
A note on “An optimal online algorithm for single machine
scheduling to minimize total general completion time”

Sheng Yu∗

School of Management
Xi’an Jiaotong University
a.sheng@stu.xjtu.edu.cn

Prudence W. H. Wong
Department of Computer Science

University of Liverpool
pwong@liverpool.ac.uk

August 25, 2011

Abstract

In this paper we study the problem of online scheduling of jobs with release times on a single machine
to minimize the total general completion time

∑
Cαj , where Cj is the completion time of job Jj and

α ≥ 1 is a constant. It has been shown in the paper by Liu et al., namely, “An optimal online algorithm
for single machine scheduling to minimize total general completion time” [2] that the lower bound on
the competitive ratio of any online algorithm is 2α. The authors also attempted to prove that the online
algorithm DSPT (Delayed Shortest Processing Time) is 2α-competitive. Unfortunately, Lemma 2 in the
paper, which is crucial in the proof, is indeed incorrect. This leaves the performance of DSPT as an
open question. The contribution of this paper is two-fold. First, we give a counterexample to this lemma
and an explanation of the flaw in the argument. Second, we give a proof that DSPT is 2α-competitive.
Together with the lower bound by Liu et al., this implies that DSPT is an optimal online algorithm for
minimizing the total general completion time.

Keywords: Online scheduling, total general completion time, delayed shortest processing time, com-
petitive analysis

1 Introduction

Scheduling jobs on a single machine in order to minimize the total completion time is a fundamental schedul-
ing problem. Here preemption is not allowed and online algorithms are considered [5]. The input is a set
J of n jobs J1, J2, · · · , Jn. Each job Jj is released at time rj with processing time pj . The job has to be
processed contiguously for pj time units. An online algorithm has to determine at any time which job to
execute without future information about jobs that have not been released yet. In a schedule σ, we denote
the start time and completion time of Jj by Sj(σ) and Cj(σ), respectively. When the context is clear, we
simply use Sj and Cj . The total completion time is defined as

∑n
j=1Cj . Furthermore, the general com-

pletion time [2] attempts to characterize the property that dissatisfaction increases with delay in processing
in a manner of a power function. The general completion time of Jj , is defined as Cαj where α ≥ 1 is a
constant. The objective of the problem is to minimize the total general completion time, i.e.,

∑n
j=1C

α
j . The

performance of an online algorithm is typically measured by competitive analysis [1]. An online algorithm
is said to be c-competitive if for all input job set, its total general completion time is at most c times that of
the optimal offline algorithm.
∗The work is done while the author is visiting University of Liverpool.



The problem of minimizing total completion time
∑
Cj has been studied by Vestjens [5] (Chapter 2),

who proposed the algorithm DSPT (Delayed Shortest Processing Time) and showed that it is an optimal
online algorithm with competitive ratio 2. Other 2-competitive algorithms have also been proposed [3, 4].
Liu et al. [2] extended the work by Vestjens [5] to total general completion time and showed a lower bound
of 2α. They also showed that DSPT is 2α-competitive. However, the proof relies on an intermediate result
(Lemma 2 in [2]), which is not correct. In this note, we give a counterexample to Lemma 2 in [2]. We
also show that DSPT is indeed 2α-competitive. Our proof also follows the same line as [5] and [2], and we
produce a different argument to complete the proof by [2].

In Section 2, we repeat the description of DSPT and outline the main arguments in [2, 5]. In Section 3,
we give a counterexample to Lemma 2 in [2]. In Section 4, we prove that DSPT is 2α-competitive.

2 Algorithm DSPT and its analysis

Algorithm. For the sake of completeness, we first describe the online algorithm DSPT (Delayed Shortest
Processing Time). Consider a job instance J . DSPT runs as follows.

Step 1: Consider time t when the machine is idle. If an unscheduled job is available at that time, let Jj be
the one with the shortest processing time. Ties are broken by taking the one with the earliest release
time.

Step 2: If t ≥ pj , then schedule Jj at t; otherwise, wait until time pj or until a new job arrives, whichever
happens first;

Step 3: If all jobs are scheduled, stop; otherwise, go to Step 1.

Analysis in [2, 5]. We now outline the main ideas of the proof in [5] for
∑
Cj and how [2] extends the

proof to
∑
Cαj . Let σ and π be the DSPT schedule and the optimal offline schedule, respectively. First of

all, Vestjens [5] showed that we only need to consider instances such that DSPT schedules jobs contiguously
as a block without idle time (stated as Lemma 1 below). The main observation for this is that if there is a
job instance J such that the total completion time of DSPT is c times that of the optimal offline algorithm,
one can prove that there is another job instance J ′ such that DSPT schedules jobs contiguously without idle
time and its total completion time is at most c times that of the optimal offline algorithm. This is also true
for total general completion time as well [2]. Note that such schedule may start with an idle time which is
due to Step 2 of DSPT .

Lemma 1 ([2,5]). The DSPT schedule σ consists of a single block: it possibly starts with an idle time after
which all jobs are executed contiguously.

The proof [5] proceeds with defining a new job instance J ′ based on J and σ, and relating σ with the
optimal offline preemptive schedules for J and J ′, and in turn with the optimal offline non-preemptive
schedule for J . We first describe how J ′ is defined. We number the jobs according to the execution order
in DSPT schedule σ. To simplify the argument, we define a dummy job J0 with p0 = S1(σ), which will
not be scheduled, yet we define S0(σ) = p0. We partition the schedule σ into subblocks B1, B2, · · · , Bk
such that a subblock is a maximal contiguous sequence of jobs ordered from shortest to longest processing
time, i.e., the last job of a subblock (except the last subblock) has longer processing time than the first job
of the following subblock. We denote by b(i) the index of the last job in block Bi. With b(0) = 0, b(i) is
formally defined as b(i) = min{j > b(i − 1) | pj > pj+1}, and for the last block Bk, b(k) is defined as
n. In other words, Bi consists of jobs Jb(i−1)+1, · · · , Jb(i). Furthermore, we define m(i) to be the largest

2



index of the job that has the longest processing time in the first i subblocks, i.e., pm(i) = max0≤j≤b(i) pj or
pm(i) = max0≤j≤i pb(j).

We now define a pseudo-schedule ψ based on schedule σ and from that define a new instance J ′.
Vestjens [5] showed that we can bound the total completion time of σ in terms of the optimal offline schedule
for J ′ and J . The order of the jobs in ψ is the same as in σ, but Jj in Bi+1 starts at time Sj(ψ) =
Sj(σ) − pm(i). Then, Cj(ψ) = Cj(σ) − pm(i). Note that ψ is not a genuine schedule and the execution of
jobs may overlap with each other. Based on the instance J and the pseudo-schedule ψ for J , we define a
new instance J ′ which consists of all jobs in J . The processing times of the jobs remain the same but the
release time of job Jj is defined as r′j = min{rj , Sj(ψ)}. Let φ and φ′ be the optimal preemptive schedules
for J and J ′, respectively. Vestjens [5] showed a number of properties which we capture in the following
lemma.

Lemma 2 ([5]). (i) For any job Jj , Cj(σ) ≤ Cj(φ) + Cj(ψ). (ii) For any job Jj , Cj(ψ) ≤ Cj(φ
′).

(iii)
∑
Cj(φ

′) ≤
∑
Cj(φ). (iv)

∑
Cj(φ) ≤

∑
Cj(π).

Roughly speaking, Statement (i) is due to the fact that DSPT does not start a job Jj in Bi+1 until pj
and noting that pm(i) ≤ rj + pj . Statement (ii) is proved by a claim that no job will start earlier in φ′ than
in ψ (see Lemma 2.4 in [5]). Statement (iii) holds because any valid schedule for J including φ is a valid
schedule for J ′ (the release times in J ′ is at most that in J ). Statement (iv) is because the cost of an optimal
preemptive schedule is always at most that of an optimal non-preemptive schedule.

Combining all the statements in Lemma 2, one can derive the following corollary, implying that DSPT
is 2-competitive for minimizing total completion time

∑
Cj .

Corollary 3 ([5]).
∑
Cj(σ) ≤ 2

∑
Cj(π).

To analyze the performance of DSPT with respect to the total general completion time
∑
Cαj , a claim is

made in [2] (Lemma 2) on the relationship of Cj(ψ) and Cj(φ) for any job Jj , which we state as Claim 4.
If correct, Claim 4 would have implied that

∑
Cαj (σ) ≤ 2α

∑
Cαj (π). Unfortunately, as we will show in

Section 3, this claim is incorrect and hence the competitive ratio of DSPT for
∑
Cαj remains unknown.

Claim 4 (incorrect Lemma 2 in [2]). For any job Jj , Cj(ψ) ≤ Cj(φ).

3 Counterexample to Claim 4

In this section, we give a counterexample J to Claim 4, in particular, we give an instance J and show that
Cj(ψ) > Cj(φ) for some Jj ∈ J . Let ε be a sufficiently small positive number. The release times and the
processing times of jobs in J are listed in Table 1.

job Jj release time rj processing time pj
J1 0 3
J2 0 5
J3 0 7
J4 11 + ε 1
J5 18 + ε 0.5
J6 11 + 2ε 2

Table 1: Input job set J of the counterexample.

According to DSPT, the processor is idle for 3 time units before starting J1 and then σ continues to execute
J2, J3, J4, J5 and J6 in that order (see Figure 1 (a)).

3



t

t

σ

φ

'φ

t6 11 18
19

19.50 3 21.5

0 3 8 11+ε

12+ε
14+ε

18+ε

18.5+ε18

0 3 8
12.5

1211 14.5 18.5

(a)

(b)

(c)

Figure 1: Schedules of σ, φ and φ′

Jj rj Sj(σ) Cj(σ) Sj(ψ) = Sj(σ)− Pm(i) Cj(ψ) r′j Cj(φ) Cj(φ
′)

J1 0 3 6 0=3-3 3 0 3 3
J2 0 6 11 3=6-3 8 0 8 8
J3 0 11 18 8=11-3 15 0 18 18.5
J4 11 + ε 18 19 11=18-7 12 11 12+ε 12
J5 18 + ε 19 19.5 12=19-7 12.5 12 18.5+ε 12.5
J6 11 + 2ε 19.5 21.5 12.5=19.5-7 14.5 11+ε 14+ε 14.5

Table 2: The values of Sj(ψ), r′j , Cj(φ) and Cj(φ′) for the counterexample.

The optimal preemptive schedule φ first completes J1 and J2 at time 3 and 8, respectively. Then J3 is
executed for 3 + ε time units until J4 arrives and preempts J3. Then φ completes J4 and J6 at time 12 + ε
and 14 + ε, respectively. Job J3 is then resumed and completed at time 18. Finally, as soon as J6 arrives at
time 18 + ε, φ executes J6 until it is completed at 18.5 + ε. Figure 1 (b) shows the schedule φ.

The start time and completion time of the infeasible schedule ψ are listed in Table 2. Based on that, one
can compute r′j for each job Jj (see Table 2). For the new instance J ′ whose jobs have release times r′j , the
optimal preemptive schedule φ′ runs as follows. J1 and J2 are first executed and completed at time 3 and 8,
respectively. Then J3 is executed but it is now preempted earlier at time 11 when J4 arrives. J4, J5 and J6
are then executed consecutively to completion at time 12, 12.5 and 14.5, respectively. Finally, J3 is resumed
to completion at time 18.5. Figure 1 (c) shows the schedule φ′.

In Table 2, C6(ψ) = 14.5 > C6(φ) = 14 + ε. By picking an arbitrarily small ε, we see that Claim 4
does not hold. We now explain the flaw in the proof of this claim in [2]. The proof of the claim is based
on proving two properties of any job Jj : (1) Cj(ψ) ≤ Cj(φ

′) and (2) Cj(φ′) ≤ Cj(φ). Property (1) is
indeed correct but the argument of Property (2) (towards the end of the proof of Lemma 2 in [2]) that it is
a consequence of r′j ≤ rj is incorrect. The completion time of the optimal preemptive algorithm is not an
increasing function of the release time and therefore we cannot conclude Property (2) and neither Lemma 2
in [2]. As a result, the performance of DSPT for

∑
Cαj is still open for α > 1.

4



4 Competitive ratio of DSPT

In this section, we give a proof that DSPT is 2α-competitive for
∑
Cαj . Note that in [2], α is assumed to be

at least 1. The proof in this section actually works for any non-negative number. The idea of the proof is as
follows. By definition of ψ, we know that Cj(σ) ≤ Cj(ψ) + pm(i) for a job Jj in block Bi+1. In Lemma 5,
we relate Cj(σ) and pm(i) so that we can express Cj(σ) in terms of Cj(ψ) alone. In Lemma 2 (ii), it is
shown that Cj(ψ) ≤ Cj(φ′). We then show in Lemma 6 that

∑
Cαj (φ

′) ≤
∑
Cαj (π) and as a result we can

conclude the competitive ratio of DSPT in Theorem 7.

Lemma 5. Consider a job Jj in subblock Bi+1. We have (i) Cj(σ) ≥ 2pm(i); (ii) Cj(σ) ≤ 2Cj(ψ).

Proof. (i) We prove the statement by induction. According to DSPT, σ schedules a job Jj to start at time at
least pj and completes at time at least 2pj . For any job Jj ∈ B1, the completion time is at least that of J1,
which equals to 2p1 = 2pm(0). Thus, the base case holds.

Assume that the statement holds for all jobs in B1, · · · , Bi. This means that for any such job Jj′ ,
Cj′ ≥ 2pm(i−1). We are going to show that the last job J` in Bi completes at time at least 2pm(i), implying
any job inBi+1 also completes at time 2pm(i) or later. If pm(i) = pm(i−1), then the statement holds for i+1.
Otherwise, it means that J` is the job with the largest processing time in B1, · · · , Bi and pm(i) = p`. In this
case, C` ≥ 2p` = 2pm(i) and the statement holds for i+ 1.

(ii) By definition of ψ, we know that Cj(σ) ≤ Cj(ψ) + pm(i). Together with (i), we have Cj(σ) ≤
Cj(ψ) +

1
2Cj(σ) and therefore, Cj(σ) ≤ 2Cj(ψ).

The following lemma relates the optimal preemptive schedule for J ′ and the optimal (non-preemptive)
schedule for J . The argument is similar to the result by Vestjens [5] as stated in Lemma 2 (iii) and (iv).

Lemma 6.
∑
Cαj (φ

′) ≤
∑
Cαj (φ) ≤

∑
Cαj (π).

Proof. As the release time of a job in J ′ is at most that of the corresponding job in J , any valid schedule
for J including φ is a valid schedule for J ′. Therefore

∑
Cαj (φ

′) ≤
∑
Cαj (φ).

On the other hand,
∑
Cαj (φ) ≤

∑
Cαj (π) because the cost of an optimal preemptive schedule is always

at most that of an optimal non-preemptive schedule. The lemma follows.

Combining Lemmas 5 and 6 with Lemma 2 (ii), we conclude the following theorem.

Theorem 7. The online algorithm DSPT is 2α-competitive for minimizing
∑
Cαj .

Proof. By Lemma 5 (ii), we have
∑
Cαj (σ) ≤ 2α

∑
Cαj (ψ). By Lemma 2 (ii), the latter is at most

2α
∑
Cαj (φ

′), which is in turn at most 2α
∑
Cαj (π) by Lemma 6.

It has been shown in [2] that the lower bound is 2α. Therefore, our result implies that DSPT is an optimal
online algorithm for minimizing

∑
Cαj .

5 Acknowledgments

This work is partially supported by NSF of China under Grants 71071123 and 60921003.

5



References

[1] A. Borodin and R. El-Yaniv. Online Computation and Competitive Analysis. Cambridge University
Press, Cambridge, 1998.

[2] M. Liu, C. Chu, Y. Xu, and J. Huo. An optimal online algorithm for single machine schedul-
ing to minimize total general completion time. Journal of Combinatorial Optimization, 2010.
http://dx.doi.org/10.1007/s10878-010-9348-0.

[3] X. Lu, R. A. Sitters, and L. Stougie. A class of online scheduling algorithms to minimize total comple-
tion time. Operations Research Letters, 31:232–236, 2003.

[4] C. Phillips, C. Stein, and J. Wein. Minimizing average completion time in the presence of release dates.
Mathematical Programming, 82:199–223, 1998.

[5] A. Vestjens. On-line machine scheduling. PhD thesis, Eindhoven University of Technology, 1997.

6


