
An Improved Abstract GPU Model
with Data Transfer

Thomas C. Carroll∗, Prudence W.H. Wong
Department of Computer Science, University of Liverpool, UK

Email:{thomas.carroll, pwong}@liverpool.ac.uk

Abstract—GPUs are commonly used as coprocessors to accel-
erate a compute-intensive task, thanks to their massively parallel
architecture. There is study into different abstract parallel
models, which allow researchers to design and analyse parallel
algorithms. However, most work on analysing GPU algorithms
has been software based tools for profiling a GPU algorithm.
Recently, some abstract GPU models have been proposed, yet they
do not capture all elements of a GPU. In particular, they miss the
data transfer between CPU and GPU, which in practice can cause
a bottleneck and reduce performance dramatically. We propose
a comprehensive model called Abstract Transferring GPU which
to our knowledge is the first abstract GPU model to capture data
transfer between CPU and GPU. We show via experiments, that
existing abstract GPU models cannot sufficiently capture all of
the actual running of a GPU algorithm time in all cases, as they
do not capture data transfer. We show that by capturing data
transfer with our model, we are able to obtain more accurate
predictions of the GPU algorithm actual running time. It is
expected that our model helps improve design and analysis of
heterogeneous systems consisting of CPU and GPU, and will allow
researchers to make better informed implementation decisions, as
they will be aware how data transfer will affect their programs.

I. INTRODUCTION

Graphics Processing Units (GPU) are consumer grade
pieces of hardware designed for high throughput computation
associated with graphical operations. Early attempts at general
purpose programming on GPU (GPGPU) resulted in manipula-
tion of graphical libraries to perform the tasks, yet specialised
frameworks such as OpenCL [1] and CUDA [2] have now taken
their place. GPGPU is being increasingly used in scientific
applications. Research in GPGPU has focused on performance
estimation [3][4][5][6][7], as opposed to theoretical analysis.
Recently, some abstract GPU models have been proposed [8]
[9], yet they do not capture data transfer between CPU and
GPU.

In this paper, we introduce a new model called Abstract
Transferring GPU (ATGPU); an abstract model for design
and analysis of GPU algorithms, which is an extension of
previous models. Our model captures data transfer between
CPU and GPU. To our knowledge, ATGPU is the first abstract
GPU model to capture this. We demonstrate the usefulness of
our model by analysing some computational problems on the
model, and show how capturing the data transfer can improve
the prediction of actual running time for a GPU algorithm,
when compared to existing models.

∗Thomas C. Carroll is supported by an EPSRC Studentship.

In this section, we discuss the modern CUDA GPU, followed
by how classical parallel models relate to the GPU. We continue
with discussing recent progress in modelling GPUs, and work
related to CPU GPU data transfer. We then identify scope
for improving abstract modelling of GPUs, and detail our
contribution.

A. Modern CUDA GPUs

The GPU is made up of many low powered cores, arranged
in groups on streaming multiprocessors. A GPU has several
streaming multiprocessors. Each streaming multiprocessor also
has shared memory, divided into banks, accessible only to cores
on the streaming multiprocessor. Part of the shared memory is
reserved as register space for each core. The GPU has off-chip
global memory split into equal sized memory blocks. Global
memory is accessible by all cores on the GPU and by the CPU
and is normally gigabytes in size.

A GPU program, also known as a kernel, contains a set
of instructions for a single thread. The GPU launches many
instances of the kernel for a large number of threads. Threads
are grouped into thread blocks, with a thread block executing on
a single streaming multiprocessor, working in parallel. Smaller
groups of threads called a warp are run in SIMD fashion on the
cores. There can be multiple warps within a thread block. Warps
of the thread block can be synchronised using barrier operations
and can only communicate via shared memory. Warps can only
communicate outside the thread block via global memory. The
list of instructions for each warp are placed into an instruction
pool, and are scheduled to execute only when all dependencies
are met and when cores become available on the streaming
multiprocessor.

In a memory access instruction, the warp requests data
from addresses and then waits until the request is resolved.
Shared memory access is resolved almost as fast as register
access, provided that the addresses are in distinct banks. If
addresses are in non-distinct banks, then a bank conflict occurs,
and requests serialize. Global memory access instructions fetch
entire memory blocks at a time, and take much longer to resolve
than shared memory access. If addresses reside in multiple
memory blocks, then multiple memory blocks are fetched.
Coalesced memory access is where a warp only requests
addresses residing in the same memory block.

Whilst a warp waits for a memory request, other warps
execute on the cores of the streaming multiprocessor, so that
cores do not lie idle. If this happens throughout the duration

of the memory request, the wait time is hidden by operations
of other warps. This is known as latency hiding. A streaming
multiprocessor can execute multiple thread blocks, provided
there is enough shared memory space to hold all required
data. The number of thread blocks resident on a streaming
multiprocessor is known as occupancy. A higher occupancy
increases the size of the instruction pool, meaning the amount
of latency hiding could be increased.

B. Classical Parallel Models

The Parallel Random Access Machine (PRAM) [10] is a
shared memory model, containing asynchronous processors
and shared memory. The PRAM does not include a memory
hierarchy. Therefore, the PRAM misses important components
needed for modelling or analysing GPU computation.

The Bulk Synchronous Parallel Model (BSP) [11] is a
distributed memory model, consisting of a machine and a
cost function. The machine contains processors with their
own private memory and all processors are connected to each
other. A processor accesses its own memory with low latency,
and accesses another processor’s memory with higher latency.
Algorithms are executed in rounds of computation, communi-
cation, and synchronisation. Algorithms are analysed with a
cost function, which is a function of the longest computation
at each round, the number and size of communications at each
round, and the cost of synchronisations. The lack of shared
memory between processors and the allowed communication
between processors means the BSP model does not capture
everything to effectively model a GPU.

Tiskin [12] proposed the Bulk-Synchronous Parallel Random
Access Machine (BSPRAM), consisting of processors with fast
private memory, and shared memory accessible to all. The
execution runs in rounds, similar to BSP. The BSPRAM is
closer to GPU than PRAM and BSP, yet the architecture is
not similar enough to the GPU as the notion of a warp is not
present.

The Parallel External Memory Model (PEM) [13] contains
processors and a formal memory hierarchy; each processor
has private memory, and there is main memory accessible to
all. Both memories are partitioned into equal sized memory
blocks. Memory transactions transfer entire memory blocks,
which is similar to global memory access in GPU. Algorithms
are analysed on the number of memory transactions. The lack
of shared memory for groups of processors and the lack of a
warp means this model is not suitable for GPU modelling.

C. Recent Progress on Modelling GPU

Recent progress on modelling GPU has come in two main
areas: abstract modelling, and predictive tools. Two prominent
abstract models for GPGPU are Abstract GPU (AGPU) [9],
and a model by Sitchinava and Weichert [8], which we refer
to as SWGPU. Both use a similar architecture.

The models capture a host (CPU) and device (GPU). The
device contains unlimited global memory (split into memory
blocks) and multiprocessors (MP). Each MP contains cores
and shared memory, which is split into memory banks. The

global memory can be accessed by the host and by all cores.
The shared memory is accessed only by cores on the MP.

The GPU algorithm runs in parallel on the cores of MPs;
cores within an MP all perform the same instructions at the
same time (in lockstep), modelling the concept of a warp.
Global memory requests transfer an entire memory block
between global memory and shared memory. If requested
addresses are within the same memory block, this completes as
a single operation, otherwise, multiple operations are required.
Shared memory requests complete in constant time provided
requested addresses are in distinct banks. Shared memory
requests are assumed to be bank conflict free, as bank conflicts
are difficult to analyse. The MP waits until all memory requests
by the cores have been resolved before proceeding to the next
instruction.

The SWGPU models execution in rounds, delimited by
synchronisation with the host. Analysis of algorithms is by
a cost function; a function of the amount of operations, the
amount of memory requests, and the amount of synchronisation.

AGPU analyses algorithms asymptotically by time, number
of memory requests and space used in global and shared
memory. The AGPU does not capture synchronisation, and
disallows algorithms where shared memory used exceeds
capacity. Occupancy is measured as a function of shared
memory usage and shared memory capacity. The AGPU gives
pseudocode for designing algorithms on the model.

Hong and Kim [4] create a predictive tool which can be
built into compilers. The tool predicts kernel latency at compile
time by analysing the compute and memory access. Their
prediction model is not simple, as many calculations are
required. Konstandinidis et al. [6] propose the Quadrant-Split
method to predict kernel performance on other GPUs after
execution on one GPU. When comparing predicted latency
and performance with the observed latency and performance,
[4] and [6] report a difference (error) of 5.14% and 25.8%,
respectively. Neither [4] nor [6] consider the data transfer
between CPU and GPU.

D. CPU GPU Data Transfer

We now discuss work related to CPU GPU data transfer.
There has been attempts to model this using software based
tools and a cost function, yet to our knowledge there has been
no attempt to capture both the GPU kernel and the data transfer
in the same abstract model.

Data transfer between the CPU and GPU can often affect
the performance of a GPU program under normal usage. Gregg
and Hazelwood [14] demonstrate that data transfer between
CPU and GPU can affect reported performance and argue that
reporting the GPU speedup should include data transfer. A
bottleneck was experienced in [15] transferring data between
CPU and GPU. Implementing a new data transfer scheme
improved the performance by 33%.

Several techniques have been proposed to find the best
technique for transferring data between CPU and GPU. Fujii et
al. [16] identify that direct memory access, where the GPU and
CPU share a unified address space, offers the best performance

for large amounts of data transfer. Van Werkhoven et al. [17]
produce an analytical tool modelling the data transfer and
predicting the best data transfer technique for a GPU program,
as it is not feasible to program and test all possibilities.

Boyer et al. [3] propose a function to predict latency of
data transfer operations. Their function lowered the difference
between predicted and observed speedup from 255% to 9%.

E. Scope for an Improved Model
We observe that the SWGPU and the AGPU model different

aspects of kernels; SWGPU models the trend of overall running
time, whereas AGPU has focused on design and analysis of
individual elements of the kernel. Both are equally important,
so there is scope for a more comprehensive model combining
all elements. Using GPU as a coprocessor requires data transfer
between CPU and GPU and this can lower performance if not
properly considered. To our knowledge, this is not captured in
any abstract GPU model, though it has been well studied in
software based tools.

F. Our Contribution
Our contribution consists of an abstract model, called

Abstract Transferring GPU (ATGPU), which is an extension
of previous models. We introduce new components to capture
data transfer between CPU and GPU.

We extend the SWGPU and AGPU architecture, introducing
a size constraint on global memory, making the model more
realistic. We extend the pseudocode of AGPU to capture data
transfer, and we extend the SWGPU cost function to model
data transfer and to simulate the cost on a particular GPU.
To our knowledge, ATGPU is the first abstract model with
this comprehensive array of analysis and design capabilities,
and the first abstract GPU model to capture data transfer. A
comparison of models is provided in Table I.

Item AGPU [9] SWGPU [8] ATGPU
Pseudocode 3 7 3
Time Complexity 3 3 3
I/O Complexity 3 3 3
Space Complexity 3 7 3
Shared Memory Limit 3 7 3
Synchronisation 7 3 3
Cost Function 7 3 3
Global Memory Limit 7 7 3
Host/ Device Data Transfer 7 7 3

TABLE I: Comparison of GPU abstract models

We demonstrate the use of ATGPU and evaluate several
example computational problems using the model. We show
via experiments that existing models are not able to sufficiently
model the actual running time in all cases, as they do not capture
data transfer. We show that by capturing data transfer using
our model, we are able to obtain more accurate predictions of
the actual running time.

The remainder of the paper is organised as follows: Section II
discusses our model, and Section III describes how algorithms
are analysed in our model. Section IV analyses computational
problems using our model, and Section V gives concluding
remarks and outlook on future work.

II. OUR MODEL

We now describe the architecture, execution, and usage of
the ATGPU model.

Architecture. The architecture of ATGPU is similar to
SWGPU and AGPU, with an additional constraint on global
memory size. The model captures a host (CPU) and a device
(GPU). Let ATGPU(p, b,M,G) be an instance of the model
with p cores in total, b cores and shared memory of M words
per MP, and global memory of G words.

Let MP = {mp1,mp2, ...,mpk} be the set of MP, therefore
k = p

b . Let Ci = {ci,1, ..., ci,b} be the set of cores of mpi ∈
MP . All ci,j ∈ Ci execute the same set of instructions in
lockstep. The shared memory of each mpi ∈ MP is split
into b memory banks, such that b successive words reside in
distinct banks. Only Ci can access the shared memory of mpi.
The global memory is divided into memory blocks of b words.
The host and all mpi ∈MP can access global memory.

Execution of Algorithms on the Model. ATGPU executes
algorithms in rounds, similar to SWGPU. A round begins by
the host transferring data to the device global memory. The
kernel is then ran on all (or a subset of) mpi ∈MP , and on
all cores ci,j ∈ Ci. Instructions are executed on Ci in lockstep.
If execution paths diverge, all paths are executed. Data must be
moved from global memory to shared memory in order for Ci
to access it. Upon a memory access instruction, Ci waits until
all cores have their memory request resolved.

In a global memory access instruction, if Ci requests words
within the same memory block, instructions coalesce and
complete as a single transaction. If requested words are in l
separate memory blocks, l separate transactions occur.

In a shared memory access instruction, if all ci,j ∈ Ci
access words in distinct memory banks, the request completes
in constant time. If there is access to words in the same memory
bank, a bank conflict occurs and requests are serialised. We
assume that bank conflicts do not occur, as these are difficult
to analyse.

The round ends with output data being transferred from
global memory to the host. Synchronisation operations occur,
and the subsequent round commences.

Notation for Pseudocode. We extend the pseudocode from
the AGPU model, allowing for explicit data transfer. Each
GPU kernel is placed inside a wrapper loop, to execute the
instructions on MP . If instructions are to be run on only a
subset of MP , then this is specified within the wrapper loop.

Pseudocode Wrapper Loop

for all mpρ ∈MP [mp0, ...,mpk−1] in parallel do
for all cρ,ε ∈ Cρ in parallel do

Instructions
end for

end for

In our model, any primitive data type, with vectors and
arrays thereof, are allowed as variables. Our model defines

mpi

ci,1 ci,2 ci,b

1 2 b
b + 1 b + 2 2b

M

Shared Memory

Cores Ci

Fig. 1: The multiprocessor of our model. Note the b banks
(shown as columns in the shared memory) and the b cores.

Host

Device

Global Memoryb words
1

G

mp1 mp2 mpk

Fig. 2: The device view of our model, with the k = p
b

multiprocessors, and the global memory of size G, in
blocks of b words

three types of variable scope. Host variables reside in host
memory, only accessible to the host, and their names begin
with capital letter. Global variables reside in global memory,
accessible by the host and all MPs, and their names begin
with lower case letter. Shared variables reside in shared
memory, accessible only by Ci for shared variable on mpi, and
their names begin with underscore. Memory access syntax is
<destination><operator><source>. Data transfer between
host and device uses the W operator, global memory access
uses the ⇐ operator, and shared memory access uses the ←
operator. The if-statement allows only a single conditional
block, in order to reduce diverging execution paths.

III. ANALYSING ALGORITHMS ON ATGPU

Our model defines the metrics below for an algorithm
running on ATGPU. Asymptotic complexity can be measured
both on a per-round basis and across the entire algorithm.

Number of Rounds R. The number of rounds R in the
program gives how many rounds are required. As data transfer
and synchronisation take a non trivial amount of time, we look
to minimise this value. This is from SWGPU.

Time ti. The maximum number of operations across all MPs
executed in round i. This is from both AGPU and SWGPU.

I/O qi. The total number of global memory blocks accessed
in the round, by all MP. This is from both AGPU and SWGPU.

Global Memory Space Used. The maximum number of
words stored in global memory across all rounds. If this is
greater than G, the algorithm cannot be run on our model.

Shared Memory Space Used. The maximum number of
words stored in shared memory across all MPs and all rounds.
If this is greater than M , the algorithm cannot be run on our
model.

Data Transfer. We introduce analysis of data transfer to
the model. For round i, let Ii (Oi resp.) be the number of
words transferred from the host to device (device to host resp.)
at the start (end resp.) of the round, referred to as inward

(outward resp.) transfer. The total amount of words transferred
between the host and device for all rounds can be measured

as:
R∑
i=1

(Ii +Oi).

Cost Functions. The cost function is adapted from the
SWGPU, with modifications of data transfer, operation rate,
and a GPU-cost.

Operation Rate γ. The cost for a multiprocessor to execute a
single instruction is represented by the variable γ. We see that
this corresponds to the clock rate of the GPU. The operation
rate γ can be set to a value corresponding to a particular GPU
for calculating the cost.

Global Memory Latency λ. The cost to access a memory
block in global memory is non-trivial; accessing shared memory,
when no bank conflicts occur can take 4 cycles, whereas global
memory can take in the region of 400−800 cycles. We denote
by λ this cost, being the number of cycles to access a global
memory block.

Fixed Synchronisation Cost σ. The fixed cost synchronisation
tasks that need to take place, such as resetting the device, de-
allocating and reallocating of data structures, clearing queues,
etc. take a non-trivial amount of time. This is represented by σ.

Host Device Data Transfer. Boyer et al. [3] gave a function to
determine the time of data transfer between CPU and GPU. We
use this to assign cost to data transfer stages. Let α represent
the initial overhead of a data transfer transaction, β represent
the cost of sending a word, and Îi (Ôi resp.) represent the
number of data transfer transaction of inward (outward resp.)
transfer in round i. The function TI(i) gives the cost of inward
data transfer for round i: TI(i) = Îiα + Iiβ. Likewise, the
function TO(i) gives the cost outward data transfer for round i:
TO(i) = Ôiα+Oiβ.

Cost Function. We say that the cost of an algorithm is upper
bounded by Expression (1):

R∑
i=1

(TI(i) +
ti + λqi

γ
+ TO(i) + σ) . (1)

GPU-Cost Function. Expression (1) gives the cost as ran
on a “perfect GPU” — a GPU with sufficient resources to
concurrently run every thread block in the algorithm. This
is an impossible machine, with an unlimited amount of
multiprocessors. Like how the AGPU allows a k multiprocessor
machine to simulate w > k multiprocessors, we can alter the
ATGPU cost function so that it simulates a GPU with k′ < k
Multiprocessors. Each streaming multiprocessor on a GPU can
accommodate ` = min(bMm c, H) blocks concurrently, where
H represents a hardware imposed limit. The GPU cost function
is given as shown in Expression (2), which captures the concept
of occupancy:

R∑
i=1

(TI(i) +
d kk′`eti + λqi

γ
+ TO(i) + σ) . (2)

IV. EVALUATION OF OUR MODEL

We evaluate our model using three example computational
problems, namely, vector addition, reduction, and matrix
multiplication. These algorithms have been well studied in
the past, and we use our model to focus on the effect of data
transfer on their actual running times. We measure the effect
on overall running time when the data transfer is included,
comparing to when the data transfer is not included. We
scrutinise the effectiveness of our model in capturing data
transfer and providing a more accurate prediction of overall
running time than the SWGPU, which does not capture data
transfer.

To do this, we examine the trends of the SWGPU cost
function, the ATGPU cost function, the observed total running
time, and the observed kernel running time as the input size
increases. We use the GPU cost function of our model as the
ATGPU cost, and the GPU cost function of our model minus
the data transfer as the SWGPU cost. Our model can be shown
as useful in cases where the rate of growth for the ATGPU cost
function is closer to the actual running time than the SWGPU
cost function.

Hardware Setting. All experiments are carried out on a
custom built machine with the following specifications: Ubuntu
16.04 OS, CUDA 8, 16GB RAM, AMD A10 5800k APU, nVidia
GTX 650 GPU.

A. Vector Addition

For two vectors A = (a1, a2, ..., an), B = (b1, b2, ..., bn),
the addition is given as A+B = (a1 +b1, a2 +b2, ..., an+bn).
We implement a simple GPU kernel that adds two Vectors
of n ints. An element of the answer vector ci is independent,
making this an embarrassingly parallel problem. We assign n
threads, with each thread i calculating the value ci = ai + bi.

ATGPU Analysis. We give pseudocode and analysis of the
Vector Addition GPU kernel on the ATGPU model below. The
number of rounds is 1, the parallel time complexity is O(1),
the I/O complexity is O(k), the global memory complexity
is O(n), the shared memory complexity is O(b), the transfer
complexity is O(α+βn). The cost is α3 +β3n+ 10+λ3k

γ +σ.

The GPU-cost is α3 + β3n+ d k`k′ e
10+λ3k

γ + σ. We plot the
GPU-cost function in Figure 3a.

Pseudocode Vector Addition
Input: Two vectors A,B of length n
Output: C = A+B

1: a W A . Transfer data to Device
2: b W B
3: for all mpi ∈MP [mp0, ...,mpk−1] in parallel do .

Start GPU
4: for all ci,j ∈ Cρ in parallel do
5: a[j]⇐ a[ib+ j]
6: b[j]⇐ b[ib+ j] . Work in shared memory
7: c[j]← a[j] + b[j] . Output to
8: Global memory
9: c[ib+ j]⇐ c[j]

10: end for
11: end for . Transfer output to Host
12: C W c

Experimental Setting. We run the Vector Addition kernel
on randomly generated data sets, from n = 1,000,000 →
10,000,000 with results shown in Figure 3b.

Discussion. Figure 3b shows that the growth of total running
time is much steeper than the kernel running time, data transfer
taking an average of 84% of the total time, meaning data
transfer between CPU and GPU has significantly affected
the running time of the algorithm. We compare this to
Figure 3a, where we see that ATGPU function grows at a
much quicker rate than the SWGPU function. In Figure 3c,
we have normalised all data on a 0→ 1 scale. We see that the
SWGPU function has a much slower rate of growth than the
total running time, and that the ATGPU function has a rate of
growth which is much closer to the actual total running time.
This means that by capturing the data transfer, the ATGPU is
able to better predict the total running time of this algorithm,
than the SWGPU which does not capture data transfer.

B. Reduction

The reduction of a n-sized vector A, for some operator ⊕,
is calculated as ⊕ni=1ai. We implement a simple reduction
kernel [18] using the addition operator, to sum an array of n
integers, using a tree-based method.

Pseudocode Reduction
Input: n integers allocated on GPU.
Output:

∑n
i=1A[i]

1: A W A . Transfer input data
2: for i = 1→ logb n do
3: Execute Kernel
4: end for
5: Ans W A[1] . Transfer answer

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

1 2 3 4 5 6 7 8 9 10

C
os

t (
x1

06)

n (x106)

ATGPU
SWGPU

(a) Predicted results.

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

1 2 3 4 5 6 7 8 9 10

Ti
m

e
(m

s)

n (x106)

Total
Kernel

(b) Observed results.

 0

 0.2

 0.4

 0.6

 0.8

 1

1 2 3 4 5 6 7 8 9 10

C
os

t /
 T

im
e

n (x106)

ATGPU
SWGPU

Total
Kernel

(c) Normalised results.

Fig. 3: Results for vector addition.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

0 1 2 3 4 5 6 7

C
os

t (
x1

04)

n (x 107)

TGPU
SWGPU

(a) Predicted results.

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45

0 1 2 3 4 5 6 7

Ti
m

e
(m

s)
 (x

 1
04)

n (x 107)

Total
Kernel

(b) Observed results.

 0

 0.2

 0.4

 0.6

 0.8

 1

0 1 2 3 4 5 6 7
C

os
t /

 T
im

e

n (x 107)

ATGPU
SWGPU

Total Time
Kernel Time

(c) Normalised results.

Fig. 4: Results for reduction.

ATGPU Analysis. The algorithm runs as in the “Reduction”
pseudocode, each round using the output from the previous
round as input.

The number of rounds is O(log n), the global memory
complexity is O(n), the shared memory complexity is O(b),
the parallel time complexity is O(log b), the transfer complexity
is O(α + βn) and the I/O complexity is O(nb

1− 1
b
log n

1− 1
b

). The
cost is:

O(α+ βn+
(log b log n) + λ(nb

1− 1
b
log n

1− 1
b

)

γ
+ σ log n) .

The GPU-cost is:

O(α+ βn+
(d n
bk′`ed

1− 1
b
log n

1− 1
b

e log b) + λ(nb
1− 1

b
log n

1− 1
b

)

γ
+σ log n) .

We plot the GPU cost in Figure 4a.

Experimental Setting. We run the reduction kernel on
randomly generated vectors of 0/1 values, being sizes n =
{216, 217, ..., 226}. We plot the observed results in Figure 4b.

Discussion. Figure 4b shows that the growth of total running
time is steeper than the kernel running time,though there is
not as stark a difference as in vector addition. On average, the
data transfer takes 35% of the total running time. We compare
this to Figure 4a, where we see that ATGPU function grows at
a quicker rate than the SWGPU function. We see in Figure 4c
that the ATGPU function has a rate of growth closer than the
SWGPU function to the actual total running time. Therefore,
as in the vector addition example, capturing the data transfer
gives a more accurate prediction of the actual running time.

C. Matrix Multiplication

Finally, we investigate matrix multiplication. For two matri-
ces A,B,we multiply them into the matrix C. We use a well
known GPU method for matrix multiplication in shared memory
(introduced in CUDA Programming Guide [2]), modified for
the single warp per multiprocessor of our model.

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450
 500

0 100
200
300
400
500
600
700
800
900
1000
1100

C
os

t (
x1

05)

n

ATGPU
SWGPU

(a) Predicted results.

 0

 500

 1000

 1500

 2000

 2500

0 100
200
300
400
500
600
700
800
900
1000
1100

Ti
m

e
(m

s)
n

Total
Kernel

(b) Observed results.

Fig. 5: Results for matrix multiplication.

Pseudocode Matrix Multiplication
Input: Two n× n matrices of integers, A and B.
Output: C = A×B

1: A W A . Transfer data on Host to Device
2: B W B
3: Execute Kernel
4: C W C . Transfer answer data from Device to Host

ATGPU Analysis. The number of rounds is 1, the parallel
time complexity is O(nb) , the parallel I/O complexity is
O((nb)2(n+b)) , the global memory used is O(n2), the shared
memory used is O(b2) , the transfer complexity is O(α+βn2)

and the cost is O(α+ n2β +
nb+λn

b
2(n+b)

γ + σ). We plot the
GPU-cost in Figure 5a.

Experimental Setting. We run the matrix multiplication
kernel on randomly generated square matrices of side length
n = {32, 64,, 1024}. We plot the observed results in
Figure 5b.

Discussion. We can see from Figure 5b that there is little
difference between the kernel running time and the total running
time. This means that the data transfer does not affect the
running time of this algorithm. This is reflected in the model
analysis, but our model is not useful in this case.

D. Summary

In the three computational problems studied, we see that
for vector addition and reduction, it is not sufficient to simply
capture the kernel execution for predicting the actual running
time. We show that by capturing the data transfer in addition
to the kernel, it is possible to obtain a trend that is much closer
to the actual running time, than if the data transfer was not
captured. We also show a case where our model is not useful;
in matrix multiplication, there is little difference between the
kernel and total running times, so the kernel can provide an
accurate prediction of the total running time in this case.

To demonstrate the accuracy of our model, we have also
calculated the relative proportions of time/cost allocated to
data transfer, and we see that our model has a good level
of accuracy, as seen in Figure 6. We see that the predicted
proportions of cost allocated to data transfer are on average

to within 1.5% of observed proportions for vector addition, to
within an average of 0.76% for matrix multiplication, and to
within an average of 5.49% for reduction. We also calculate
that the SWGPU captures on average only 16% of the actual
running time for the vector addition example, and only 58%
of actual running time for the reduction example, with 89%
of the actual time being captured in the matrix multiplication
example.

V. CONCLUSION

In this paper, we introduce a model called Abstract Trans-
ferring GPU (ATGPU), applicable to design and analysis of
GPU algorithms. The model is an extension of existing abstract
models. ATGPU is, to our knowledge, the first GPU abstract
model containing data transfer between host and device as an
integral part. The model contains an architecture, a pseudocode
and cost functions, allowing an algorithm to be analysed on
a “perfect GPU” and simulated on a real GPU. We show via
experiments that existing models cannot sufficiently capture all
of the actual running time of a GPU algorithm in all cases, as
they do not capture data transfer. We show that by capturing
data transfer with our model, we are able to obtain more
accurate predictions of the GPU algorithm actual running time.
We demonstrate two cases where capturing both the kernel
and data transfer in our model is useful for better predicting
the actual running time, and one case where capturing only
the kernel running time is sufficient. The immediate future
work is to carry out further experiments on other computational
problems to verify our model. Furthermore, it is desirable to
verify the model using other GPUs.

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

1 2 3 4 5 6 7 8 9 10

Δ

n (x106)

ΔE (Observed)
ΔT (Predicted)

(a) Vector addition.

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

0 1 2 3 4 5 6 7

Δ
n (x 107)

ΔE (Observed)
ΔT (Predicted)

(b) Reduction.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

0 100
200
300
400
500
600
700
800
900
1000
1100

Δ

n

ΔE (Observed)
ΔT (Predicted)

(c) Matrix multiplication.

Fig. 6: Proportions (∆) of time/cost for data transfer.

REFERENCES

[1] “The OpenCL Specification Version 1.2,” 2012. [Online]. Available:
http://www.khronos.org/registry/cl/specs/opencl-1.2.pdf

[2] nVidia Inc, “Programming Guide:: CUDA Toolkit Documentation,”
aug 2017. [Online]. Available: http://docs.nvidia.com/cuda/
cuda-c-programming-guide/

[3] M. Boyer, J. Meng, and K. Kumaran, “Improving GPU performance
prediction with data transfer modeling,” in IPDPSW ’13, pp. 1097–1106.

[4] S. Hong and H. Kim, “An analytical model for a GPU architecture
with memory-level and thread-level parallelism awareness,” in SIGARCH
Comput. Archit. News, vol. 37, 2009, pp. 152–163.

[5] K. Kothapalli, R. Mukherjee, M. S. Rehman, S. Patidar, P. J. Narayanan,
K. Srinathan, M. Suhail Rehman, S. Patidar, P. J. Narayanan, and
K. Srinathan, “A performance prediction model for the CUDA GPGPU
platform,” in HiPC ’09, pp. 463–472.

[6] E. Konstantinidis and Y. Cotronis, “A practical performance model for
compute and memory bound GPU kernels,” in PDP ’15.

[7] Y. Zhang and J. D. Owens, “A quantitative performance analysis model
for GPU architectures,” in HPCA ’11, pp. 382–393.

[8] N. Sitchinava and V. Weichert, “Provably efficient gpu algorithms,” arXiv
Prepr. arXiv1306.5076, 2013.

[9] A. Koike and K. Sadakane, “A Novel Computational Model for GPUs
with Application to IO Optimal Sorting Algorithms,” in IPDPSW ’14,
pp. 614–623.

[10] S. Fortune and J. Wyllie, “Parallelism in random access machines,” in
STOC ’78, pp. 114–118.

[11] L. G. Valiant, “A bridging model for parallel computation,” Commun.
ACM, vol. 33, no. 8, pp. 103–111, 1990.

[12] A. A. Tiskin, “The bulk-synchronous parallel random access machine,”
TCS, vol. 196, no. 1, pp. 109–130, 1998.

[13] L. Arge, M. T. Goodrich, M. Nelson, and N. Sitchinava, “Fundamental
parallel algorithms for private-cache chip multiprocessors,” in SPAA ’08.
ACM, pp. 197–206.

[14] C. Gregg and K. Hazelwood, “Where is the data? Why you cannot debate
CPU vs. GPU performance without the answer,” in IEEE ISPASS, apr
2011, pp. 134–144.

[15] S. Kato, J. Aumiller, and S. Brandt, “Zero-copy I/O processing for
low-latency GPU computing,” in ICCPS ’13, pp. 170–178.

[16] Y. Fujii, T. Azumi, N. Nishio, S. Kato, and M. Edahiro, “Data Transfer
Matters for GPU Computing,” ICPADS ’13, pp. 275–282.

[17] B. V. Werkhoven, J. Maassen, F. J. Seinstra, and H. E. Bal, “Performance
models for CPU-GPU data transfers,” in Proc. - 14th IEEE/ACM CCGrid
2014, pp. 11–20.

[18] M. Harris, “Optimizing parallel reduction in cuda,” 2008. [Online]. Avail-
able: http://developer.download.nvidia.com/assets/cuda/files/reduction.pdf

