
Efficiency of Data Distribution
in BitTorrent-Like Systems

Ho-Leung Chan1,�, Tak-Wah Lam2, and Prudence W.H. Wong3

1 Department of Computer Science, University of Pittsburgh
hlchan@cs.pitt.edu

2 Department of Computer Science, University of Hong Kong, Hong Kong
twlam@cs.hku.hk

3 Department of Computer Science, University of Liverpool, UK
pwong@csc.liv.ac.uk

Abstract. BitTorrent (BT) in practice is a very efficient method to
share data over a network of clients. In this paper we extend the recent
work of Arthur and Panigrahy [1] on modelling the distribution of indi-
vidual data blocks in BT systems, aiming at a better understanding of
why BT can achieve a high degree of parallelism. In particular, we include
in our study several new network features that BT systems are using, as
well as different local heuristics for routing data blocks in each client. We
conduct simulations to figure out to what extent the new network fea-
tures and routing heuristics would affect the distribution efficiency. Our
findings confirm that for the primitive network setting studied in [1], it
does require Ω(b log n) phases for n clients to download b data blocks.
More interestingly, our work suggests that for the more realistic net-
work setting, the heuristics Random and Rarest Block First both allow
n clients to download b blocks in b+O(log n) phases. We believe that the
latter bound better reflects the high degree of parallelism of BT observed
in reality. It is also worth-mentioning that b + log n is the smallest pos-
sible number of phases needed; it is interesting to see that some simple
local routing heuristics have a performance so close to the optimal.

1 Introduction

Let us consider the following problem. There are n clients (nodes) on a well-
connected network. They want to download a file of b data blocks from a server
in a cooperative and efficient, but distributed manner. The idea is to avoid each
client directly downloading from the server. Instead the server uploads each
data block to only one client, and let the clients distribute the block among
themselves. Assume each client can upload one data block to only one neighbor
in one phase. The key concern is whether there exists a good strategy for each
client to determine in each phase which block and which neighbor to upload, so
that most clients can have progress in each phase.

� Part of this research was done while the author was at University of Hong Kong.

M.-Y. Kao and X.-Y. Li (Eds.): AAIM 2007, LNCS 4508, pp. 378–388, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Efficiency of Data Distribution in BitTorrent-Like Systems 379

The above problem is based on the “flash crowd” scenario, where a large
number of clients join the network almost simultaneously to download a data
file (say, a soccer game). BitTorrent (BT) [3,7] has found to be a very efficient
method for such a problem in practice; it does exploit the bandwidth among the
clients, and it is often observed that using BT, most clients have swift progress
in parallel. Arthur and Panigrahy [1] were the first to model the distribution of
data blocks in BT systems mathematically, aiming at explaining the high degree
of parallelism BT achieves. In particular, they consider the clients are connected
via a directed BT-graph (definition given in Section 2), and in each phase each
client can upload (send) as well as download (receive) one data block from its
neighbors. Among others, they proved that using a random strategy, the n clients
can download all b blocks in O(b log n) phases with high probability. Below we
refer this number of phases as the total distribution time.

In this paper, we extend the model used in [1] to include other network fea-
tures found in BT networks. First, traffic between two neighbors is usually bidi-
rectional; i.e., a client can upload and download from each neighbor client. Next,
we note that the size of a data block is chosen in such a way that in each phase,
a client has sufficient bandwidth to upload a block to one of its neighbors, yet
the download rate is usually a few times higher than the upload rate (this is
imposed by some internet providers), and each client can receive several data
blocks in each phase. Furthermore, each client should be able to make a better
decision using a request-based protocol instead of a push-based protocol; the
former protocol requires each client to listen to the requests from its neighbors
before making a decision which block and which neighbor to upload. The first
objective of this paper is to study to what extent these extended features of the
model would affect the total distribution time.

Furthermore, we study three different local routing heuristics for each node to
decide which block to upload to its neighbor in each phase, namely, Sequential,
Random, and Rarest Block First. Sequential simply uploads blocks sequentially
according to their order in the file. Random picks a random block to upload.
Rarest Block First selects a block which is the rarest among the neighbors of a
node; this is a strategy being used by BT [5,7]. Regardless of which heuristic a
node uses, the node only uploads a block which the neighbor does not have.

Note that no matter which network setting and which heuristics we pick, the
total distribution time is at least b+�log n�. To see this lower bound, we observe
that the server requires b phases to upload b blocks, and the last block can reach
at most 2i − 1 clients after i phases. It is a challenging task to find a reasonable
network setting and routing heuristic that can lead to a total distribution time
close to b + log n.

We have done a lot of simulation on different network settings and heuristics.
We consider models with different combinations of the three network features
mentioned above to see to what extent they affect the total distribution time.
These features include directed vs undirected graph, single vs multiple receive,
and push vs request protocol. For multiple receive, we further distinguish the
cases where a limited number x (called receive-x) of blocks vs an unlimited

380 H.-L. Chan, T.-W. Lam, and P.W.H. Wong

number can be received by a node in each phase. For each combination, we
study the three local routing heuristics. We also vary the number of nodes n and
the number of blocks b. Our findings are summarized as follows.

– As expected, the undirected and request-based model admits a better data
distribution.

– For the model used in [1] (i.e., directed receive-one push), we observe that
the total distribution time does require Ω(b log n).

– The most surprising result is related to the model using undirected BT-
graph, multiple receives, and request-based protocol (i.e., undirected receive-
x request). No matter random or rarest block first is used, our simulation
shows that the total distribution time is in the order b+O(log n), very close
to the lower bound. For example, when b = 3000 and n = 2000, the total
distribution time is around 3050 on average (with a very small standard
deviation of 5 over five different trails.)

– It is natural to expect that the total distribution time to decrease with
maximum number of receives in each phase increases. The decrease is indeed
very drastic when we vary the number from 1 to 2, but the effect is not visible
once the number goes up to 3. In fact, we find no significant difference using
a maximum of five receives and an unlimited number of receives.

– Rarest block first is a heuristic used by BT. It is most effective, but only a
bit better than Random. On the other hand, using Random saves a lot of
implementation overhead. We believe Random is a better choice.

Related work. Before the work of Arthur and Panigrahy [1], there have been
some theoretical work, yet some assumptions were made which might not be
true in practice. Qiu and Srikant [10] applied flow analysis to BT-like networks
but assuming (1) the data blocks available in each client for download at each
phase is random and independent; (2) constant arrival rates. The latter does
not account for BT’s strength in handling flash crowd scenario. Yang and de
Vecianna [11] considered flash crowd scenario but assumed that distribution
of one data block will not slow down the distribution of other data blocks,
ignoring the possible interaction in the distribution. There is also empirical work
attempting to demonstrate BT’s routing policy work well in practice [8,9,2,6],
but they do not consider the distribution of individual data block.

Organization of the paper. In Section 2, we review Arthur and Panigrahy’s
model and discuss the effects of various network features on data distribution
time. In Section 3, the local routing heuristics are tested. Finally, we give some
concluding remarks in Section 4.

2 Network Models and Distribution Time

In this section, we first review Arthur and Panigrahy’s model and then discuss
how different model features affect the total distribution time. These features
include directed vs undirected graph, single vs multiple receive, and push vs
request protocol. In the next section we will study the effect of different routing

Efficiency of Data Distribution in BitTorrent-Like Systems 381

heuristics. The experiments in this section all assume the Random heuristic when
a node decide which block to send/receive.

2.1 Arthur and Panigrahy’s Model

Arthur and Panigrahy [1] model a BT-like network as a directed graph with n
nodes, each representing a user. One of the nodes is the seed which holds a large
file initially. The file is divided into b equal-size blocks. The remaining n − 1
nodes want to obtain the file and they have zero block of the file initially.

A BT system maintains a virtual network represented as a BT-C graph1, for
some integer C, which is constructed as follows. The BT-C graph starts with
C nodes v1, v2, . . . , vC , with a directed edge from vi to vj if and only if i < j.
While the total number of nodes is less than n, a new node is added. C existing
nodes are selected at random from which directed edges are drawn to the new
node. In most BT systems, C is set to 40 .

For the distribution of data blocks in the network, a node can send a block
to a neighbor only if it already has the block, and a node obtains the whole file
only if it has every block of the file. Time is divided into discrete time steps
(phases). In each phase, each node can send at most one block to a neighbor
along an outgoing edge. When multiple blocks are sent to a node in a phase, the
node can receive at most one such block.

The efficiency of the system is measured by the total distribution time, which is
the number of phases taken until all nodes obtain the file. Arthur and Panigrahy
assume a simple protocol for sending blocks: In each phase, each node u randomly
picks a neighbor v, and u sends to v a block that u already has but v does not.
u is idle if no such block exists. They proved that the total distribution time is
O(b log n) with high probability.

2.2 Identifying More Realistic Model Features

We observe that some features in Arthur and Panigrahy’s model are too restric-
tive comparing to a real BT system. In particular, we focus on the following three
important features and analyze how they affect the total distribution time.

1. Directed vs Undirected graph. When modelling the network as a di-
rected graph, the connection is asymmetric, i.e., there are pairs of nodes,
say u and v, connected by an edge for which u can send to v but not vice
versa This is not the case in real-life BT systems (more precisely, the under-
lying Internet) in which connected nodes can send blocks in both directions.
In our study, we analyze the effect of assuming directed vs undirected (bidi-
rectional) edges.

2. Single vs multiple receive. This models the bandwidth limit of the nodes.
When multiple blocks are sent to a node in a phase, Arthur and Panigrahy
assume that the node randomly obtains one of the blocks. It corresponds to

1 The network in which the users connect is actually the Internet. On the application
layer, BT maintains a virtue network in the form of a BT-C graph.

382 H.-L. Chan, T.-W. Lam, and P.W.H. Wong

Table 1. The most restrictive model DG-1-Ph (col. 1) performs the worst. The most
relaxed models UG-5-Rq & UG-u-Rq (bolded) are the best. Request protocol improves
distribution time (col. 3 vs 4; 5 vs 6). Multiple receive also outperforms single (col. 2
vs 4 & 6).

Distribution time DG-1-Ph UG-1-Rq UG-5-Ph UG-5-Rq UG-u-Ph UG-u-Rq
n = 300, b = 1200 3826 1913 1354 1228 1325 1228
n = 2000, b = 1200 5068 1935 1386 1247 1344 1239
n = 300, b = 3000 9915 4742 3300 3034 3212 3030
n = 2000, b = 3000 12866 4787 3368 3047 3243 3044

the situation that download bandwidth is limited to a similar extent as the
upload bandwidth. In reality, the download bandwidth of a node is usually
higher than the upload capacity. Thus, it is interesting to understand the
effect when each node can receive r ≥ 2 blocks in each phase. We will consider
the cases of r = 1 vs r = 5 and r is unlimited.

3. Push vs request protocol. This refers to whether a node actively ask
for a missing block that it does not have. When a node send blocks to the
neighbors, it was assumed in [1] that the node randomly picks a neighbor and
sends a block useful to that neighbor without prior communication. We call
this a push protocol. In reality, a BT system uses a two-way protocol where
at the beginning of each phase, each node sends requests to the neighbors
asking for missing blocks, and then each node serves some of the requests
it gets. We call this a request protocol. Intuitively, request protocol helps to
avoid multiple neighbors sending the same block to a node.

2.3 Simulation and Findings

We consider models with different combinations of the above three features and
see how they affect the total distribution time. We name the models using three
fields: the first field is either DG (directed graph) or UG (undirected graph);
the second field tells the maximum number of blocks a node can receive in
one phase, with u means unlimited; the third field is Ph (push protocol) or Rq
(request protocol). For example, DG-1-Ph refers to the model studied in [1]. On
the other hand, UG-u-Rq is the most relaxed model, based on which we vary
the features to also study models in between (see Table 1 for the list of models
we study).

When the request protocol is used, we assume that a random routing heuristic
is used, i.e., each node picks a random missing block in turn (until all missing
blocks have been considered) and requests it from a random neighbor having it,
with the restriction that no neighbor will be requested twice. Note that we will
discuss other routing heuristics in Section 3. We also assume that after getting
the requests, each node randomly serves one of the requests.

We perform simulations with n = 300, 2000 and b = 1200, 3000. Note that
BT systems usually divide a file into pieces of 1/4 MB each, b = 1200 and 3000
correspond to a file of 300MB and 700MB, respectively, the latter is about the

Efficiency of Data Distribution in BitTorrent-Like Systems 383

Fig. 1. The distribution time increases linearly with b (see the four different curves).
The effect of n on the distribution time is small (see the flatness of each curve).

size of a CD. The choices of n allow us to see the effect of n being smaller than
and larger than b. For each model and combination of n and b, we repeat the
simulation for 5 times and record the average distribution time. The results are
shown in Table 1. We have the following observations.

Near optimal distribution time. We observe that the total distribution time
of models UG-5-Rq (col. 4) and UG-u-Rq (col. 6) are close to the theoretical
lower bound of b + O(log n). It shows that the features of undirected graph,
multiple receive and request protocols are very effective in improving the total
distribution time. Note that a random heuristic is used in selecting blocks to
send and receive. The experiments show that this is sufficient to obtain a good
performance under an appropriate model.

To understand further the growth in distribution time under different com-
binations of n and b, we perform more experiments under the UG-5-Rq model,
with n = 300, 1000, 1500, 2000 and b = 1200, 1800, 2400, 3000. We plot the total
distribution time against n, with each value of b in a different curve. The results
are shown in Figure 1. We can observe that the total distribution time grows
very slowly as n increases. The distribution time is close to b + k log n where k
is approximately 4.

Multiple receive is most effective. We observe that among the three features
considered, allowing multiple receive per phase seems to be the most effective
in improving the total distribution time. For example, comparing the models of
UG-1-Rq (col. 2) and UG-5-Rq (col. 4), the total distribution time decreases by
about 35%.

The effect of multiple receive can be explained as follows. Because each node
decides on its own to whom it sends a block, it is common for multiple nodes
sending blocks to the same target node. When each node can only receive one
block per phase, bandwidth is lost, i.e., overall the number of data blocks received
is smaller than that sent because some blocks have to be dropped. We call this

384 H.-L. Chan, T.-W. Lam, and P.W.H. Wong

Fig. 2. The total distribution time drops significantly when the number of allowed
receive increases from 1 to 2 and becomes stable beyond 3. Note that the two curves
for b = 1200 (similarly, for b = 3000) are very close because the distribution time is
dominated by the value of b.

receive collision. Multiple receive effectively reduces the bandwidth lost due to
receive collision, thus leading to improved distribution time.

To obtain a better understanding of the effect of multiple receive, we vary the
number of allowed receive from 1 to 5 and also unlimited. We perform experi-
ments for n = 300, 2000 and b = 1200, 3000. The results are shown in Figure 2.
We observe that the total distribution time improves greatly when number of
allowed receive increases from 1 to 2, and has little effect beyond 3. It suggests
that receive collision is common, but the number of blocks involved is usually
small.

Undirected graph and request protocol are also effective. Undirected
graphs have better distribution time than directed graphs (see col. 1 vs others)
because of two reasons. Since the edges are bidirectional in an undirected graph,
there are effectively double the possible connections among the nodes. Further-
more, the leaf nodes in directed graphs having no outgoing edges do not help
to distribute the received blocks, so they reduce the efficiency by reducing the
availability of the blocks.

Besides receive collision we mentioned before, there is another kind of collision
that reduces the efficiency of distribution. Bandwidth is also lost when multiple
copies of the same block are sent to the same node in a phase. We call this send
collision. Request protocol avoids send collision because for each missing block,
a node actively requests only one single neighbor to send the block.

Tightness of the analysis in [1]. Finally, we look at the results for the model
DG-1-Ph [1] more closely. We observe that the total distribution time grows
in the order of b log n, it is roughly 0.4 × b log n (see col. 1). The experimental
results suggest that data distribution does require Ω(b log n) phases to finish in
the DG-1-Ph model.

Efficiency of Data Distribution in BitTorrent-Like Systems 385

Table 2. Random and Rarest First have similar distribution time in the Model UG-
5-Rq, which is close to the theoretical lower bound of b + O(log n)

Distribution time Random Rarest First Sequential
n = 300, b = 1200 1228 1221 3319
n = 2000, b = 1200 1247 1233 4678
n = 300, b = 3000 3034 3024 8494
n = 2000, b = 3000 3047 3037 11615

3 Performance of Simple Routing Heuristics

In BT systems, distribution of blocks is decided locally by each node, without a
central coordination. Heuristics are used to determine which blocks are sent to
which nodes at each phase. In this section, we consider both request and push
protocols, and study how different heuristics affect the distribution time.

3.1 Routing Heuristics for Request Protocols

In models with request protocols, distribution of blocks is driven by what re-
quests are sent by the nodes. We study three natural heuristics for deciding
which blocks a node should request from its neighbors. To limit the communi-
cation overhead due to the requests, we restrict that at each phase, each node u
can send at most one request for each block, and u can send at most one request
to each of its neighbors.

1. Random. One simple heuristic for sending requests is by random. That is,
at each phase, each node u repeatedly picks a random block it misses, and
sends a request for it to a random unrequested neighbor having that block.
This is the heuristic studied in the previous section, and it is observed that
Random already achieves very good distribution time.

2. Rarest First. Real-life BT systems use the heuristic Rarest First to decide
which blocks to request: At each phase, each node u counts the availability
of each block it misses, where the availability of a block is the number of
neighbors of u having that block. Then, starting from the rarest block (i.e.,
block with smallest availability), u sends requests for each block to a random
unrequested neighbor having it.
The motivation of Rarest First is to maintain balanced availability of each
block in the network, so it avoids bad distribution time due to a small number
of rare blocks.

3. Sequential. When a file is divided into blocks, each block corresponds to a
different part of the file. With the heuristic Sequential, at each phase, each
node sends requests for blocks sequentially according to their order in the
file. The motivation for this heuristic is the ease of programming and it may
lead to the good performance similar to that of Random. It may also support
streaming of the file, i.e., the node can start using the file while the file is
still being downloaded.

386 H.-L. Chan, T.-W. Lam, and P.W.H. Wong

0

50

100

150

200

250

300

350

0 500 1000 1500 2000 2500 3000 3500

Distribution time

B
lo
ck
se
nt

Random

Rarest

Sequential

Fig. 3. The number of blocks sent in different phase during the file distribution, for
n = 300 and b = 1200, in the Model UG-5-Rq. With Random and Rarest First, almost
300 blocks are sent per phase, while for Sequential, only 50 - 150 blocks are sent per
phase.

Table 3. The distribution time of different heuristics in the Model UG-5-Ph. When a
push protocol is used, Random has better distribution time than Rarest First in three
out of the four cases (bolded).

Random Rarest First Sequential
n = 300, b = 1200 1354 1356 8672
n = 2000, b = 1200 1386 1373 11365
n = 300, b = 3000 3300 3372 21594
n = 2000, b = 3000 3386 3407 28244

We assume that at each phase, each node randomly serves one of the requests
it received. We study the performance of the three heuristics in the more realistic
Model UG-5-Rq, i.e., undirected graph, at most 5 recevies per phase, and using
request protocol. We perform simulations on different combinations of n and b.
The results are shown in Table 2.

Random and Rarest First. We observe that the Random and Rarest First
heuristics give very similar performance. Rarest First has slightly better dis-
tribution time than Random, but both can distribute the file in b + O(log n)
phases.

To understand the reason for their efficiency, we investigate the case of n = 300
and b = 1200 and we measure the total number of blocks sent by the nodes in
each phase throughout the distribution time. The result is shown in Figure 3.
We observe that for both Random and Rarest First, in most phases during
the distribution time, close to 300 blocks are sent in each phase. It shows that
the uploading bandwidth among the nodes is very well utilized. We believe that
Random and Rarest First both succeed in keeping the block content of the nodes
heterogeneous, i.e., each node has content not similar to that of their neighbors.

Efficiency of Data Distribution in BitTorrent-Like Systems 387

Thus, each node can upload some block useful to its neighbors at each phase,
and maintain the high utilization of bandwidth.

For the practical concern, Random can be implemented more easily than
Rarest First, while maintaining similar performance. We believe that Random
is a better choice than Rarest First in practice.

Sequential. Sequential has much worse distribution time than Random and
Rarest First. We observe for the case of n = 300 and b = 1200, the number of
blocks sent per phase is between 50 to 150 for most phases during the distribution
time. The low usage of bandwidth is due to the fact that many nodes have
similar content as their neighbors. Thus, no useful blocks can be uploaded to
their neighbors.

3.2 Routing Heuristics for Push Protocols

Models with push protocols have the advantage that no overhead is needed for
sending requests. In this subsection, we study the performance of the heuristics
Random, Rarest First and Sequential for push protocols.

We first state clearly how the three heuristics are defined for push protocols.
At each phase, each node u first randomly selects a neighbor v. Let S be the
set of blocks that u has but v does not. Then, the three heuristics perform as
follows.

1. Random. Send a random block in S to v.
2. Rarest First. Send the rarest block in S to v, where availability is measured

according to u.
3. Sequential. Send the block in S corresponding to the earilest part of the

file to v.

We study the performance of the three heuristics in the model UG-5-Push,
with different combinations of n and b. The results are shown in Table 3.

We observe that Random and Rarest First have very similar performance in
Push Protocols. In fact, in three out of the four cases tested, Random has smaller
distribution time than Rarest first. The reason is that with Push protocols, there
are send collisions where the same block is sent to a node from multiple neighbors
in a phase. Rarest First makes send collisions more common, thus leading to a
lost of efficiency. Sequential has even worse performance because send collision
becomes very serious in this case.

4 Concluding Remarks

In this paper we extended [1] on modelling the distribution of data blocks in BT
systems. We have studied new network features that BT systems are using and
different local routing heuristics. Our simulation confirms that Ω(b log n) phases
are needed for the model in [1] while showing that the random and rarest block
first heuristics under more realistic network setting lead to b + O(log n) total
distribution time. An interesting open problem is to provide a mathematical

388 H.-L. Chan, T.-W. Lam, and P.W.H. Wong

analysis of these heuristics. Other interesting problems include modelling vary
client bandwidth, and dynamic issues like new nodes joining, and nodes leaving
the system.

References

1. D. Arthur and R. Panigrahy. Analyzing BitTorrent and Related Peer-to-Peer Net-
works. In Proceedings of ACM-SIAM Symposium on Discrete Algorithms, 2006,
pages 961–969.

2. A. Bharambe, C. Herley, and V. Padmanabhan. Analyzing and Improving BitTor-
rent Performance. Technical Report MSR-TR-2005-03, Microsoft Research, 2005.

3. BitTorrent. http://www.bittorrent.com.
4. BitTorrent Accounts for 35% of Traffic. http://yro.slashdot.org/yro/04/11/04/

1749257.shtml.
5. BitTorrent Protocol Specification v1.0.

http://wiki.theory.org/BitTorrentSpecification.
6. C. Gkantsidis and P. Rodriguez. Network Coding for Large Scale Content Distri-

bution. Technical Report MSR-TR-2004-80, Microsoft Research, 2004.
7. B. Cohen. Incentives Building Robustness in BitTorrent.

http://www.bittorrent.org/bittorrentecon.pdf.
8. M. Izal, G. Urvoy-Keller, E. Biersack, P. Felber, A. Hamra and L. Garces-Erice.

Dissecting BitTorrent: Five Months in a Torrent’s Lifetime. In Proceedings of
Passive and Active Measurements, 2004, pages 1–11.

9. J. Pouwelse, P. Garbacki, D. Epema and H. Sips. The BitTorrent P2P File-Sharing
System: Measurements and Analysis, 2005, 205–126.

10. D. Qiu and R. Srikant. Modelling and Performance Analysis of BitTorrent-like
Peer-top-Peer Networks. In Proceedings of SIGCOMM, 2004, pages 367–378.

11. X. Yang and G. de Vecianna. Service Capacity of Peer to Peer Networks. In
Proceedings of INFOCOM, 2004, pages 2242–2252.

http://yro.slashdot.org/yro/04/11/04/1749257.shtml.
http://yro.slashdot.org/yro/04/11/04/1749257.shtml.

	Introduction
	Network Models and Distribution Time
	Arthur and Panigrahy's Model
	Identifying More Realistic Model Features
	Simulation and Findings

	Performance of Simple Routing Heuristics
	Routing Heuristics for Request Protocols
	Routing Heuristics for Push Protocols

	Concluding Remarks

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

