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Abstract—In this paper we consider the pair-wise sequence
alignment problem with gaps, which is motivated by the re-
sequencing problem that requires to assemble short reads se-
quences into a genome sequence by referring to a reference
sequence. The problem has been studied before for single gap
and bounded number of gaps. For single gap, there was a GPU-
based algorithm proposed. In our work we propose a GPU-based
algorithm for the bounded number of gaps case. We implemented
the algorithm and compare the performance with the CPU-
based algorithm in a multithreadded environment; the results
are promising with the GPU version achieving a speedup of 30
times.

I. INTRODUCTION

A. Alignment problem
The problem of finding alignment between two biological

sequences has been extensively studied. An alignment allows
highlight of common areas between sequences, on the premise
that homology between two sequences can show some sort of
connection, or in the case of an unknown gene sequence, can
indicate what gene the sequence is most related to. Roughly
speaking, aligning a short pattern sequence to a longer text
sequence is to determine whether the pattern exists in the text
and if so the positions where it occurs.

With the advances in sequencing technologies, the amount
of data that requires alignment has increased drastically. For
example, the Illumina HiSeqX Ten sequencer[1] can produce
three billion reads (sequences) of length 250 bp (base pairs) in
less than three days. The re-sequencing problem is to assemble
short reads produced by the sequencer (an equipment that
takes a physical biological sample and outputs the sequence
of nucleobases as a character string) into a genome sequence
by referring to a reference genome, requiring “mapping” or
“aligning” short reads back to reference sequences. The task
is challenging due to the vast amount of data and the large
genome sizes.

There is a wide range of short-read alignment tools avail-
able, e.g., Bowtie [2], BWA [3], GenomeMapper [4], MAQ [5],
SOAP2 [6], SHRiMP [7], Stampy [8], REAL [9], addressing
different aspects of the problem. Due to the data size, faster
tools are needed. This asserts not just speed requirement on the
processors but also leads to high power/energy requirements;
furthermore, this potentially causes too high temperature that
may damage the processors. To solve this problem, it is nowa-
days common to exploit multi-processors in particular using

graphic processing units (GPU) to achieve drastic increase
in speed. SOAP3 [10] is developed using this idea and is
currently among the best short-read alignment tools available.

Because of mutations and other biological mechanisms, it is
common that sequences in comparison may not be exact match
but may have some mismatches. It is important to take into
account mismatches otherwise some vital information may
be missing. However, allowing mismatches greatly increases
the complexity of the problem and algorithms detecting
mismatches are significantly slower than their counterparts
that detect exact matches. Existing short-read alignment tools
including those mentioned above usually only allow a small
number of mismatches or do not allow any mismatches
because of this.

Differences may appear in the form of a gap, which is
a consecutive region that appears in the text but not in the
pattern or vice versa (i.e., a consecutive sequence of insertions
or deletions of letters in the text or the pattern). It has been
claimed that it can be desirable to penalize the occurrence
of gap as a whole instead of individual alternations [11].
Gaps may occur because of mutation event that a segment of
DNA sequence is copied or inserted, replication process that
a segment is missing, or genetic transposition that a segment
changes position on chromosomes.

For example, suppose we have two sequences TCGTTA and
TCTA. If we do not allow gap, we can align TCGT with TCTA
with two matches. If we allow a gap of any length, we can
align TCGTTA with TC**TA with four matches, where *
represents a gap character. If we allow two gaps, we can align
TCGTTA with TC*T*A, also with four matches.

B. Related work

Because of the importance of gaps, the alignment problem
has been considered in the presence of gaps [11], [12], [13]. In
addition to allowing mismatches in the form of edit distance or
score, the problem also allows for a bounded number of gaps
(of any length). In [11], [12], a single gap is allowed and the
algorithm GapMis is proposed; while in [13], multiple gaps
are allowed and the algorithm GapsMis is proposed. Usually
the number of gaps allowed is a small constant independent
of the length of the text or pattern. Dynamic programming
algorithms have been proposed to find the alignment with
the best alignment “score” with a bounded number of gaps.



The algorithms GapMis and GapsMis have been implemented
and are shown to perform well against other approaches like
EMBOSS water and EMBOSS needle [14]. With single gap,
a tool called libgapmis using GPU has been developed in [12]
for which a 11× speedup has been reported. With multiple
gaps, there is a lack of GPU-based algorithms.

C. Our contribution

Our main contribution is to propose a GPU-based algorithm
for the pair-wise sequence alignment problem with multiple
gaps, which is independent of whether we are using CUDA
or OpenCL. The algorithm, which we call GPUGapsMis,
is based on the GapsMis algorithm in [13]. To achieve a
better result, we try to maximize the amount of parallelism
by using appropriate data structures to store the data and
hence decrease the I/O to shared and global memory, which
could be a bottleneck in speeding up. We also extend the
algorithm to allow the use of scoring matrix in addition to the
Hamming distance that is considered in GapsMis. We have
implemented our algorithm and also a modified version of
the sequential algorithm GapsMis with the scoring matrix;
we call the extended algorithm CPUGapsMis. We compare
the performance of GPUGapsMis and CPUGapsMis and the
speedup is about 30 times in computing the alignment score
matrix. We also give theoretical analysis of the algorithm
GPUGapsMis based on the AGPU model in Section I-D.

As mentioned in related work (Section I-B), the perfor-
mance of GapMis and GapsMis is good relative to other simi-
lar alignment tools in terms of accuracy. Since our algorithm is
based on the CPU algorithm GapsMis, the alignment results
computed will be the same and so in terms of accuracy it
will be good relative to other alignment tools. Our major
contribution is to speed up the computation of the solution.

D. AGPU model

Most of the existing work on using GPU evaluates these
algorithms empirically. Recently, Koike and Sadakane [15] has
proposed a new theoretical model for GPUs called the Abstract
GPU (AGPU) model. Since known parallel computational
models such as the Parallel Random-Access Machine (PRAM)
models [16], [17], [18] are not appropriate for evaluating
GPU-based algorithms, it is necessary to have new theoretical
model to capture the essence of GPU architecture. (Another
algorithmic model for GPUs has been developed by Sitchi-
nava and Weichert [19].) PRAM models consist of multiple
cores and a single shared memory unit and are standard
computational models for parallel algorithms. However, as
claimed in [15], algorithms developed on the PRAM models
do not always show good performance on GPUs due to the
substantial differences from the actual GPU architectures. The
AGPU model is designed to analyze asymptotic computational
complexities of GPU-based algorithms and to pinpoint the bot-
tleneck for the performance. The AGPU model captures factors
affecting the performance such as coalescing, bank conflict
and multithreading. Similar to usual asymptotic analysis of
algorithms, the AGPU model provides a mechanism to analyze

the performance of GPU algorithms before implementation
and hence save effort from implementing algorithms that are
analyzed to run badly asymptotically.

In the AGPU model, GPU algorithms are measured by time
complexity, I/O complexity, the amount of global memory
used, and the amount of shared memory used.

The time complexity measures the number of instructions
each multiprocessor executes. Should there be thread di-
vergence within a multiprocessor, all paths are counted for
the time complexity. Where the time complexity of multiple
multiprocessors vary, the largest complexity is used.

The I/O complexity measures the total number of global
memory access operations performed by all multiprocessors.
Because the amount of parallelism for memory requests to be
fulfilled is dependent on the bandwidth of the architecture,
the I/O Complexity is defined as the summation of all global
memory requests from all multiprocessors.

The amount of global and shared memory used measures
the memory usage of the algorithm. If the amount of shared
memory used varies amongst the multiprocessors, the largest
value is taken.

We analyze the performance of GPUGapsMis based on the
AGPU model and present it in Theorem 1.

E. Other biological problems with GPU

GPU is made up of many small processing elements and is
able to exhibit a massive scale of parallelism in its execution.
GPUs were initially developed for graphical applications and
have since evolved into a general purpose computing device.
As the financial hardware cost continues to fall, they are
becoming a more feasible solution to implementing large
scale parallelism in programs. Thanks to frameworks such
as OpenCL and CUDA, the capabilities of the hardware are
becoming more and more accessible to developers, yet the skill
set required for programming on the GPU is still requiring a
large learning curve, and the time and labor costs associated
with developing algorithms for the GPU is still comparatively
high, when compared to a standard sequential algorithm.
Despite these issues, various bioinformatics problems have
been tackled using GPU, including Smith-Waterman global
alignment algorithm [20], [21], [22], [23], BLAST (Basic
Local Alignment Search Tool) [24], [25], and others [26], [27],
[28].

II. PRELIMINARIES

A. Problem Definition

We first introduce some notations required for the definition
of the problem. Consider an alphabet Σ. A string a is a
substring of string b if there exist two (possibly empty) strings
s1 and s2 such that s1as2 = b. Furthermore, a is a prefix (suffix
resp.) of b if s1 (s2 resp.) is an empty string.

Let ∗ be the gap character and Σ′ = Σ ∪ {∗}. An aligned
pair is a pair of letter (x, y) such that (x, y) ∈ Σ′×Σ′\{∗, ∗},
i.e., an aligned pair may involve at most one gap character.
An alignment of two strings X and Y is a string of aligned
pairs (x1, y1), (x2, y2), · · · , (x`, y`) such that removing all the



gap characters ∗ from X ′ = x1x2 · · ·x` gives X (similarly for
Y ). Note that there are ` − |X| gap characters in X ′. In the
alignment of X and Y , we say that xi matches yi if xi = yi;
xi is substituted by yi if xi 6= yi and both are not ∗; yi is
inserted if xi = ∗; xi is deleted if yi = ∗.

A sequence of ` aligned pairs (x1, y1), (x2, y2), · · · , (x`, y`)
is called a gap sequence if either all xi equal ∗ or all yi equal
∗. The sequence is called a gap-free sequence if none of the
xi nor yi equals to ∗. In other words, an alignment with α
gaps can be viewed as z0g0z1g1...zα−1gα−1zα where z0 is
a possibly empty gap-free sequence, z1...zα are non-empty
gap-free sequences, and g0...gα−1 are gap sequences.

Given two strings X and Y , we can measure the quality
of an alignment of X and Y by a score function δ(·). For
any letters x and y in Σ ∪ {∗}, δ(x, y) gives the score
value measuring the similarity between them. We assume that
δ(x, x) is higher than δ(x, y) for x 6= y. The score between
two strings X and Y , denoted by δ(X,Y ) is defined as the sum
of δ(xi, yi) over all i. E.g., setting δ(x, x) = 1 and δ(x, y) = 0
for x 6= y simply counts how many matches we have.

In addition, we distinguish one gap of a certain length
and two gaps with the same total length as the one gap by
introducing a gap opening penalty. The score of an alignment
is defined taking into account the gap opening penalty for each
gap in the alignment. Now we are ready to define the pair-wise
sequence alignment problem with bounded number of gaps.

Definition 1: Given a text T of length n, a pattern of length
m < n, and an integer k > 0, the problem is to find all prefixes
T ′ of T where the corresponding alignment of T ′ and X in the
form z0g0z1g1...zα−1gα−1zα satisfies the property that α ≤ k
and the score is the maximum.

For example, consider the text = TCGTTA and the pattern
= TCTA. The following figures show valid 0, 1, and 2 gap
alignments for them.

Fig. 1: 0-gap alignment

T C G T T A
| | – –
T C T A

Fig. 2: 1-gap alignment

T C G T T A
| | | |
T C * * T A

Fig. 3: 2-gap alignment

T C G T T A
| | | |
T C * T * A

B. Dynamic Programming Algorithm
Adapting the dynamic programming algorithm in [13] to

allow general score function, our CPUGapsMis algorithm is

based on the following dynamic programming framework. We
keep a matrix Gg[i, j], for 0 ≤ g ≤ k, which stores the
maximum alignment score between the prefixes t1t2 · · · ti of
the text T and p1p2 · · · pj of the pattern P . Here we denote
by η < 0 the so called gap opening penalty which represents
the penalty of the existence of a gap. We assume that the
gap extension penalty is the same regardless of which letter is
aligned with the gap character, i.e., there exists a constant γ
such that δ(x, ∗) = δ(∗, x) = γ for all x ∈ Σ.

Note that the restriction on the number of gaps can be
observed by calculating the matrix up to Gk.

G0[i, j] =

{
G0[i− 1, j − 1] + δ(ti, xj) if i = j

−∞ otherwise

Gg[i, j] = max



Gg[i− 1, j − 1] + δ(ti, xj)

j−i
max
r=1

Gg−1[i, j − r] + η +
j∑

l=j−r+2

δ(∗, xl)

if i < j

i−j
max
r=1

Gg−1[i− r, j] + η +
i∑

l=i−r+2

δ(tl, ∗)

if i > j

III. OUR SOLUTION

A. Idea of Parallelization

Our algorithm takes as input a set of q text sequences
T = T1, T2, · · · , Tq , a set of r pattern sequences P =
P1, P2, · · · , Pr, and a scoring matrix. This means that the
whole experiment contains q × r sequence pairs where a
sequence pair refers to the alignment of two sequences, T ∈ T
and P ∈ P . For simplicity, we discuss the case when the
length of text and pattern sequences is n and m, respectively.

Examining the dynamic programming algorithm in details
reveals its non-serial monadic nature. Therefore, we are able
to compute the alignment score matrices G[ ] in a row-wise
fashion, with each cell in a row being independent of all
others in that row. This enables us to exploit a good level
of parallelism, having all threads in a block calculate for the
entirety of a row in one step.

Suppose there are b threads in a block. In the case of b <
m, the computation of a row is tiled, so that the number of
steps for a block to calculate a row is dmb e, with any threads
not calculating for a cell lying idle. Notice that there are idle
threads only in the final tile step for any row.

To align each sequence pair, we initialize the matrices for 0
gaps, and then enter a loop for calculation of 1 up to k gaps.
The alignment score is stored in the device global memory, and
the backtracking data is sent to host-pinned memory on a zero
copy memory buffer, which requires no explicit calling and
is able to operate asynchronously from the kernel execution,
therefore saving execution time and device storage space.

To further save device storage space, we do not keep all the
entries of the alignment score matrices. In the shared memory,



we store the entries of the current two rows in the G[ ] matrix
of a certain gap number (instead of all rows); while in the
global memory, we store the values of two G[ ] matrices of
the current gap number and the last gap number. Therefore,
after completing the calculation of one row, the previous row
data can be erased and replaced by the current row (which in
the next iteration becomes the previous row). With this rolling
method, the device storage usage can be kept to a minimal.

B. AGPU Analysis

The AGPU model [15] consists of a Host (CPU) and a
Device (GPU).

The device consists of:

• p cores.
• one global memory unit.
• h multiprocessors

The h multiprocessors contain the following:

• b cores
• a shared memory unit of size M words, divided amongst
b memory banks

Let MP [1, ...h] be the set of multiprocessors in the AGPU
machine, CORE[1, ..., b] be the set of cores within each
multiprocessor, T = T1, T2, ..., Tq be the set of texts - each
of length n, P = P1, P2, ..., Pr be the set of patterns -
each of length m < n, k > 0 be max number of gaps,
numTiles = dmb e, previousG, currentG be pointers to GPU
Global Memory, previousRow, currentRow be pointers to
Shared memory within each multiprocessor, and H be a
pointer to host-pinned memory, on a zero-copy buffer.

The pseudo code is given as follows; Theorem 1 gives
analysis of GPUGapsMis on the AGPU model.

Theorem 1: The performance of GPUGapsMis on the AGPU
model satisfies the following properties.

(i) Time complexity is O(knmb );
(ii) Shared Memory used is O(m+ b);

(iii) Global Memory used is O(nmh);
(iv) I/O complexity is O(nmhk).

Our experiments in Section IV analyze in detail the running
time of our algorithm. In particular, Section IV-D discusses
that the experimental results match the theoretical analysis in
Theorem 1 (i). For the global memory used, as to be shown in
the pseudo code, the amount of space required for storing the
dynamic programming arrays is proportional to nmh, the text
sequence proportional to n, the pattern sequences proportional
to hm, and the score matrix is constant. Therefore, the total
memory used is O(nmh). On the other hand, shared memory
is used during the alignment of one sequence pair and requires
size proportional to m as well as some overhead for each core,
hence O(m+ b). As for the I/O complexity we need to access
all data in the global memory for each gap value, and hence
with a blow up of k total to O(nmhk).

1: for each ta ∈ T do
2: Copy ta to GPU global memory
3: Split P into f batches F = F1, ..., Ff
4: for each Fc ∈ F do
5: Copy Fc to GPU global memory
6: //Fc contains h′ ≤ h patterns from P
7: for all ρ ∈MP [1, ..., h′] do in parallel
8: //Multiprocessor ρ will align Fρ with ta
9: for all ε ∈ CORE[1, ..., b] do in parallel

10: //Initialise G0 matrix
11: //Initialise G0[0, 0]:
12: Initialise G0[0, ε− 1] into
13: previousRow[ε− 1]
14: //Initialise rest of 0th Row
15: for tile = 0→ numTiles do
16: j = tile ∗ b+ ε
17: if j ≤ m then
18: Initialise G0[0, j] into
19: previousRow[j]
20: end if
21: end for
22: Copy previousRow to
23: previousG[0, 0...m]
24: //Initialise remainder rows
25: for i = 1→ n+ 1 do
26: Initialise G0[i, ε− 1] into
27: currentRow[ε− 1]
28: for tile = 0→ numTiles do
29: j = tile ∗ b+ ε
30: if j ≤ m then
31: Initialise cell G0[i, j] into
32: currentRow[j]
33: //Value of G0[i, j] is either −∞
34: or previousRow[j−1] + score
35: end if
36: end for
37: Copy currentRow to
38: previousG[i, 0...m]
39: Swap currentRow and
40: previousRow pointers
41: end for
42: Calculate for upto k gaps
43: for g = 1→ k do
44: //Initialise 0th Row
45: //Initialise Gg[0, 0]:
46: Initialise Gg[0, ε− 1] into
47: previousRow[ε− 1]
48: //Initialise rest of 0th Row
49: for tile = 0→ numTiles do
50: j = tile ∗ b+ ε
51: if j ≤ m then
52: Initialise cell Gg[0, j] into
53: previousRow[j]
54: end if
55: end for



56: Copy previousRow to
57: currentG[0, 0...m]
58: for i = 1→ n+ 1 do
59: Initialise cell Gg[i, ε− 1] into
60: currentRow[ε− 1]
61: for tile = 0→ numTiles do
62: j = tile ∗ b+ ε
63: if j ≤ m then
64: Look in previousG for the
65: optimal gap insertion point
66: Look in previousRow[j−1]
67: for optimal precomputed
68: solution for no gap inserted
69: Calculate optimal score for
70: Gg[i, j]
71: Place in currentRow[j]
72: Place output data in H
73: end if
74: end for
75: Copy currentRow to
76: currentG[i, 0...m]
77: Swap currentRow and
78: previousRow pointers
79: end for
80: Swap currentG and
81: previousG pointers
82: end for
83: end parallel for
84: end parallel for
85: end for
86: end for

IV. EXPERIMENTAL RESULTS

A. Setting

The machine which was used to conduct the experiments
was of the following specification: AMD A10-5800K APU,
NVIDIA GTX 650 GPU, 16 GB memory, Ubuntu 14.04.2
LTS x86 64 Operating System. The AMD A10-5800K APU
contains 4 cores at a maximum clock speed of 4.3 GHz . The
NVIDIA GTX 650 contains 2 multiprocessors (384 CUDA
Cores) with a maximum clock speed of 1.06 GHz and a global
memory size of 1024MB.

The experiments conducted, as detailed below, run both
alignment algorithms CPUGapsMis and GPUGapsMis, out-
putting the alignment score data, ready for the backtracking
phase using GapsPos [13] – the algorithm presented with
GapsMis which calculates the optimal alignment path (see
Section V for further discussion about this).

B. Data

The sequence data we used is taken from the NCBI DNA se-
quence database GenBank [29]. From the database, we choose
from a selection of genomic data including e.coli, Ralstonia
solancearum and others. We randomly select sequences from
the database and further process each sequence by randomly

removing some bases such that the length of the sequence
becomes the length of the specific experiment sequence pair.
This process produces synthetic data, yet since it is taken
from real data, it is more realistic than that which is randomly
generated (it is much more difficult to generate accurate and
realistic patterns). The synthetic data used will give a good
view of the algorithms performance with real sequence data,
as all data is treated identically by the algorithm.

For experiments, we consider different input sets of text
sequences and pattern sequences and for each set of sequences,
we measure the performance of aligning all the sequence pairs
in the set. E.g., for an input set of q text sequences and r
pattern sequences, we align all q×r sequence pairs. We fix the
text sequence length to be 250bp for all input sets and vary the
pattern sequence length in different input sets with the values
{50, 100, 150, 200} bp. Each input set is made up of 100
pattern sequences and the certain number of text sequences
which varies with {16, 32, 64, 100} in different input sets,
and hence the number of sequence pairs in each input set
takes the value {1600, 3200, 6400, 10000}, respectively. As we
vary both the pattern sequence length and the number of text
sequences, there are altogether 16 input sets.

The sequences are stored in files. There are four input files
for text sequences, each file contains 16, 32, 64, 100 sequences,
respectively (each text sequence have length 250bp). There are
four input files for pattern sequences, the length of pattern
sequences in each file is 50, 100, 150, 200 bp, respectively
(each pattern file contains 100 pattern sequences). Each input
set is formed by taking one text sequence file and one pattern
sequence file. Due to the way we organize the files, there are
four input sets with 1600 sequence pairs, four with 3200 pairs,
four with 6400 and four with 10000.

C. Conduct of experiments and measurements

The software first reads the input files containing text
sequences, pattern sequences and the score matrix. It then
processes the data and creates a mapping of the texts and pat-
terns to the alphabet using integer values. Once this processing
of the input data is completed, the experiment commences.
To evaluate the performance, we compare the “latency” (time
taken) as well as the “throughput” (amount of output per unit
time) on both the CPU and GPU. Latency is measured as
the total time taken from the point where the input processing
finishes to the point where the alignment for all sequence pairs
has completed. The splitting of sequence pairs into any re-
quired batches, and the setting up of the relevant environment
is included within this measurement. Throughput is a measure
of how fast the output data matrix is filled and is measured in
Giga Cell Updates per Second (GCUPS). Precisely throughput
is calculated by dividing the total amount of output data by
the time taken to compute them.

To give a fair comparison between the GPU and the CPU,
CPUGapsMis uses OpenMP to provide multithreadding on
the CPU. To this end, we use two threads in CPUGapsMis,
enabling the CPU to concurrently execute two alignment tasks.
This matches the capability of the GPU, which executes one



alignment task on each of its two multiprocessors. In order to
provide wider comparison, we also conduct experiments with
CPUGapsMis using one and four threads.

D. Results and Discussion

In this section we discuss the results of the experiments.
We verify the correctness of the results via comparison with
the output from GapsMis [13]. The experiments reveal that
GPUGapsMis outperforms CPUGapsMis by a good factor. The
results are shown in Figures 4, 5, 6, 7, and Table I.

We first consider the results for 10,000 sequence pairs (i.e.,
100 pattern sequences and 100 text sequences) in Figures 4
and 5. Both figures show how the measurement varies with
the increase in pattern length. Figure 4 shows that the la-
tency of GPUGapsMis is consistently smaller than that of
CPUGapsMis for all different pattern length even when four
threads are used. The figure, as expected, also shows that
the latency increases (linearly) with the increase in pattern
length. This agrees with the theoretical results in Theorem 1
for GPUGapsMis. We also note that the increase in latency
versus pattern length is more gentle for GPUGapsMis and
also for CPUGapsMis with more threads. On the other hand,
Figure 5 shows that the throughput stays stable as we increase
the pattern length.

We then consider the results for a fixed pattern length of
200 and varying the number of sequence pairs in comparison
(Figures 6 and 7). We see that similar to varying the pattern
length, the latency increases with the number of sequence pairs
as more data is to be handled. The throughput stays stable with
increasing number of sequence pairs.

Table I shows all the results of our experiments. A closer
look will illustrate that the trends mentioned above hold
for all the experiments we have done. Furthermore, we
have calculated the speedup of GPUGapsMis relative to the
CPUGapsMis, i.e., for the third row (labeled “Speedup on
GPU”) of the table for each of the input sets, we calculate the
ratio of the latency of CPUGapsMis to that of GPUGapsMis.
For example, for 1600 sequence pairs and pattern length 50,
the speedup is 35, which equals to 4960/142. The speedup
varies in the range of 13-57 depending on the pattern length
and the number of CPU threads. The 2-thread experiment
providing fairer comparison gives a speedup factor of 20-34
while comparing with 4-threads, the speedup ranges from 13-
21.

GPUGapsMis outperforms CPUGapsMis for all experi-
ments performed and on the latency and throughput metrics
measured, giving speedup of 13-57 times. We see that the
speedup achieved by using GPUGapsMis sits at a relatively
stable level for each value of pattern sequence length, thus
suggesting that in the current implementation of GPUGapsMis,
the performance improvement achieved is linked to the size
of the sequences to align. This is likely due to the need for
the GPU to tile the calculations for sequences over the length
of the CUDA Block Size, which is set at 32, meaning that the
longer pattern sequences require more GPU execution time per
row, as each thread within the block has more work. Likewise,

Fig. 4: Latency (on log-scale) of CPUGapsMis and
GPUGapsMis with text length 250bp and varying pattern
lengths, for 10,000 sequence pairs.

Fig. 5: Throughput (on log-scale) of CPUGapsMis and
GPUGapsMis with text length 250bp and varying pattern
lengths, for 10,000 sequence pairs.

for CPUGapsMis, as the pattern sequence length is increased,
there is naturally more data to process, giving us the expected
increase in latency.

One notices that the rate of increase in the latency of
GPUGapsMis is of a slower rate than that of CPUGapsMis.
This is thanks to the parallelism of GPUGapsMis against the
serial execution of CPUGapsMis, with regards to computing
for a row. This means that we can expect the performance
of GPUGapsMis to scale up very well when faced with
larger sets of data, which would otherwise make CPUGapsMis
impractically slow. When the sequence length reached 200, we
see a decrease in the rate of growth in levels of speedup and
increased throughput, which is possibly due to the text-wise
execution of GPUGapsMis.

We expect much better results in the future, when



TABLE I: Latency (in milliseconds), Throughput (in GCUPS) for CPUGapsMis and GPUGapsMis, and Speedup achieved by
GPUGapsMis over CPUGapsMis)

Pattern Length 50 100

# Seq pairs Measurement # CPU Threads GPU # CPU Threads GPU1 2 4 1 2 4

1600
Latency (ms) 4960 2912 2011 142 9809 5656 3744 217
Throughput (GCUPS) 0.008 0.014 0.021 0.295 0.008 0.014 0.022 0.374
Speedup on GPU 35 21 14 1 45 26 17 1

3200
Latency (ms) 9952 5691 3800 285 19667 11103 7689 434
Throughput (GCUPS) 0.008 0.015 0.022 0.294 0.008 0.015 0.021 0.374
Speedup on GPU 35 20 13 1 45 26 18 1

6400
Latency (ms) 19815 11323 7691 576 39512 22600 14679 870
Throughput (GCUPS) 0.008 0.015 0.022 0.291 0.008 0.014 0.022 0.373
Speedup on GPU 34 20 13 1 45 26 17 1

10000
Latency (ms) 31248 17739 12531 897 61490 34377 22711 1364
Throughput (GCUPS) 0.008 0.015 0.021 0.292 0.008 0.015 0.022 0.372
Speedup on GPU 35 20 14 1 45 25 17 1

Pattern Length 150 200

# Seq pairs Measurement # CPU Threads GPU # CPU Threads GPU1 2 4 1 2 4

1600
Latency (ms) 14838 8596 5522 262 19580 11244 7605 412
Throughput (GCUPS) 0.008 0.014 0.022 0.463 0.008 0.014 0.021 0.392
Speedup on GPU 57 33 21 1 48 27 18 1

3200
Latency (ms) 29715 17886 10781 520 38941 21949 14445 836
Throughput (GCUPS) 0.008 0.014 0.022 0.466 0.008 0.015 0.022 0.386
Speedup on GPU 57 34 21 1 47 26 17 1

6400
Latency (ms) 59059 33097 22154 1044 77844 43533 29311 1654
Throughput (GCUPS) 0.008 0.015 0.022 0.465 0.008 0.015 0.022 0.390
Speedup on GPU 57 32 21 1 47 26 18 1

10000
Latency (ms) 91807 51789 34332 1631 121972 68422 46667 2420
Throughput (GCUPS) 0.008 0.015 0.022 0.465 0.008 0.015 0.022 0.417
Speedup on GPU 56 32 21 1 50 28 19 1

Fig. 6: Latency (on log-scale) of CPUGapsMis and
GPUGapsMis with text length 250bp and pattern length 200bp,
for varying number of sequence pairs.

Fig. 7: Throughput (on log-scale) of CPUGapsMis and
GPUGapsMis with text length 250bp and pattern length 200bp,
for varying number of sequence pairs.



GPUGapsMis is altered to handle sequence pairs of multiple
texts on a more flexible basis. These results, though not
including the backtracking functionality, clearly demonstrate
the suitability of the GPU for the sequence alignment problem
with multiple gaps, and give a good indication as to the
improvement we may be able to expect once we enable
GPUGapsMis to compute the optimal alignment in a back-
tracking function.

V. CONCLUSION

In this paper we consider the pair-wise sequence alignment
problem with gaps, which is motivated by the resequencing
problem. We explain the problem and discuss related work.
Single gap and multiple gaps algorithms have been proposed
in [11], [12] and [13], respectively. A GPU parallel algorithm
has been proposed for the single gap problem [12]. Our
contribution is designing a GPU parallel algorithm allowing
multiple gap, which is based on the algorithm in [13]. We
implement our algorithm and compare with multithreaded
CPU algorithm. The results are promising with the GPU
version achieving a speedup of 30 times.

This work will first be extended by allowing several batches,
with multiple texts, to be concurrently executed on the GPU,
to provide not only an increase in throughput, but a decrease in
latency under certain conditions, and greater energy efficiency
than at present. We will then be providing functionality to
perform the computing of the optimal alignment path on the
GPU, which we currently perform serially on the CPU. Once
we combine GPUGapsMis with the GPU based backtracking
algorithm, we expect to see large increases in performance on
existing serial solutions to the problem. Further to this, we
look to allow alternative gap cost functions, thereby providing
a greater amount of biological accuracy to the results as
well as retaining the high sensitivity of the pairwise dynamic
programming approach. We also would like to investigate the
use of multiple GPU devices.
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