
ARTICLE IN PRESS
Biol Blood Marrow Transplant 000 (2020) 1�8

Biology of Blood and
Marrow Transplantation
journal homepage: www.bbmt.org
Predicting the Availability of Hematopoietic Stem Cell Donors Using
Machine Learning
Ying Li1,*, Ausra Masiliune1, David Winstone1, Leszek Gasieniec2, Prudence Wong2, Hong Lin1,
Rachel Pawson3, Guy Parkes1, Andrew Hadley4

1 Department of Stem Cell Donation and Transplantation, NHS Blood and Transplant, Bristol, United Kingdom
2 Department of Computer Science, University of Liverpool, Liverpool, United Kingdom
3 Department of Clinical Haematology, Oxford University Hospitals NHS Foundation Trust, Bristol, United Kingdom
4 Department of Specialist Patient Services, NHS Blood and Transplant, Bristol, United Kingdom
Article history:
Received 18 December 2019
Accepted 29 March 2020
Financial disclosure: See Acknowled
*Correspondence and reprint requ

Cell Donation and Transplantation, N
Bristol, BS34 7QH, UK.

E-mail address: ying.li@nhsbt.nhs

https://doi.org/10.1016/j.bbmt.2020.
1083-8791/© 2020 American Society
A B S T R A C T
Hematopoietic stem cell transplantation (HSCT) is firmly established as an important curative therapy for patients
with hematologic malignancies and other blood disorders. Apart from finding HLA-matched donors during the
HSCT process, donor availability remains a key consideration as the time taken from diagnosis to transplant is rec-
ognized to adversely affect patient outcome. In this study, we aimed to develop and validate a machine learning
approach to predict the availability of stem cell donors. We retrospectively collected a data set containing 10,258
verification typing requests made during the HSCT process in the British Bone Marrow Registry (BBMR) between
January 1, 2013, and December 31, 2018. Three machine learning algorithms were implemented and compared,
including boosted decision trees (BDTs), logistic regression, and support vector machines. Area under the receiver
operating characteristic curve (AUC) was primarily used to assess the algorithms. The experimental results
showed that BDTs performed better in predicting the availability of BBMR donors. The overall predictive power of
the model, using AUC on the test cohort of 2052 records, was found to be 0.826. Our findings show that machine
learning can predict the availability of donors with a high degree of accuracy. We propose the use of the BDT
machine learning approach to predict the availability of BBMR donors and use the predictive scores during the
HSCT process to ensure patients with blood cancers or disorders receive a transplant at the optimum time.

© 2020 American Society for Transplantation and Cellular Therapy. Published by Elsevier Inc.
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INTRODUCTION
Allogeneic hematopoietic stem cell transplantation (HSCT)

is used to treat patients with a range of malignant and nonma-
lignant hematologic disorders as well as other specific disor-
ders of the immune system. Patients require a detailed
pretransplant assessment as well as investigations to assess
their clinical status and their fitness to proceed to transplant.
Allogeneic HSCT involves transferring the stem cells from a
healthy donor into a patient’s body after conditioning therapy
(chemotherapy with or without total body irradiation) at a
range of doses depending on the type and severity of the dis-
ease being treated. The improvement in outcomes after HSCT
using unrelated donors (UDs) and the development of novel
nontoxic preparative regimens make UD HSCT an option for
patients who do not have an HLA-matched sibling [1,2].
Several variables have been demonstrated to have an asso-
ciation with adverse effects on patient outcome following
HSCT. These include disease progression, donor and patient
age, and donor-recipient sex mismatch [3-5]. The timing of the
HSCT has also been reported to be a significant factor [6]. In a
study of 8003 unrelated donor transplants by Pidala et al. [7],
the overall survival rate at 5 years for patients with early-stage
disease was found to be more than twice the rate of patients
with advanced disease. Craddock et al. [8] found that a time
from diagnosis to transplant of <4 months was significantly
associated with improved overall survival and leukemia-free
survival at 5 years. A study of 548 patients by Heemskerk et al.
[9] found that 30% of patients became medically unfit while
waiting for a UD HSCT. Taking into account factors such as dis-
ease risk, age, and sex, they concluded that reducing the time
taken for donor provision was key to reducing rates of clinical
deterioration.

A number of obstacles may be encountered in the provision
of UD HSCT donors. One major point of delay is the verification
typing (VT) stage [10]. VT includes the tests carried out on a
fresh blood sample of a specific donor with the purpose of
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verifying the identity and concordance of an existing HLA
assignment. The purpose of this typing is to ensure that the
volunteer is the same individual whose HLA typing was listed
on the search report used to select the donor. Here, registries
will need to be able to contact potentially matching donors—
some of whom may have been on the register for several deca-
des without regular contact—and to establish their willingness
and fitness to donate before arranging for further blood sam-
ples for VT and testing for infectious disease markers. It may
take several weeks to trace a donor with obsolete contact
details, which may then only reveal that the donor may be
medically ineligible to donate or they may have personal rea-
sons as to why they no longer wish to donate, which will often
be related to valid lifestyle issues such as family or travel.

Some particular characteristics are found to be associated
with donor availability, including sex, age, time spent on regis-
ter, and ethnicity [11-13]. Less committed blood donors are
less likely to donate stem cells [14]. In a study looking at fac-
tors influencing donor willingness in the African American
population [15], education and awareness of HSCT were found
to have a positive correlation with a willingness to be a donor.
In addition, certain psychosocial factors such as motivation,
ambivalence, intrinsic commitment to donation, more realistic
expectations, fewer medical concerns, and greater contact
with the donor center were also associated with donor avail-
ability [16]. A recent study by Sivasankaran et al. [17] proposed
a machine learning approach to predict the availability of
every registered donor and to use these predictors during
donor selection to reduce the time to transplant as much as
possible.

The British Bone Marrow Registry (BBMR) is a panel of
blood donors who have volunteered to become hematopoietic
stem cell donors. The BBMR provides UD HSCT donors to UK
and overseas transplant centers. The BBMR has 370,757 active
donors as of August 1, 2019, all recruited from blood donation
sessions run by NHS Blood and Transplant (NHSBT). Multivari-
ate analysis published by Switzer et al. [18] has shown that
blood donors have a lower rate of attrition. However, our
recent 5 years of data show that 36% of BBMR donors were not
available at the VT stage. Although this is relatively good com-
pared to the results published by Anthony Nolan and the
National Marrow Donor Program (NMDP), which were 38%
and 50%, respectively [12,17], it highlights the need for specific
intervention programs to retain the BBMR donors who are at
risk of dropping out. It is important to establish those factors
that can predict BBMR donor availability to potentially simplify
the transplant decision process and to minimize the risk of
delays in transplantation. To our knowledge, no other stem
cell registry that is integrated with blood donation and that
only accepts blood donors on the register has published its
donor availability statistics.

In this study, we use supervised machine learning techni-
ques to train models by providing 5 years of donor information
as the input and their corresponding responses to VT requests
as target outputs. Three machine learning algorithms were
implemented and compared, including boosted decision trees
(BDTs) [19], logistic regression (LR) [20], and support vector
machines (SVMs) [21]. Area under the receiver operating char-
acteristic curve (AUC) was primarily used to assess the algo-
rithms.

MATERIALS ANDMETHODS
We evaluated VT request data from January 1, 2013, to December 31,

2018. A total of 10,258 VT requests were made during this period. The models
were trained and tested using a set of features extracted from the blood
donor management system, the BBMR stem cell donor laboratory
information management system (LIMS) system, and the 2011 UK Census
[22] that captures donor information such as demographics, blood donation
activities, medical deferrals, education background, and socioeconomic sta-
tus. For the 2011 census, the smallest geographic unit for which outputs are
published is the output area (OA) [23], which contains more than 100 persons
and 40 households. Our donors are mapped to the OA level based on donors’
home postcodes. It cannot be assumed that people have similar characteris-
tics to those who live in the same area, but these area measures might be
more valid than self-declared and unverified individual-level indicators.

In total, 12 features were captured for each donor, including the output
variable (response to a VT request). Table 1 describes the features and the
data types.

Machine learning deals with the usage of mathematical models on the
data, meaning that it cannot be applied to data sets that have missing values.
The general approach is to fill the missing value with a suitable value to sub-
stitute for the missing field. The NHS Give Blood App status is a categorical
feature that indicates whether the status of using the app is active or inactive.
It had 5529 missing values; this large number is attributed to the fact that the
NHS Give Blood App was only introduced in 2014, and therefore, the missing
values have been replaced with “unknown.” The ethnicity feature had 297
donors missing values. We did not approach the donors to retrospectively
collect the ethnicity information but replaced the missing ethnicity with
“unknown.” Moreover, 93 donors had missing postcodes, so we could not
map the donors to the OA level. As a result, the missing values for social
grade, property ownership, and education level were replaced with
“unknown.”

Once the data set was cleaned, we applied transformations to the data
before they could be input into a machine learning algorithm. The categorical
features were converted to ordinal numbers, and the noncategorical features
were normalized to change the numeric values to a common scale between 0
and 1 using minimum-maximum normalization.

In our data set, the output is categorical, with positive or negative
responses to a VT request. In the collected data set, there were 64% positive
responses to VT and 36% negative responses. To overcome this imbalance
problem, the synthetic minority oversampling technique [24] was used to
create more copies of the underrepresented data set (negative responses) to
balance our data. The trained models were BDTs, LR, and SVMs, and the
modeling was conducted in Microsoft Azure (Microsoft, Redmond, WA, USA).
For all 3 algorithms, we used binary classification, which is suitable to predict
2 possible outcomes (ie, either positive or negative response to a VT request
in our case).

In the BDT model, the algorithm produces multiple decision trees where
the newly created tree learns from the errors in the previously created tree.
In each tree, the branch represents a choice between a number of alternatives
of an attribute in the internal nodes leading to a final decision in the leaf
node. The process of splitting based on decisions of different internal node
features continues until a subset at a node has the same values of the target
variable or when splitting no longer adds value to the predictions. The main
goal of decision trees is to find the best split of each node of the tree. The final
outcome prediction is assigned based on the weighted sum of the ensemble
of created trees.

The LR model makes a prediction of a probability of an event by inputting
independent variable values into a logistic regression equation. The coeffi-
cients of the equation are optimized during the training stage. Sigmoid func-
tion is used to map the linear combination of inputs into the range of [0,1],
thus giving us the classification probabilities. In binary classification prob-
lems, the general rule is to use a probability threshold of 0.5 to make classifi-
cation predictions. So, in our case, a record with predicted probability of >0.5
is classed as a positive response and probability of �0.5 is classed as a nega-
tive response.

In SVMs, an input record with n features is plotted as a point in an n-
dimensional space with the value of each feature being the value of a particu-
lar coordinate. Then, classification is done by finding the hyperplane that sep-
arates the 2 classes (either positive or negative response) best. A hyperplane
is a line that splits the input variable space. During the testing stage, the input
records with known outcome are plotted in the same multidimensional
space, and the predicted outcome is assign based on which side of the line
the point belongs, thus giving the predictions of true positive, false positive,
true negative, and false negative.
RESULTS
The entire data set of 10,258 records was randomly split

into a training subset (n = 8206) and a testing subset
(n = 2052)—an 80:20 split (training/testing). The training data
set was used to train the selected models and the test data set
was used to validate, evaluate, and compare the performances
of the trained models.



Table 1
Description of the Features and the Data Types

Feature Name Description No. of Missing
Records

Data Type Mean Range

Sex Donor's sex 0 Binary nominal — Male or female

Ethnicity Self-declared donor ethnicity 297 Multinominal — Bangladeshi, Indian, Pakistani, Asian
other, black African, black Caribbean,
black other, Chinese, mixed other,
mixed white/Asian, mixed white/
black African, mixed white/black
Caribbean, unknown, British, Irish,
white other

Age when selected Age of donor at the time of VT
request

0 Numerical 35.15 18-60 years old

Length on registry Time period in years, calculated from
the date when donor joined the
BBMR to the date of VT request

0 Numerical 7.96 0-30 years

NHS Give Blood App status If a user of the NHS Give Blood App 5529 Multinominal — Active, inactive, or unknown

No. of days since last donor
contact

Number of days since the most
recent donor contact to the date of
VT request

0 Numerical 612.50 1-8299 days

Blood donation team Blood donation team hosting the
most recent blood donation appoint-
ment that donor had attended prior
being selected for VT

0 Multinominal — 120 blood donation teams, such as
London, Birmingham, Manchester

Blood donation reliability
score [14]

The blood donor reliability score
relating to blood donation ranging
from 1 (best) to 5 (worst)

0 Multinominal — 1, 2, 3, 4 or 5

Social grade Approximated socioeconomic classi-
fication produced by the ONS (UK
Office for National Statistics). See
details in Appendix B

93 Multinominal — AB, C1, C2, DE, or unknown

Property ownership Percentage of people living within an
area who solely or partially own
their property

93 Numerical 66.94% 1.2%-100%

Education level Percentage of people living within an
area whose highest qualification is
level 2 and above

93 Numerical 60.18% 17.9%-100%

Outcome Outcome of VT request. A categorical
variable is used to indicate whether
the donor provided a VT sample or
did not

0 Binary nominal — Yes or no
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Once each model was trained, we used it to make predic-
tions and to generate a confusion matrix on the testing data.
The confusion matrix was used to calculate the classification
accuracy, sensitivity, precision, and F1 scores as well as to plot
the receiver operating characteristic curve for the model. Ten-
fold cross-validation was performed on training data set to
assess the variability of the training data set and the reliability
of the machine learning (ML) models trained using that data.
The training data were divided into 10 folds, and then the
model-fitting procedure was repeated for a total of 10 times,
with each fit being performed on a training set consisting of
90% of the total training set selected at random, with the
remaining 10% used as a holdout set for validation. When the
building and evaluation process is complete for all folds, a set
of performance metrics (accuracy, sensitivity, precision, F1
score, AUC) is generated for each fold. The mean of the fold
AUCs is the cross-validated AUC estimate. We reviewed these
metrics and did not observe that any single fold has particu-
larly high or low accuracy. The trained model was then applied
on testing data set, and the performance metrics were similar
to what we achieved on the training data. This confirmed that
the model learned well from the training data and confirmed
that our data set is representative and the proposed model
works well for different variations of the data.
All of the abovementioned performance metrics were used
to compare the models and to find the one that is best suited
for our donor availability data. BDTs had the highest scores
compared with all the other models, so we used this model for
further analysis. Table 2 shows the computed metrics of the
models measured on the training and testing data sets.

The confusion matrix of BDTs generated from the predic-
tions on the testing data is shown in Figure 1a. In our case, we
were more focused on identifying the donors who will not
proceed with the VT process, which is the true-negative case
of our model’s predictions. The receiver operating characteris-
tic curve for the BDT model on testing data was plotted and is
shown in Figure 1b.

The Azure machine learning built-in module, permutation
feature importance [25,26], was used to identify the relative
influence of features in the prediction of donor availability.
The features were plotted in the order of significance, as
shown in Figure 2.

Apart from producing an overall predictive score for donor
availability, we also used the BDT model to predict the subca-
tegories of negative responses, including medical deferral,
ability to contact, and personal commitment. The prediction
results on testing data were inconsistent across the categories,
but it shows promise of using the proposed model to predict



Table 2
Computed Metrics of Models Measured on Training and Testing Data Sets

Accuracy Sensitivity Precision F1 Score AUC

Training Testing Training Testing Training Testing Training Testing Training Testing

BDT 0.770 0.742 0.741 0.730 0.797 0.765 0.757 0.747 0.860 0.826

LR 0.695 0.683 0.683 0.671 0.693 0.696 0.688 0.683 0.764 0.748

SVM 0.673 0.661 0.717 0.697 0.656 0.659 0.685 0.678 0.734 0.721

Accuracy is the percentage of predictions that are correct ((TP + TN)/(TP + TN + FP + FN)). Sensitivity is the percentage of positive cases that were predicted as positive
(TP/(TP + FN)). Precision is the percentage of positive predictions that are correct (TP/(TP + FP)). F1 score is the harmonic mean of sensitivity and precision
(2 £ sensitivity £ precision/(sensitivity + precision)). AUC is the area under the receiver operating characteristic (ROC) curve, calculated from the ROC plot.
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the ability to contact unavailability category. The prediction
accuracy for medical, ability to contact, personal commitment
is 0.685, 0.875, and 0.636, respectively. See Appendix A for
additional details.

Machine learning is frequently referred to as a “black box”
(ie, data go in, decisions come out, but the processes between
input and output are opaque). To have a better understanding
of why decisions are made by the BDT model, additional sub-
sidiary analyses were done in subgroups of the features. The
blood donation team was excluded due to the high dimension
of the feature. Fisher exact test was used for comparison of the
subgroups, and we consider a Pvalue of less than .05 signifi-
cant. The analyses were carried out with R v3.6.1 (R Founda-
tion for Statistical Computing, Vienna, Austria), and the results
are summarized in Table 3.

The feature “number of days since last donor contact” plays
a more significant role than other features. It is an indication of
a donor’s current status, and it also highlights the importance
to establish a recent contact with the donors. It is also found
that “NHS Give Blood App status” has a relatively high influ-
ence in the prediction of a donor’s availability. The NHS Give
Blood App was launched in 2014 and has significantly changed
the way many donors make appointments and keep track of
their donation history, rewards received, and communications
from the NHSBT.

In medical practice and biomedical research, self-identified
ethnicity is frequently collected and often serves as a proxy for
Figure 1. (a) Confusion matrix of the BDT model on testing data. True positive (TP) me
negative and actual negative; false positive (FP) means predicted positive and actual
Receiver operating characteristic (ROC) curve for the BDT model on testing data. ROC is
on the y-axis and false-positive rate (FP/(FP + TN)) is plotted on the x-axis. To generat
possible classification thresholds that range from 0 and 1 are plotted. We used the defa
genetic ancestry [27]. However, it remains a challenging area
due to errors in self-identified information and complex ances-
try information [28]. A person’s ethnic identity is part of a
wider social process and is influenced by their own percep-
tions of ethnicity and what they perceive others’ perceptions
are within their particular community. Also, a person’s
responses can change over time [29]. The ethnicity categories
used in our blood donor management system are the same as
the ethnic groups used in the 2011 census. We observed that
the VT outcome for the mixed ethnic groups does not show
any statistical significance when compared to white British.
This implies that how they were raised and where they grew
up may have more influence on their donation behaviors than
the self-declared ethnicity.

There were significant association between 2 Caucasian ori-
gins and donor availability when compared to white British
(white other and white Irish, P < .001). In the NHSBT, white
other is normally used to indicate that donors originated from
the European Union who are not of the English, Welsh, Scot-
tish, or Irish ethnic groupings. The lower donor availability
rate may be due to donors already being registered in their
own countries or donors moving back to their own countries.
Further study is required to better understand the impact.

We found that the predominant reason for donor attrition
among ethnic minorities (Pakistani, Indian, Bangladeshi, black
Caribbean, Asian other, black African, Chinese, black other)
was the inability to contact donors. This could imply that there
ans predicted positive and actual positive; true negative (TN) means predicted
negative; false negative (TN) means predicted negative but actual positive. (b)
a 2-dimensional graph in which the true-positive rate (TP/(TP + FN)) is plotted
e the entire ROC curve, the true-positive rate and the false-positive rate for all
ult value, which is 100 for the number of thresholds in Microsoft Azure.



Figure 2. Feature importance for the BDT model.
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are engagement barriers with donors from ethnic minorities,
and this possibility should be addressed in future research.
Bangladeshi and black other ethnic groups failed to show a sig-
nificant ethnicity-availability association, which may be a
result of a small number of records included in these groups.
We did not group them to broader ethnic groups as this would
result in reduced granularity of information about donors’ eth-
nic background and would introduce investigator bias into
ethnicity grouping. Also, for machine learning, it is important
to include all information as precise as possible so that it can
learn from past experience.

DISCUSSION
Machine learning is a rapidly growing tool, which is being

used to predict the effectiveness and outcomes in various
treatment areas [30-32]. A recent large study by Sivasankaran
et al. [17] evaluated 178,249 VT requests. The overall predic-
tive power of using AUC on a test cohort of 44,544 requests
was found to be 0.77. This demonstrated the potential in using
ML to predict donor availability. They included both domestic
(NMDP) data and data from international collaborating donor
centers, but several features such as recommitted response,
self-online registration, and postrecruitment survey are exclu-
sive to the NMDP only. In this study, we presented a machine
learning approach to analyze not only donor characteristics
and behaviors but also socioeconomic data. Unavailability of
the donor showed association with lower social grade (odds
ratio, 1.40; P < .001; social grade DE versus AB). The proposed
BDT machine learning model performed well in predicting
BBMR donor availability. The overall predictive power of the
model, using AUC on the test cohort of 2052 records, was
found to be 0.826. It also shows promise of using the proposed
model to predict the ability-to-contact unavailability category
with a classification accuracy of 0.875.

The proposed BDT model calculated the probability of getting
the positive class of the output variable on which it makes the
final class predictions. If the probability is greater than or equal
to 0.5, then it predicts the outcome to be positive, and if the prob-
ability is less than 0.5, then it predicts the outcome to be nega-
tive. These probabilities can be interpreted as the donors’
availability score. We have initiated a pilot project in the BBMR
using the predictive tool to select donors for HLA typing
improvement. Donor availability score and other characteristics
were used during the selection process. It would be beneficial to
focus on the donors who are more likely to donate.

We propose the use of the BDT machine learning approach
to predict the availability of donors and use the predictive
scores during the HSCT process. Apart from finding HLA-
matched donors during the HSCT process, donor availability
remains a key consideration as the time taken from diagnosis
to transplant is recognized to adversely affect patient outcome.
Individual consideration of each applicable characteristic is
laborious. A single score for each potential donor can simplify
the donor selection process and assist the clinicians to make
decisions. Ultimately, such interventions should reduce delays
in unrelated hematopoietic stem cell donor provision.

Our study also had several limitations. First, the BBMR is a
population of exclusive blood donors, which is atypical of most
current worldwide registries. Some of the features that act as the
predictors in the proposed BDT model are related to blood dona-
tion activities and behaviors (eg, NHS Give Blood App status,
blood donation team, and blood donation reliability score). More-
over, there are 120 blood donation teams in our data set. We did
not perform statistical analyses on this feature due to the high
dimension. Blood donation team is an indication of a donor’s loca-
tion; further studies (eg, geographical study of places and the rela-
tionships between donors and their environments) are needed to
better understand why they have an impact on the prediction.
However, mobile app and location of donors are not exclusive fea-
tures to blood donors. In addition, blood donation reliability score
was at the low end of feature importance, and we think this is
probably due to the strong positive correlation with the number
of days since last donor contact and length on registry, with Pear-
son correlation coefficients of 0.77 and 0.47, respectively. A side
study to exclude the blood donation-related features was per-
formed; the overall AUC predictive power of the model was
reduced but still achieved an AUC of 0.804. Therefore, this proof-
of-principle exercise suggests that the proposed BDT machine
learningmodel may have wider applications in other registries.

Second, the socioeconomic data we collected in this study
are based on donors’ home postcodes mapped to the OA level
from the 2011 census. It cannot be assumed that people have
similar characteristics to those who live in the same area.
However, these area measures might be more valid than self-



Table 3
Comparison of the Subgroups of Features Used for Modeling

Features Total No. of VT Requests
(% of All Requests)

No. of Positive Responses
to VT (% of Category)

No. of Negative Responses
to VT (% of Category)

Odds Ratio for Donor Attrition
(95% Confidence Interval)

P Value

No. of days since last donor contact

Less than 6 months* 3176 (31.0) 2523 (79.4) 653 (20.6) 1.00 —

6 months to 2 years 2134 (20.8) 1442 (67.6) 692 (32.4) 2.61 (2.33-2.91) <.001

2+ years 4948 (48.2) 2605 (52.6) 2343 (47.4) 3.47 (3.13-3.86) <.001

Ethnicity

White British* 8911 (86.9) 6006 (67.4) 2905 (32.6) 1.00 —

Asian Bangladeshi 14 (0.1) 6 (42.9) 7 (57.1) 2.41 (0.69-8.69) .136

Asian Indian 129 (1.3) 65 (50.4) 64 (57.1) 2.04 (1.41-2.92) <.001

Asian Pakistani 48 (0.5) 24 (50.0) 25 (50.0) 2.15 (1.18-3.95) .009

Asian other 61 (0.6) 20 (32.8) 41 (67.2) 4.23 (2.42-7.64) <.001

Black African 51 (0.5) 21 (41.2) 30 (58.8) 2.95 (1.63-5.43) <.001

Black Caribbean 93 (0.9) 44 (47.3) 49 (52.7) 2.30 (1.50-3.55) <.001

Black other 9 (0.1) 3 (33.3) 6 (66.7) 4.13 (0.88-25.6) .067

Chinese 31 (0.3) 12 (38.7) 19 (61.3) 3.27 (1.51-7.40) .002

Mixed other 60 (0.6) 36 (60.0) 24 (40.0) 1.38 (0.79-2.38) .269

Mixed white/Asian 56 (0.5) 44 (78.6) 12 (21.4) 0.56 (0.27-1.09) .086

Mixed white/black
African

18 (0.2) 12 (66.7) 6 (33.3) 1.03 (0.32-2.98) 1

Mixed white/black
Caribbean

66 (0.6) 39 (59.1) 27 (40.9) 1.43 (0.84-2.40) .187

Unknown 297 (2.9) 137 (46.1) 160 (53.9) 2.41 (1.90-3.07) <.001

White Irish 107 (1.0) 57 (53.3) 50 (46.7) 1.81 (1.21-2.71) .002

White other 307 (3.0) 164 (53.4) 143 (46.6) 1.80 (1.42-2.28) <.001

NHS Give Blood App status

Active* 4564 (44.5) 3491 (76.5) 1073 (23.5) 1.00 —

Inactive 165 (1.6) 110 (66.7) 55 (33.3) 1.62 (1.15-2.29) .005

Unknown 5529 (53.9) 2969 (53.7) 2560 (46.3) 2.81 (2.57-3.06) <.001

Social grade

AB* 2521 (24.6) 1685 (66.8) 836 (33.2) 1.00 —

C1 4459 (43.5) 2916 (65.4) 1543 (34.6) 1.07 (0.96-1.18) .227

C2 872 (8.5) 551 (63.2) 321 (36.8) 1.17 (1.00-1.38) .051

DE 2313 (22.5) 1366 (59.1) 947 (40.9) 1.40 (1.24-1.57) <.001

Unknown 93 (0.9) 52(55.9) 41 (44.1) 1.59 (1.02-2.46) .033

Sex

Male* 6269 (61.1) 4310 (68.8) 1959 (31.2) 1.00 —

Female 3989 (38.9) 2260 (56.7) 1729 (43.3) 1.68 (1.55-1.83) <.001

Age when selected

18-30 years 3088 (30.1) 2124 (68.8) 964 (31.2) 1.00 —

31-40 years 3335 (32.5) 2050 (61.5) 1285 (38.5) 1.38 (1.24-1.53) <.001

41-50 years 2726 (26.6) 1732 (63.5) 994 (36.5) 1.26 (1.13-1.41) <.001

50+ years 1109 (10.8) 664 (59.9) 445 (40.1) 1.48 (1.28-1.71) <.001

Length on registry

0-5 years 3263 (31.8) 2391 (73.3) 872 (26.7) 1.00 —

6-10 years 3590 (35.0) 2057 (57.3) 1533 (42.7) 2.04 (1.84-2.27) <.001

10+ years 3405 (33.2) 2122 (62.3) 1283 (37.7) 1.66 (1.49-1.84) <.001

Education level

% level 2 and
above �60*

5429 (52.9) 3612 (66.5) 1817 (33.5) 1.00 —

% level 2 and
above <60

4736 (46.2) 2906 (61.4) 1830 (38.6) 1.25 (1.15-1.36) <.001

Unknown 93 (0.9) 52 (55.9) 41 (44.1) 1.57 (1.01-2.41) .035

Property ownership

% own property �67* 5767 (56.2) 3851 (66.8) 1916 (33.2) 1.00 —

% own property <67 4398 (42.9) 2667 (60.6) 1731 (39.4) 1.30 (1.20-1.42) <.001

Unknown 93 (0.9) 52 (55.9) 41 (44.1) 1.58 (1.02-2.44) .035

Blood donation reliability score

1* 2416 (23.6) 1888 (78.1) 528 (21.9) 1.00 —

(continued)
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Table 3 (Continued)

Features Total No. of VT Requests
(% of All Requests)

No. of Positive Responses
to VT (% of Category)

No. of Negative Responses
to VT (% of Category)

Odds Ratio for Donor Attrition
(95% Confidence Interval)

P Value

2 1839 (17.9) 1344 (73.1) 495 (26.9) 1.31 (1.14-1.52) <.001

3 646 (6.3) 450 (69.7) 196 (30.3) 1.55 (1.27-1.89) <.001

4 645 (6.3) 428 (66.4) 217 (33.6) 1.81 (1.49-2.20) <.001

5 4712 (45.9) 2460 (52.2) 2252 (47.8) 3.27 (2.92-3.67) <.001

Fisher exact test was used for comparison of the subgroups, and P value of less than .05 is considered significant.
* Reference category.

Table 4
Summary of the Prediction Accuracy for Each Unavailability Category on Test-
ing Data (n = 2052)

Unavailable
Reason

No. of Negative
Responses to VT
in the Testing Set
(% All Requests)

True Negative
(% of Category)

False Positive
(% of Category)
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declared and unverified individual-level indicators. We
noticed that social grade, education level, and property owner-
ship were contributing toward output prediction. This merits
further research to better understand why they have impact
on the prediction. As an exploratory analysis, this suggests
that using census data as a proxy of socioeconomic data could
be an alternative to collecting such information for the specific
individuals.

Third, the findings in our study show the feasibility and
promise of using ML to predict donor availably. However, sev-
eral challenges need be addressed before the clinical applica-
tion of the method. The first challenge to apply this model into
practice is information technology development. Our data
were collected from 3 different systems (blood donor manage-
ment system, the BBMR LIMS, and the 2011 UK census data-
base) to train the model. However, substantial effort is needed
to synchronize the 3 systems and embed the predictor in an
easy-access format so that it can be used effectively. The sec-
ond challenge is that thorough validation of the proposed ML
model is needed before clinical adoption. The proposed BDT
model achieved a high degree of accuracy, but false positives
(ie, donors predicted to be available but actually unavailable)
could result in false hopes to patients. Also, false negatives (ie,
donors predicted to be unavailable but actually available)
might be neglected during the donor selection process. The
final challenge to consider is to engage with the clinicians and
specialists to gain their acceptance of integrating a predictive
score to assist their clinical decision-making process. The pre-
dictive scores need to be integrated appropriately with their
workflow, without having an extra load of work to maintain
with the new solution.

In conclusion, maximizing donor availability is key to
ensuring patients with blood cancers or disorders receive a
transplant at the optimum time as delays adversely affect
patient outcomes. BBMR used machine learning to analyze
donor characteristics, socioeconomic data, blood donation
activities, and behaviors and has developed a tool that predicts
donor availability with a high degree of accuracy. Further stud-
ies are needed to estimate the cost-effectiveness of incorporat-
ing a machine learning-based model in practice, and our BDT
machine learning model needs to be improved before clinical
applications and general applications.
Medical 384 (41.1) 263 (68.5) 121 (31.5)

Ability to
contact

279 (29.8) 244 (87.5) 35 (12.5)

Personal
commitment

107 (11.4) 68 (63.6) 39 (36.4)

Other 165 (17.6) 120 (72.7) 45 (27.2)

Total 935 695 240

True negative means predicted negative response to a VT and actual negative
response to a VT. False positive means predicted positive response to a VT and
actual negative response to a VT.
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APPENDIX A
There are 2052 (20% of the total records) in the testing sub-

set, including 1117 positive responses and 935 negative
responses. The prediction accuracy for medical, ability to con-
tact, and personal commitment is 0.685, 0.875, and 0.636,
respectively. We also have an “other” unavailability category,
which is frequently used in the BBMR but does not provide a
meaningful difference from the rest of the categories. The
results are summarized in Table 4.

We think the inconsistent accuracy is mainly due to (1)
data quality, (2) features selection, and (3) the nature of
unavailability reason.

1) Data quality. We are aware that pregnancy-related unavail-
able reasons have been recorded inconsistently. Sometimes
they are recorded in the medical category, and sometimes
they are recorded in the “other” category. There was lack of
information in the other category when we collected the
data, so we were unable to differentiate the other category
from the rest. We eliminated the other category and intro-
duced a pregnancy category last year. We will retrain our
model once sufficient granularity of data is available. In
contrast, the ability-to-contact category is clear and the
data quality is relatively good, which might explain the
high prediction accuracy.
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2) Features selection. To improve the prediction accuracy for
each category, it might be more appropriate to use a differ-
ent set of features to train the model for a specific objective,
instead of using a set of generic features to predict on all 3
categories. Employment status, household income and den-
sity are available from the 2011 UK census data, which
might be useful to predict the medical unavailability. This
requires further study.

3) The nature of unavailability reason. For the personal commit-
ment category, we have observed that many donors are really
willing to donate and eager to help a patient, but their family
circumstances and difficulties (eg, loss of family member,
young children, carer responsibilities) prevent them from
doing so. Such errors in the prediction are inevitable.

APPENDIX B
Approximated social grade [33] is a classification system

designed by the Office for National Statistics, which groups
people aged 16 years and older into 6 possible categories (A, B,
C1, C2, D, and E) based on their socioeconomic status, derived
from the British National Readership Survey. For the 2011 cen-
sus, categories A and E make up a very small proportion of the
UK population, so the first 2 categories and the last 2 catego-
ries were combined, which is most widely known as the 4-
way classification (AB, C1, C2, DE). The description of the social
grade can be found in Table 5.
Table 5
Description of the Approximated Social Grade and the Percentage of UK Popu-
lation in Each Grade

Social Grade Description % UK Population

AB Higher and intermediate managerial,
administrative, professional
occupations

22.17

C1 Supervisory, clerical and junior man-
agerial, administrative, professional
occupations

30.84

C2 Skilled manual occupations 20.94

DE Semiskilled and unskilled manual
occupations, unemployed, and low-
est grade occupations

26.05
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