

[2] M. H. Ammar and J. W. Wong. The design of teletext broadcast cycles. Perfor-
mance Evaluation, 5(4):235–242, 1985.

[3] A. Bar-Noy and R. E. Ladner. Windows scheduling problems for broadcast sys-
tems. SIAM Journal on Computing, 32(4):1091–1113, 2003. (A preliminary version
appears in SODA 2002.).

[4] A. Bar-Noy, R. E. Ladner, and T. Tamir. Windows scheduling as a restricted
version of bin packing. In Proceedings of the Fifteenth Annual ACM-SIAM Sym-
posium on Discrete Algorithms, pages 224–233, 2004.

[5] A. Bar-Noy, J. Naor, and B. Schieber. Pushing dependent data in clients-providers-
servers systems. Wireless Network, 9(5):421–430, 2003.

[6] A. Borodin and R. El-Yaniv. Online Computation and Competitive Analysis.
Cambridge University Press, 1998.

[7] M. Y. Chan and F. Y. L. Chin. General schedulers for the pinwheel problem
based on double-integer reduction. IEEE Transactions on Computers, 41(6):755–
768, 1992.

[8] M. Y. Chan and F. Y. L. Chin. Schedulers for larger classes of pinwheel instances.
Algorithmica, 9(5):425–625, 1993.

[9] E. G. Coffman, M. R. Garey, and D. S. Johnson. Dynamic bin packing. SIAM
Journal on Computing, 1983.



[10] P. C. Fishburn and J. C. Lagarias. Pinwheel scheduling: Achievable densities.
Algorithmica, 34(1):14–38, 2002.

[11] V. Gondhalekar, R. Jain, and J. Werth. Scheduling on airdisks: Efficient access
to personalized information services via periodic wireless data broadcast. In Pro-
ceedings of IEEE International Conference on Communications, volume 3, pages
1276–1280, 1997.

[12] K. A. Hua and S. Sheu. Skyscraper broadcasting: A new broadcasting scheme for
metropolitan video-on-demand systems. In Proceedings of ACM SIGCOMM con-
ference on Applications, Technologies, Architectures, and Protocols for Computer
Communications, pages 89–100, 1997.

[13] L.-S. Juhn and L.-M. Tseng. Harmonic broadcasting for video-on-demand service.
IEEE Transactions on Broadcasting, 43(3):268–271, 1997.

[14] S. Viswanathan and T. Imielinski. Pyramid broadcasting for video-on-demand
service. In Proceedings of Conference on Multimedia Computing and Networking,
pages 66–77, 1995.

[15] S. Viswanathan and T. Imielinski. Metropolitan area video-on-demand service
using pyramid broadcasting. ACM Journal of Multimedia Systems, 4(3):197–208,
1996.


