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1 Introduction

Coalition Logic CL was introduced by Pauly [19] as a logic for reasoning about what groups of agents
can bring about by collective action. CL is a multi-modal logic with modal operators of the form [A],
where A is a set of agents. The formula [A]ϕ, where A is a set of agents and ϕ is a formula, can be
read as the coalition of agents A can bring about ϕ or the coalition of agents A is effective for ϕ or
the coalition of agents A has a strategy to achieve ϕ.

Coalition Logic is closely related to Alternating-Time Temporal Logic, ATL [1, 2, 3] a multi-modal
logic with coalition quantifiers 〈〈A〉〉, where A is again a set of agents, and temporal operators #
(“next”), 2 (“always”) and U (“until”), that extends propositional logic with formulae of the form
〈〈A〉〉#ϕ, 〈〈A〉〉2ϕ and 〈〈A〉〉ϕU ψ. CL is equivalent to the next-time fragment of ATL [8], where
[A]ϕ translates into 〈〈A〉〉#ϕ (read as the coalition A can ensure ϕ at the next moment in time).
The satisfiability problems for ATL and CL are EXPTIME-complete [28] and PSPACE-complete [20],
respectively.

Methods for tackling the satisfiability problem for these logics include two tableau-based methods
for ATL [28, 9], two automata-based methods [26, 10] for ATL, and one tableau-based method for CL
[11]. An implementation of the two-phase tableau calculus by Goranko and Shkatov for ATL [9, 6]
exists in the form of TATL [7]. A first resolution-based method for CL, RESCL, consisting of a normal
form transform and a resolution calculus, was presented in [17], and shown to be sound, complete and
terminating. In particular, the completeness of RESCL is shown relative to the tableau calculus for ATL
in [9]. If a CL formula ϕ is unsatisfiable, the corresponding tableau is closed. In the completeness proof
for RESCL it is shown that deletions that produce the closed tableau correspond to applications of the
resolution inference rules of RESCL that in turn produce a refutation of ϕ. A prototype implementation
of RESCL in the programming language Prolog exists in the form of CLProver [18].

In this paper we revisit the resolution-based method for CL. First, we discuss variants of the normal
form and normal form transformation for Coalition Logic. Second, we correct the completeness result
for the calculus RESCL presented in [18] and present a revised completeness proof for the calculus.
Third, we introduce Vector Coalition Logic (VCL) and a novel normal form, coalition problems in
DSNFVCL, for Coalition Logic. This novel normal form allows us to define RES�CL, an ordering refine-
ment of the resolution calculus RESCL for CL. Finally, we prove soundness, completeness, termination
and complexity results for RES�CL.

The paper is organised as follows. In the next section, we present the syntax, axiomatisation, and
semantics of CL.

In Section 3, we introduce various normal forms and normal transformations for CL, including
coalition problems in DSNFCL and coalition problems in unit DSNFCL, state again the rules of the
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resolution calculus RESCL, show that the calculus is not incomplete on coalition problems in DSNFCL,
and prove that RESCL is complete for coalition problems in unit DSNFCL.

In Section 4, we show that a naive imposition of an ordering refinement on resolution leads to
incompleteness even for coalition problems in unit DSNFCL. This motivates the introduction of a new
logic, Vector Coalition Logic, and a new normal form, coalition problems in DSNFVCL. We define
a normal form transformation for Coalition Logic formulae and coalition problems in DSNFCL into
coalition problems in DSNFVCL. We prove that this normal form transformation preserves satisfiability.
We then introduce an ordered resolution calculus RES�CL with inference rules that operate on coalition
problems in DSNFVCL. We prove that RES�CL is sound and complete. We also show that derivation by
RES�CL always terminate and discuss the complexity of a decision procedure based on RES�CL.

Conclusions and future work are given in Section 5.

2 Coalition Logic

2.1 Syntax

Let Σ ⊂ N to be a non-empty, finite set of agents and Π = {p, q, r, . . . , p1, q1, r1, . . .} be a non-empty,
finite or countably infinite set of propositional symbols. A coalition A is a subset of Σ. Formulae in
CL are constructed from propositional symbols using Boolean operators and the coalition modalities
[A] and 〈A〉.

Definition 1. The set WFFCL of CL formulae is inductively defined as follows.

• all propositional symbols in Π are CL formulae;

• if ϕ and ψ are CL formulae, then so are ¬ϕ (negation) and (ϕ→ ψ) (implication);

• if ϕi, 1 ≤ i ≤ n, n ∈ N0, are CL formula, then so are (ϕ1 ∧ . . . ∧ ϕn) (conjunction), also written∧n
i=1 ϕi, and (ϕ1 ∨ . . . ∨ ϕn) (disjunction), also written

∨n
i=1 ϕi; and

• if A ⊆ Σ is a (finite) set of agents and ϕ is a CL formula, then so are [A]ϕ (positive coalition
formula) and 〈A〉ϕ (negative coalition formula).

Parentheses will be omitted if the reading is not ambiguous. We consider the conjunction and
disjunction operator to be associative and commutative, that is, we do not distinguish between, for
example, (p∨ (q∨ r)), ((r∨p)∨ q) and (q∨ r∨p). The formula

∨0
i=1 ϕi is called the empty disjunction,

also denoted by false, while
∧0
i=1 ϕi is called the empty conjunction, also denoted by true. When

enumerating a specific set of agents, we often omit the curly brackets. For example, we write [1, 2]ϕ
instead of [{1, 2}]ϕ, for a formula ϕ. A coalition formula is either a positive or a negative coalition
formula. In the following, we use “formula(e)” and “well-formed formula(e)” interchangeably.

Definition 2. A literal is either p or ¬p, for p ∈ Π. For a literal l of the form ¬p, where p is a
propositional symbol, ¬l denotes p; for a literal l of the form p, ¬l denotes ¬p. The literals l and ¬l
are called complementary literals.

Definition 3. We call a CL formula atomic if it is a propositional symbol and non-atomic otherwise.
For a non-atomic CL formula ϕ we denote by op(ϕ) its principal operator and by args(ϕ) the list of
its direct subformulae. In more detail:

op(¬ψ) = ¬ args(¬ψ) = (ψ)

op(ψ1 → ψ2) =→ args(ψ1 → ψ2) = (ψ1, ψ2)

op(
∧n
i=1 ψi) = ∧ args(

∧n
i=1 ψi) = (ψ1, . . . , ψn)

op(
∨n
i=1 ψi) = ∨ args(

∨n
i=1 ψi) = (ψ1, . . . , ψn)

op([A]ψ) = [A] args([A]ψ) = (ψ)

op(〈A〉ψ) = 〈A〉 args(〈A〉ψ) = (ψ)
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We denote the length of a list L by |L| and denote the i-the element of a list L by L[i].
We use sequences of positive numbers, called positions, to refer to specific subformulae in a formula.

The empty sequence ε is a position in any formula. A sequence i · λ is a position in a formula ϕ if
ϕ is a non-atomic formula, 1 ≤ i ≤ |args(ϕ)|, and λ is a position in args(ϕ)[i]. If λ is a position in a
formula ϕ, then the subformula ϕλ of ϕ at position λ is ϕ, if λ = ε, and ϕi λ′ if args(ϕ) = (ϕ1, . . . , ϕn)
and λ = i · λ′, for some i, 1 ≤ i ≤ n. By Pos(ϕ) we denote the set of all positions in a formula ϕ.

The size |ϕ|of a formula ϕ to be the size of the set Pos(ϕ). For a finite set Φ of formulae, the size
|Φ| of Φ is |Φ| = Σϕ∈Φ|ϕ|.

Definition 4. The modal depth mdepth(ϕ) of a CL formula ϕ is inductively defined as follows:

mdepth(p) = 0 for every propositional symbol p

mdepth(¬ψ) = mdepth(ψ) mdepth(ψ1 → ψ2) = max{mdepth(ψi) | i ∈ {1, 2}}
mdepth(

∧n
i=1 ψi) = max{mdepth(ψi) | 1 ≤ i ≤ n} mdepth([A]ψ) = 1 + mdepth(ψ)

mdepth(
∨n
i=1 ψi) = max{mdepth(ψi) | 1 ≤ i ≤ n} mdepth(〈A〉ψ) = 1 + mdepth(ψ)

The modal layer mlayer(ϕ, λ) of a position λ in ϕ is inductively defined as follows:

mlayer(ψ, ε) = 0

mlayer(¬ψ, 1 · λ′) = mlayer(ψ, λ′) mlayer(ψ1 → ψ2, i · λ′) = mlayer(ψi) for i ∈ {1, 2}
mlayer(

∧n
i=1 ψi, j · λ′) = mlayer(ψj , λ

′) mlayer([A]ψ, 1 · λ′) = 1 + mlayer(ψ, λ′)

mlayer(
∨n
i=1 ψi, j · λ′) = mlayer(ψj , λ

′) mlayer(〈A〉ψ, 1 · λ′) = 1 + mlayer(ψ, λ′)

If ψ is a subformula of ϕ at position λ and mlayer(ϕ, λ) = l, then we say the subformula occurrence
of ψ occurs at modal layer l of ϕ.

2.2 Axiomatisation

Coalition logic can be axiomatised by the following axiom schemata [20], where A,A′ are coalitions
and ϕ,ϕ1, ϕ2 are well-formed formulae:

⊥ : ¬[A]false
> : [A]true
Σ : ¬[∅]¬ϕ→ [Σ]ϕ
M : [A](ϕ1 ∧ ϕ2)→ [A]ϕ1

S : [A]ϕ1 ∧ [A′]ϕ2 → [A ∪A′](ϕ1 ∧ ϕ2), if A ∩A′ = ∅
〈A〉 : 〈A〉ϕ↔ ¬[A]¬ϕ

together with axiom schemata for propositional logic and the inference rules modus ponens (from ϕ1

and ϕ1 → ϕ2 infer ϕ2) and equivalence (from ϕ1 ↔ ϕ2 infer [A]ϕ1 ↔ [A]ϕ2). It can be shown that
the monotonicity principle [A](ϕ ∧ ψ)→ [A]ϕ ∧ [A]ψ, follows from axiom M.

CL is a non-normal modal logic, that is, the schema that represents the additivity principle, [A]ϕ∧
[A]ψ → [A](ϕ ∧ ψ), does not hold, instead axiom S reflects the weaker form of additivity that holds
for two positive coalition formulae in CL. Using the axiomatisation above it is possible to show that
the schema

S′ : [A]ψ1 ∧ 〈B〉ψ2 → 〈B \ A〉(ψ1 ∧ ψ2), if A ⊆ B

holds. Schema S’ indicates under what conditions and how a negative and a positive coalition formula
can be ‘combined’. Just as in the case of basic modal logic there is no corresponding schema for two
negative coalition formulae.

2.3 Semantics

We use Concurrent Game Structures (CGSs) [3, 9] for describing the semantics of ATL. Also, the
semantics given here uses rooted models, that is, models with a distinguished state where a formula
has to be satisfied.
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Definition 5. A Concurrent Game Frame (CGF) is a tuple F = (Σ,S, s0, d, δ), where

• Σ is a finite, non-empty set of agents;

• S is a non-empty set of states, with a distinguished state s0;

• d : Σ × S −→ N+
0 , where the natural number d(a, s) ≥ 1 represents the number of moves that

the agent a has at the state s. Every move for agent a at the state s is identified by a number
between 0 and d(a, s)− 1. Let D(a, s) = {0, . . . , d(a, s)− 1} be the set of all moves available to
agent a at s. For a state s, a move vector is a k-tuple (σ1, . . . , σk), where k = |Σ|, such that
0 ≤ σa ≤ d(a, s) − 1, for all a ∈ Σ. Intuitively, σa represents an arbitrary move of agent a in
s. Let D(s) = Πa∈ΣD(a, s) be the set of all move vectors at s. We denote by σ an arbitrary
member of D(s).

• δ is a transition function that assigns to every every s ∈ S and every σ ∈ D(s) a state δ(s, σ) ∈ S
that results from s if every agent a ∈ Σ plays move σa.

Given a CGF F = (Σ,S, s0, d, δ) with s, s′ ∈ S, we say that s′ is a successor of s (an s-successor)
if s′ = δ(s, σ), for some σ ∈ D(s).

Let κ be a tuple. We write κ[n] to refer to the n-th element of κ.

Definition 6. Let |Σ| = k and let A ⊆ Σ be a coalition. An A-move σA at s ∈ S is a k-tuple such
that σA[a] ∈ D(a, s) for every a ∈ A and σA[a′] = ∗ (i.e. an arbitrary move) for every a′ 6∈ A. We
denote by D(A, s) the set of all A-moves at state s.

Definition 7. A move vector σ extends an A-move σA, denoted by σA v σ or σ w σA, if σ(a) = σA(a)
for every a ∈ A.

Given a coalition A ⊆ Σ, an A-move σA ∈ D(A, s), and a Σ \ A-move σΣ\A ∈ D(Σ \ A, s), we
denote by σA t σΣ\A the unique σ ∈ D(s) such that both σA v σ and σΣ\A v σ.

Definition 8. A Concurrent Game Model (CGM) is a tupleM = (F ,Π, π), where F = (Σ,S, s0, d, δ)
is a CGF; Π is the set of propositional symbols; and π : S −→ 2Π is a valuation function.

Definition 9. Let M = (F ,Π, π) with F = (Σ,S, s0, d, δ) be a CGM with s ∈ S. The satisfaction
relation, denoted by |=, is inductively defined as follows.

• 〈M, s〉 |= p iff p ∈ π(s), for all p ∈ Π;

• 〈M, s〉 |= ¬ϕ iff 〈M, s〉 6|= ϕ;

• 〈M, s〉 |= ϕ→ ψ iff 〈M, s〉 |= ϕ implies 〈M, s〉 |= ψ;

• 〈M, s〉 |=
∧n
i=1 ϕi iff 〈M, s〉 |= ϕi for all i, 1 ≤ i ≤ n;

• 〈M, s〉 |=
∨n
i=1 ϕi iff 〈M, s〉 |= ϕi for some i, 1 ≤ i ≤ n;

• 〈M, s〉 |= [A]ϕ iff there exists an A-move σA ∈ D(A, s) s.t.
for all σ ∈ D(s) σA v σ implies 〈M, δ(s, σ)〉 |= ϕ;

• 〈M, s〉 |= 〈A〉ϕ iff for all A-moves σA ∈ D(A, s)
exists σ ∈ D(s) s.t. σA v σ and 〈M, δ(s, σ)〉 |= ϕ.

Definition 10. LetM be a CGM. A CL formula ϕ is satisfied at the state s in M if 〈M, s〉 |= ϕ and
ϕ is satisfiable in M, denoted by M |= ϕ, if 〈M, s0〉 |= ϕ. A finite set Γ ⊂ WFFCL is satisfiable in a
state s in M, denoted by 〈M, s〉 |= Γ, if for all ϕi ∈ Γ, 0 ≤ i ≤ n, 〈M, s〉 |= ϕi, and Γ is satisfiable in
M, denoted by M |= Γ, if 〈M, s0〉 |= Γ.
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As discussed in [19, 28, 9] three different notions of satisfiability emerge from the relation between
the set of agents occurring in a formula and the set of agents in the language. It turns out that all
those notions of satisfiability can be reduced to tight satisfiability, that is, when the evaluation of a
formula takes into consideration only the agents occurring in such formula [28]. In this work, we will
consider this particular notion of satisfiability. We denote by Σϕ ⊆ Σ, the set of agents occurring in a
well-formed formula ϕ or the set {a} for some arbitrary agent a ∈ Σ if the set of agents occurring in ϕ
is empty (as the set of agents in a CGF and CGM has to be non-empty). If Φ is a set of well-formed
formulae, ΣΦ ⊆ Σ denotes

⋃
ϕ∈Φ Σϕ.

Definition 11. A CL formula ϕ is satisfiable if there is a model M = (Σϕ,S, s0, d, δ,Π, π) such that
〈M, s0〉 |= ϕ. A CL formula ϕ is valid if for all models M we have 〈M, s0〉 |= ϕ. A finite set Γ of CL
formulae is satisfiable, if there is a model M such that 〈M, s0〉 |= Γ. A finite set Γ of CL formulae is
valid, if for all models M we have 〈M, s0〉 |= Γ.

Coalition logic shares a number of properties with basic modal logic, for instance, the tree model
property [10], that is, if a formula ϕ is satisfiable, then there exists a CGM M = (Σϕ,S, s0, d, δ,Π, π)
such that 〈M, s0〉 |= ϕ and the successor relation on S is a tree with root s0. We call such a model a
tree model of ϕ.

Also the following property holds for Coalition Logic:

Lemma 1. Let ϕ be a CL formula and M be a tree model of ϕ. Let λ be position in ϕ and the
subformula occurrence ψ = ϕλ occurs at modal layer l and ψ has modal depth k. Then the satisfiability
of ψ in M only depends on states of M at tree depth i where l ≤ i ≤ l + k.

In particular, for propositional symbols occurring at modal layer l in a CL formula, only states of
M at tree depth l are relevant.

This motivates the following transformation ‘mlt’ (modal layer transformation) of CL formula.
With every propositional symbol p occurring in a formula ϕ and natural number n we uniquely
associate a propositional symbol pn not occurring in ϕ. Then ‘mlt :’ is inductively defined as follows.

mlt(p, n) = pn

mlt(¬ψ, n) = ¬mlt(ψ, n) mlt(ψ1 → ψ2) = mlt(ψ1, n)→ mlt(ψ2, n)

mlt(
∧n
i=1 ψi, n) =

∧n
i=1 mlt(ψi, n) mlt([A]ψ, n) = [A]mlt(ψ, n+ 1)

mlt(
∨n
i=1 ψi, n) =

∨n
i=1 mlt(ψi, n) mlt(〈A〉ψ, n) = 〈A〉mlt(ψ, n+ 1)

The transformation mlt preserves satisfiability:

Lemma 2. Let ϕ be a CL formula. Then ϕ is satisfiable iff mlt(ϕ, 0) is satisfiable.

Proof. Note that Σϕ = Σmlt(ϕ,0). Let M′ = (Σϕ,S ′, s0, d
′, δ′,Π′, π′) be a tree model of mlt(ϕ, 0). Let

M be the model (Σϕ,S ′, s0, d
′, δ′,Π′, π) such that for each state s at tree depth l, π(s) = {p | pl ∈

π′(s)}. It follows from Lemma 1 that M is a model of ϕ.

Analogously, let M = (Σϕ,S, s0, d, δ,Π, π) be a tree model of ϕ. We defined a model M′ as
(Σϕ,S, s0, d, δ,Π, π

′) such that for each state s at tree depth l, π′(s) = {pl | p ∈ π(s)}. Again, it
follows from Lemma 1 that M′ is a model of mlt(ϕ, 0).

3 Unrefined Resolution for CL

The resolution method presented in [17] proceeds by translating a CL formula ϕ that is to be tested for
(un)satisfiability into a clausal normal form C, a coalition problem in Divided Separated Normal Form
for Coalition Logic, to which then resolution-based inference rules are applied. The application of
these rules always terminates, either resulting in a coalition problem C′ that is evidently contradictory
or, otherwise, satisfiable. The formula ϕ is satisfiable iff C′ is satisfiable.

In the following we first present the normal form transformation before introducing the inference
rules.
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3.1 Normal Form Transformation

The resolution-based calculus for CL, RESCL, operates on coalition problems in Divided Separated
Normal Form for Coalition Logic, DSNFCL. Any CL formula in is firstly converted into a coalition
problem, which is then transformed into a coalition problem in DSNFCL.

Definition 12. A coalition problem is a tuple (I,U ,N ), where I, the set of initial formulae, is a finite
set of propositional formulae; U , the set of global formulae, is a finite set of formulae in WFFCL; and
N , the set of coalition formulae, is a finite set of coalition formulae, i.e. those formulae in which a
coalition modality occurs.

The size |C| of a coalition problem (I,U ,N ) is |I|+ |U|+ |N |.

The semantics of coalition problems assumes that initial formulae hold at the initial state; and
that global and coalition formulae hold at every state of a model. Formally, the semantics of coalition
problems is defined as follows.

Definition 13. Given a coalition problem C = (I,U ,N ), we denote by ΣC the set of agents ΣU∪N .
If C = (I,U ,N ) is a coalition problem and M = (ΣC ,S, s0, d, δ,Π, π) is a CGM, then M |= C if, and
only if, 〈M, s0〉 |= I and 〈M, s〉 |= U ∪ N , for all s ∈ S. We say that C = (I,U ,N ) is satisfiable, if
there is a model M such that M |= C.

In order to apply the resolution method, we further require that formulae within each of those sets
are in clausal form. These categories of clauses have the following syntactic form:

initial clauses
∨n
j=1 lj

global clauses
∨n
j=1 lj

positive coalition clauses
∧m
i=1 l

′
i → [A]

∨n
j=1 lj

negative coalition clauses
∧m
i=1 l

′
i → 〈A〉

∨n
j=1 lj

where m,n ≥ 0 and l′i, lj , for all 1 ≤ i ≤ m, 1 ≤ j ≤ n, are literals such that within every conjunction
and every disjunction literals are pairwise different.

Definition 14. A coalition problem in DSNFCL is a coalition problem (I,U ,N ) such that I is a set
of initial clauses, U is a set of global clauses, and N is a set of positive and negative coalition clauses.

Definition 15. A coalition problem in unit DSNFCL is a coalition problem (I,U ,N ) such that I is
a set of initial clauses, U is a set of global clauses, and N is a set of positive and negative coalition
clauses such that coalition clauses have the following form:

positive coalition clauses
∧m
i=1 l

′
i → [A]p

negative coalition clauses
∧
i=1 l

′
i → 〈A〉p

where p is a propositional symbol

The transformation into the normal form is given by a set of rewriting rules. Let ϕ ∈ WFFCL be
a formula and τ0(ϕ) be the transformation of ϕ into the Negation Normal Form (NNF), that is, the
formula obtained from ϕ by pushing negation inwards, so that negation symbols occur only next to
propositional symbols. The transformation into NNF uses the following rewriting rules:

ϕ→ ψ ⇒ ¬ϕ ∨ ψ
¬(

∧n
i=1 ϕi) ⇒

∨n
i=1 ¬ϕi

¬(
∨n
i=1 ϕi) ⇒

∧n
i=1 ¬ϕi

¬(ϕ→ ψ) ⇒ ϕ ∧ ¬ψ

¬¬ϕ ⇒ ϕ
¬[A]ϕ ⇒ 〈A〉¬ϕ
¬〈A〉ϕ ⇒ [A]¬ϕ

In addition, we want to remove occurrences of true and false as well as duplicates of formulae in
conjunctions and disjunctions. This is achieved by exhaustively applying the following simplification
rules (where conjunctions and disjunctions are commutative):
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ϕ ∧ true ⇒ ϕ
ϕ ∨ true ⇒ true
ϕ ∧ false ⇒ false
ϕ ∨ false ⇒ ϕ
¬true ⇒ false

¬false ⇒ true
ϕ ∨ ϕ ⇒ ϕ
ϕ ∧ ϕ ⇒ ϕ

ϕ ∨ ¬ϕ ⇒ true
ϕ ∧ ¬ϕ ⇒ false

[A]true ⇒ true
[A]false ⇒ false
〈A〉true ⇒ true
〈A〉false ⇒ false

In [17], given a formula ϕ, the transformation of ϕ into a coalition problem (I,U ,N ) in DSNFCL is
performed by exhaustively applying the rules of the rewriting system R1 = {⇒1

∧, . . . ,⇒1
〈Σϕ〉} given be-

low, together with simplification, to the tuple ({t0}, {t0 → τ0(ϕ)}, {}), where t0 is a new propositional
symbol and τ0(ϕ) is the transformation of ϕ into NNF (where t is a literal; ϕi, i ≥ 0, are CL formulae;
A is a coalition; Σϕ is the set of agents occurring in the original formula ϕ t1 is a new propositional
symbol; and disjunctions are associative and commutative):

(I,U ∪ {t→
∧n
i=1 ϕi},N ) ⇒1

∧ (I,U ∪
⋃n
i=1{t→ ϕi},N )

(I,U ∪ {t→ ψ ∨
∨n
i=1 ϕi},N ) ⇒1

∨ (I,U ∪ {t→ t1 ∨
∨n
i=1 ϕi, t1 → ψ},N )

where ψ is not a disjunction of literals
(I,U ∪ {t→ D},N ) ⇒1

→,U (I,U ∪ {¬t ∨D},N )

where D is a disjunction of literals
(I,U ∪ {t→ D},N ) ⇒1

→,N (I,U ,N ∪ {t→ D})
where D is either of the form [A]ϕ1 or 〈A〉ϕ1

(I,U ,N ∪ {t→ [A]ψ}) ⇒1
[ ] (I,U ∪ {t1 → ψ},N ∪ {t→ [A]t1})

where ψ is not a disjunction of literals
(I,U ,N ∪ {t→ 〈A〉ψ}) ⇒1

〈 〉 (I,U ∪ {t1 → ψ},N ∪ {t→ 〈A〉t1})
where ψ is not a disjunction of literals
and A 6= Σϕ

(I,U ,N ∪ {t→ 〈Σϕ〉ϕ1}) ⇒1
〈Σϕ〉 (I,U ,N ∪ {t→ [∅]ϕ1})

The rules ⇒1
∨, ⇒1

[ ], and ⇒1
〈 〉 use renaming [21] in order to bring coalition problems closer to

divided separated normal form DSNFCL. The implication t1 → ψ introduced by these rules defines the
new propositional symbol t1 [21].

Note that if the subformula ψ occurs n times in ϕ, then the rewriting rules of R1 will introduce n
definitions t1 → ψ, . . . , tn → ψ during the normal form transformation. Obviously, it would suffice to
introduce just one definition t1 → ψ and to replace all occurrences of ψ by t1 during the normal form
transformation.

To achieve this we uniquely associate with every subformula ψ of ϕ a propositional symbol tψ that
does not occur in ϕ. To ensure that a definition involving a subformula ψ is introduced only once
during the normal form transformation we use the function Def(ψ,Γ) where ψ is a CL formula and Γ
is a set of CL formulae, more precisely, a set of implications t→ θ:

Def(ψ,Γ) =

{
{tψ → ψ}, if tψ does not occur in Γ

∅, otherwise

Given a formula ϕ, we then start its transformation with the coalition problem ({t0}, {tϕ →
τ0(ϕ)}, {}) and exhaustively apply the rules of the rewriting system R2 = {⇒1

∧,⇒1
→,U ,⇒1

→,N ,⇒1
〈Σϕ〉

,⇒2
∨,⇒2

[ ],⇒
2
〈 〉} together with simplification.

(I,U ∪ {t→ ψ ∨
∨n
i=1 ϕi},N ) ⇒2

∨ (I,U ∪ {t→ tψ ∨
∨n
i=1 ϕi} ∪Def(ψ,U ∪ N ),N )

where ψ is not a disjunction of literals
(I,U ,N ∪ {t→ [A]ψ}) ⇒2

[ ] (I,U ∪Def(ψ,U ∪ N ),N ∪ {t→ [A]tψ})
where ψ is not a disjunction of literals

(I,U ,N ∪ {t→ 〈A〉ψ}) ⇒2
〈 〉 (I,U ∪Def(ψ,U ∪ N ),N ∪ {t→ 〈A〉tψ})

where ψ is not a disjunction of literals
and A 6= Σϕ
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For a discussion of the interdependencies between the normal form transformation and the resolu-
tion calculus, we will need a third variation of the rewriting system. R3 consists of the rewriting rules
⇒1
∧, ⇒1

→,U , ⇒1
→,N , ⇒1

〈Σϕ〉, ⇒
2
∨, ⇒3

[ ], and⇒3
〈 〉} plus the simplification rules. The rewriting rules⇒3

[ ]

and ⇒3
〈 〉} are defined as follows:

(I,U ,N ∪ {t→ [A]ψ}) ⇒3
[ ] (I,U ∪Def(ψ,U ∪ N ),N ∪ {t→ [A]tψ})

where ψ is not a literal
(I,U ,N ∪ {t→ 〈A〉ψ}) ⇒3

〈 〉 (I,U ∪Def(ψ,U ∪ N ),N ∪ {t→ 〈A〉tψ})
where ψ is not a literal and A 6= Σϕ

The rewriting rules will ensure that for any formula ψ in a coalition problem in DSNFCL with
op(ψ) = [A] or op(ψ) = 〈A〉 we have that args(ψ) = (l) for some literal l.

Theorem 1. Let ϕ ∈WFFCL and let R be one of the rewriting systems R1, R2, or R3. Let C0, C1, . . .
be a sequence of coalition problems such that C0 = ({tϕ}, {tϕ → τ0(ϕ)}, ∅) and Ci+1 is obtained from Ci
by applying a rewriting rule in R combined with zero or more applications of the simplification rules
to a formula in Ci. Then the sequence C0, C1, . . . terminates, i.e. there exists an index n, n ≥ 0, such
that no rewriting rule can be applied to Cn. Furthermore, Cn is a coalition problem in DSNFCL, the
size of Cn is linear in the size of ϕ, and Cn is satisfiable if, and only if, ϕ is satisfiable.

For the proof of Theorem 1 for the rewriting system R1 see [17]. The proofs for the rewriting
systems R2 and R3 are analogous. Note that while the size of coalition problem Cn in DSNFCL that
we obtain by exhaustively applying the rules of one of the rewriting systems is linear in the size of the
given CL formula ϕ, the time required to compute Cn is also linear for R1 but quadratic for R2 and
R1, unless we assume that the formula ϕ is not given as sequence of symbols or as a tree structure
but instead given as a formula DAG in which multiple occurrences of the same subformula are stored
only once.

3.2 Resolution Calculus RESCL

Let (I,U ,N ) be a coalition problem in DSNFCL; P , Q be conjunctions of literals; C, D be disjunctions
of literals; l, li be literals; and A,B ⊆ Σ be coalitions (where Σ is the set of all agents).

The resolution calculus RESCL, introduced in [17], consists of the following rules:

IRES1 C ∨ l ∈ I
D ∨ ¬l ∈ I ∪ U
C ∨D

GRES1 C ∨ l ∈ U
D ∨ ¬l ∈ U
C ∨D

CRES1 P → [A](C ∨ l) ∈ N
A ∩ B = ∅ Q → [B](D ∨ ¬l) ∈ N

P ∧Q → [A ∪ B](C ∨D)

CRES2 C ∨ l ∈ U
Q → [A](D ∨ ¬l) ∈ N
Q → [A](C ∨D)

CRES3 P → [A](C ∨ l) ∈ N
A ⊆ B Q → 〈B〉(D ∨ ¬l) ∈ N

P ∧Q → 〈B \ A〉(C ∨D)

CRES4 C ∨ l ∈ U
Q → 〈A〉(D ∨ ¬l) ∈ N
Q → 〈A〉(C ∨D)

RW1
∧n
i=1 li → [A]false ∈ N∨n

i=1 ¬li
RW2

∧n
i=1 li → 〈A〉false ∈ N∨n

i=1 ¬li

Note the connection between the axiomatisation of Coalition Logic and the inference rules of RESCL:
IRES1 and GRES1 are consequences of the axioms for propositional logic, CRES1 and, in particular,
its side condition, follow from axiom S, CRES3 and its side condition follow from schema S’, CRES2
and CRES4 follow from monotonicity, while RW1 and RW2 are based on axioms ⊥ and > (together
with 〈A〉), respectively.
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Definition 16. A derivation from a coalition problem in DSNFCL C by a calculus R is a sequence
C0, C1, C2, . . . of coalition problems such that C0 = C and Ci+1 is obtained from Ci by an application of
a rule of R to C.

In particular, a derivation from a coalition problem in DSNFCL C = (I,U ,N ) by RESCL is a
sequence C0, C1, C2, . . . of problems such that C0 = C, Ci = (Ii,Ui,Ni), and Ci+1 is either

• (Ii ∪ {R},Ui,Ni), where R is the conclusion of an application of IRES1;

• (Ii,Ui ∪ {R},Ni), where R is the conclusion of an application of GRES1, RW1, or RW2; or

• (Ii,Ui,Ni ∪ {R}), where R is the conclusion of an application of CRES1, CRES2, CRES3, or
CRES4.

and conjunctions and disjunctions in R are always kept in the simplest form, that is, duplicate literals
are removed, conjunctions (resp. disjunctions) with complementary literals are simplified to false
(resp. true), and R 6∈ {true, false→ ϕ,ϕ→ true, ϕ→ [A]true, ϕ→ 〈A〉true}, for any formula ϕ.

Definition 17. A refutation for a coalition problem in DSNFCL C = (I,U ,N ) (by a calculus R)
is a derivation from C such that for some i ≥ 0, Ci = (Ii,Ui,Ni) contains a contradiction, where a
contradiction is given by either false ∈ Ii or false ∈ Ui.

Definition 18. A derivation for a coalition problem in DSNFCL C by calculus R terminates if, and
only if, either a contradiction is derived or no new clauses can be derived by further application of the
rules of R.

3.3 Completeness Revisited

Definition 19. A calculus R is complete for a class C of coalition problems in DSNFCL iff for every
unsatisfiable coalition problem C ∈ C there exists a refutation of C by R. A calculus R is sound for a
class C of coalition problems in DSNFCL iff no satisfiable coalition problem C ∈ C has a refutation of
C by R.

Definition 20. Let Ci, 1 ≤ i ≤ 3 be the class of all coalition problems C in DSNFCL such that C
results from an application of rewriting rules of the rewriting system Ri.

It turns out that RESCL is not complete for the classes C1 and C2. To show this we use a formal-
isation of the pigeon hole problem with three pigeons and two holes in Coalition Logic, given by the
following formula ϕ3

2:

[∅](¬x1
1 ∨ ¬x2

1) ∧ [∅](¬x1
1 ∨ ¬x3

1) ∧ [∅](¬x2
1 ∨ ¬x3

1)
∧ [∅](¬x1

2 ∨ ¬x2
2) ∧ [∅](¬x1

2 ∨ ¬x3
2) ∧ [∅](¬x2

2 ∨ ¬x3
2)

∧ [1](x1
1 ∨ x1

2) ∧ [2](x2
1 ∨ x2

2) ∧ [3](x3
1 ∨ x3

2)

Here the proposition symbol xij , 1 ≤ i ≤ 3, 1 ≤ j ≤ 2 denotes that dove i is in hole j. Each conjunct

[i](xi1∨xi2), 1 ≤ i ≤ 3, states that agent i can bring about that dove i is either in hole 1 or in hole 2, i.e.,
agent i controls into which hole dove i is placed. Each conjunct [∅](¬xij∨¬i

′
j ), 1 ≤ i < i′ ≤ 3, 1 ≤ j ≤ 2,

expresses that in every state that the agents can bring about no two doves can be in the same hole. The
formula ϕ3

2 is unsatisfiable. The transformation of ϕ3
2 into a coalition problem in DSNFCL using either

rewriting system R1 or R2 is straightforward and results in Clauses (1) to (10) shown in Figure 1.
We denote the corresponding coalition problem by C3

2 . Clauses (11) to (70) in Figure 1 are all the
non-tautological clauses that can be derived from C3

2 using RESCL and there is no contradiction among
these clauses. To understand better why this is the case, we focus on the following clauses from that
derivation:
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1. t0 [I]
2. t0 → [∅]¬x11 ∨ ¬x21 [N ]
3. t0 → [∅]¬x11 ∨ ¬x31 [N ]
4. t0 → [∅]¬x21 ∨ ¬x31 [N ]
5. t0 → [∅]¬x12 ∨ ¬x22 [N ]
6. t0 → [∅]¬x12 ∨ ¬x32 [N ]
7. t0 → [∅]¬x22 ∨ ¬x32 [N ]
8. t0 → [1]x11 ∨ x12 [N ]
9. t0 → [2]x21 ∨ x22 [N ]

10. t0 → [3]x31 ∨ x32 [N ]

11. t0 → [1]x12 ∨ ¬x21 [N , CRES1, 2, 8,¬x11]
12. t0 → [2]x22 ∨ ¬x11 [N , CRES1, 2, 9,¬x21]
13. t0 → [1]x12 ∨ ¬x31 [N , CRES1, 3, 8,¬x11]
14. t0 → [3]x32 ∨ ¬x11 [N , CRES1, 3, 10,¬x31]
15. t0 → [2]x22 ∨ ¬x31 [N , CRES1, 4, 9,¬x21]
16. t0 → [3]x32 ∨ ¬x21 [N , CRES1, 4, 10,¬x31]
17. t0 → [1]x11 ∨ ¬x22 [N , CRES1, 5, 8,¬x12]
18. t0 → [2]x21 ∨ ¬x12 [N , CRES1, 5, 9,¬x22]
19. t0 → [1]x11 ∨ ¬x32 [N , CRES1, 6, 8,¬x12]
20. t0 → [3]x31 ∨ ¬x12 [N , CRES1, 6, 10,¬x32]
21. t0 → [2]x21 ∨ ¬x32 [N , CRES1, 7, 9,¬x22]
22. t0 → [3]x31 ∨ ¬x22 [N , CRES1, 7, 10,¬x32]
23. t0 → [1, 3]x31 ∨ ¬x21 [N , CRES1, 11, 20, x12]
24. t0 → [1, 2]x12 ∨ ¬x32 [N , CRES1, 11, 21,¬x21]
25. t0 → [1]¬x21 ∨ ¬x22 [N , CRES1, 11, 5, x12]
26. t0 → [1]¬x21 ∨ ¬x32 [N , CRES1, 11, 6, x12]
27. t0 → [1, 2]x12 ∨ x22 [N , CRES1, 11, 9,¬x21]
28. t0 → [1, 2]x22 ∨ ¬x32 [N , CRES1, 12, 19,¬x11]
29. t0 → [2, 3]x31 ∨ ¬x11 [N , CRES1, 12, 22, x22]
30. t0 → [2]¬x11 ∨ ¬x12 [N , CRES1, 12, 5, x22]
31. t0 → [2]¬x11 ∨ ¬x32 [N , CRES1, 12, 7, x22]
32. t0 → [1, 2]x21 ∨ ¬x31 [N , CRES1, 13, 18, x12]
33. t0 → [1, 3]x12 ∨ ¬x22 [N , CRES1, 13, 22,¬x31]
34. t0 → [1]¬x22 ∨ ¬x31 [N , CRES1, 13, 5, x12]
35. t0 → [1]¬x31 ∨ ¬x32 [N , CRES1, 13, 6, x12]
36. t0 → [1, 3]x12 ∨ x32 [N , CRES1, 13, 10,¬x31]
37. t0 → [1, 3]x32 ∨ ¬x22 [N , CRES1, 14, 17,¬x11]
38. t0 → [2, 3]x21 ∨ ¬x11 [N , CRES1, 14, 21, x32]
39. t0 → [3]¬x11 ∨ ¬x12 [N , CRES1, 14, 6, x32]
40. t0 → [3]¬x11 ∨ ¬x22 [N , CRES1, 14, 7, x32]

41. t0→[1, 2]x11 ∨ ¬x31 [N , CRES1, 15, 17, x22]
42. t0→[2, 3]x22 ∨ ¬x12 [N , CRES1, 15, 20,¬x31]
43. t0→[2]¬x12 ∨ ¬x31 [N , CRES1, 15, 5, x22]
44. t0→[2]¬x31 ∨ ¬x32 [N , CRES1, 15, 7, x22]
45. t0→[2, 3]x22 ∨ x32 [N , CRES1, 15, 10,¬x31]
46. t0→[2, 3]x32 ∨ ¬x12 [N , CRES1, 16, 18,¬x21]
47. t0→[1, 3]x11 ∨ ¬x21 [N , CRES1, 16, 19, x32]
48. t0→[3]¬x12 ∨ ¬x21 [N , CRES1, 16, 6, x32]
49. t0→[3]¬x21 ∨ ¬x22 [N , CRES1, 16, 7, x32]
50. t0→[1, 2]x11 ∨ x21 [N , CRES1, 17, 9,¬x22]
51. t0→[1, 3]x11 ∨ x31 [N , CRES1, 19, 10,¬x32]
52. t0→[2, 3]x21 ∨ x31 [N , CRES1, 21, 10,¬x32]
53. t0→[1, 3]¬x21 [N , CRES1, 23, 4, x31]
54. t0→[1, 2, 3]x22 ∨ x31 [N , CRES1, 23, 9,¬x21]
55. t0→[1, 2]¬x32 [N , CRES1, 24, 6, x12]
56. t0→[1, 2, 3]x12 ∨ x31 [N , CRES1, 24, 10,¬x32]
57. t0→[2, 3]¬x11 [N , CRES1, 29, 3, x31]
58. t0→[1, 2]¬x31 [N , CRES1, 32, 4, x21]
59. t0→[1, 2, 3]x21 ∨ x32 [N , CRES1, 32, 10,¬x31]
60. t0→[1, 3]¬x22 [N , CRES1, 33, 5, x12]
61. t0→[1, 2, 3]x12 ∨ x21 [N , CRES1, 33, 9,¬x22]
62. t0→[1, 2, 3]x11 ∨ x32 [N , CRES1, 34, 10,¬x31]
63. t0→[2, 3]¬x12 [N , CRES1, 42, 5, x22]
64. t0→[1, 2, 3]x11 ∨ x22 [N , CRES1, 42, 8,¬x12]
65. t0→[1, 2, 3]x22 [N , CRES1, 53, 9,¬x21]
66. t0→[1, 2, 3]x31 [N , CRES1, 42, 10,¬x32]
67. t0→[1, 2, 3]x12 [N , CRES1, 57, 8,¬x11]
68. t0→[1, 2, 3]x32 [N , CRES1, 58, 10,¬x31]
69. t0→[1, 2, 3]x21 [N , CRES1, 60, 9,¬x22]
70. t0→[1, 2, 3]x11 [N , CRES1, 63, 8,¬x12]

Figure 1: Derivation from C3
2 by RESCL
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2. t0 → [∅]¬x1
1 ∨ ¬x2

1 [N ]
3. t0 → [∅]¬x1

1 ∨ ¬x3
1 [N ]

4. t0 → [∅]¬x2
1 ∨ ¬x3

1 [N ]
5. t0 → [∅]¬x1

2 ∨ ¬x2
2 [N ]

6. t0 → [∅]¬x1
2 ∨ ¬x3

2 [N ]
7. t0 → [∅]¬x2

2 ∨ ¬x3
2 [N ]

8. t0 → [1]x1
1 ∨ x1

2 [N ]
9. t0 → [2]x2

1 ∨ x2
2 [N ]

10. t0 → [3]x3
1 ∨ x3

2 [N ]

11. t0 → [1]x1
2 ∨ ¬x2

1 [N , CRES1, 2, 8,¬x1
1]

13. t0 → [1]x1
2 ∨ ¬x3

1 [N , CRES1, 3, 8,¬x1
1]

20. t0 → [3]x3
1 ∨ ¬x1

2 [N , CRES1, 6, 10,¬x3
2]

22. t0 → [3]x3
1 ∨ ¬x2

2 [N , CRES1, 7, 10,¬x3
2]

23. t0 → [1, 3]x3
1 ∨ ¬x2

1 [N , CRES1, 11, 20, x1
2]

33. t0 → [1, 3]x1
2 ∨ ¬x2

2 [N , CRES1, 13, 22,¬x3
1]

53. t0 → [1, 3]¬x2
1 [N , CRES1, 23, 4, x3

1]
60. t0 → [1, 3]¬x2

2 [N , CRES1, 33, 5, x1
2]

65. t0 → [1, 2, 3]x2
2 [N , CRES1, 53, 9,¬x2

1]

Clause (8) expresses that in any state s where t0 is true, there is a certain move f1(s) by agent 1
such that whatever moves m2(s) and m3(s) agents 2 and 3 make, respectively, in the resulting state
s′ = δ(s, (f1(s),m2(s),m3(s))) the disjunction x1

1 ∨ x1
2 is true. Clauses (2) and (3) express that in

any state s where t0 is true, whatever moves the three agents make, the disjunctions ¬x1
1 ∨ ¬x2

1 and
¬x1

1 ∨ ¬x3
1 are true.

Now consider clauses (11) and (13). If these two clauses would be part of the initial coalition
problem, then it would be natural to interpret them in analogy to clause (8), that is, clause (11)
relates to a move g1(s) by agent 1, potentially different to the move f1(s), and potentially resulting
in a different set of outcomes once combined with whatever moves the other agents make, while
clause (13) relates to a move h1(s) by agent 1, yet again potentially different to f1(s) and g1(s), and
potentially resulting in a different set of outcomes.

However, clauses (11) and (13) are derived by resolving clause (8) with clauses (2) and (3), respec-
tively. Thus, clause (11) combines the constraints on a CGM expressed by clauses (8) and (2), namely,
that in any state s where t0 is true, there is a certain move f1(s) by agent 1 such that whatever moves
m2(s) and m3(s) agents 2 and 3 make, respectively, in the resulting state s′ = δ(s, (f1(s), f2(s), f3(s)))
the disjunctions x1

1 ∨ x1
2 and ¬x1

1 ∨ ¬x2
1 are true, and therefore the disjunction x1

2 ∨ ¬x2
1 is true in s′.

So, clause (11) refers to the same action f1(s) by agent 1 and the same set of states that may result
from that action. The same applies to clause (13).

Clauses (10), (20) and (22) have to be read analogously to clauses (8), (11) and (13), respectively,
that is, they all refer to the same action h3(s) by agent 3 and the same set of states that may result
from that action when combined with arbitrary moves by agents 1 and 2.

Clause (23) is derived by resolving clauses (11) and (20), and expresses that in any state s where
t0 is true, the moves f1(s) and h3(s) by agents 1 and 3, respectively, when combined with an arbitrary
move m2(s) by agent 2, result in a state s′ = δ(s, (f1(s),m2(s), h3(s))) where x3

1∨¬x2
1 is true. Clauses

(33), (53) and (60) have to be read analogously, all referring to the actions f1(s) and h3(s) and the
same set of resulting states. In particular, clause (60) expresses that in any state s where t0 is true,
the moves f1(s) and h3(s) by agents 1 and 3, respectively, when combined with an arbitrary move
m2(s) by agent 2, result in a state s′ = δ(s, (f1(s),m2(s), h3(s))) where ¬x2

2 is true.

Clause (65) is derived by resolving clauses (53) and (9). Clause (9) expresses that in any state s
where t0 is true, there is a certain move g2(s) by agent 2 such that whatever moves m1(s) and m3(s)
agents 1 and 3 make, respectively, in the resulting state s′ = δ(s, (m1(s), g2(s),m3(s))) the disjunction
x2

1 ∨ x2
2 is true. In clause (65) the move g2(s) is now combined with the moves f1(s) and h3(s) by

agents 1 and 3, respectively. Thus, clause (65) expresses that in any state s where t0 is true, in the
state s′ = δ(s, (f1(s), g2(s), h3(s)) the proposition x2

2 is true.

Now, if we accept that clauses (60) and (65) have the semantics described above, then it follows that
the two clauses together imply that in any state s where t0 is true, the move vector (f1(s), g2(s), h3(s))
would lead to a successor s′ = δ(s, (f1(s), g2(s), h3(s)) where both ¬x2

2 and x2
2 are true. Consequently,

the two clauses together imply t0 → [1, 2, 3]false which in turn implies that t0 cannot be true at any
state in a CGM satisfying C3

2 . As t0 is true in the state s0 it follows that C3
2 is not satisfiable.

However, using RESCL, clauses (60) and (65) cannot be resolved as the sets of agents involved in
the two clauses are not disjoint, the side condition on CRES1 is not satisfied. Therefore, the clause
t0 → [1, 2, 3]false cannot be derived and we are not able to derive a contradiction by an application
of RW1 to that clause, resulting in a global clause ¬t0 followed by a resolution step using IRES1 with
that global clause and the initial clause t0.
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A solution is to enforce that our normal form transformation only produces coalition clauses with a
unique, new propositional symbol below a coalition modality. For example, clause (8), t0 → [1]x1

1∨x1
2,

will be replaced by the coalition clause

t0 → [1]t7 (8’)

together with the global clause

¬t7 ∨ x1
1 ∨ x1

2 (8”)

Clause (8’) expresses that in any state s where t0 is true, there is a certain move f1(s) by agent 1
such that whatever moves m2(s) and m3(s) agents 2 and 3 make, respectively, in the resulting state
s′ = δ(s, (f1(s),m2(s),m3(s))) the propositional symbol t7 is true. Clause (8’) is the only clause in
a coalition problem that contains a positive occurrence of t7 and this property will be preserved by
RESCL.

The rewriting system R3 produces coalition problems in this normal form, namely, coalition prob-
lems in unit DSNFCL. For the formula ϕ3

2 we obtain the coalition problem D3
2 consisting of the clauses

(1) to (19) in Figure 2. Clauses (20) to (41) in Figure 2 are a refutation of D3
2 using RESCL. The

refutation proceeds by a sequence of applications of GRES1 to global clauses in D3
2 to derive Clause

(30) which expresses that the propositional symbols t1, . . . , t9 cannot all be true in the same state.
Clause (30) is then used in a sequence of applications of CRES1 and CRES2 to the coalition clauses
in D3

2 to derive Clause (39), t0 → [1, 2, 3]false. An application of RW1 then gives us the global clause
¬t0 from which we derive a contradiction by resolving with the initial clause t0. Note that in contrast
to the derivation in Figure 1, at no point in the derivation are two derived coalition clauses resolved
with each other. To prove the completeness of RESCL for coalition problems in unit DSNFCL we make
not only make use of the refutational completeness of propositional resolution (Theorem 2) but also
of the completeness of propositional resolution for consequence-finding (Theorem 3):

Theorem 2 (Completeness of classical propositional resolution [22]). If S is an unsatisfiable set of
propositional clauses, then there is a refutation from S by the resolution method, where the inference
rule RES is given by {(D ∨ l), (D′ ∨ ¬l)} ` (D ∨D′).

Theorem 3 (Lee [16]). Let N be a set of propositional clauses and C be clause such that N logically
implies C. Then there is a derivation by propositional resolution, from N , of a clause D such that D
subsumes C.

The revised completeness proof uses a correspondence between Goranko and Shkatov’s tableau-
based decision procedure for ATL, restricted here to a weaker logic, and inferences by RESCL. In
particular, we show that for an unsatisfiable coalition problem in unit DSNFCL, a closed tableau can
be constructed and that applications of the state deletion rules in the tableau construction correspond
to applications of the resolution inference rules to subsets of the clauses in a coalition problem in unit
DSNFCL that will result in a refutation of the coalition problem.

To make our presentation here self-contained we repeat the description of Goranko and Shkatov’s
tableau-based decision procedure and its use for our purposes. For further details see [17].

The procedure consists of three different phases: construction, prestate elimination, and state
elimination.

Graph Construction. During the construction phase, a set of rules is used to build a directed graph
called pretableau, which contains states and prestates. States are downward saturated sets of formulae,
that is, sets of formulae to which all conjunctive (α) and disjunctive (β) rules given in Tables 1a and
1b have been exhaustively applied. The first column in Table 1a (resp. 1b) shows the premises, that
is the α (resp. β) formulae to which an inference rule is applied; and the second column shows the n
conclusions that are derived from the premises. The application of those inference rules are formalised
below (Def. 22) after we precisely define the language to which those rules are applied. We note that
the application of the inference rules to conjunctive formulae requires that all conclusions are added
to the set of formulae whereas the application of the inference rules to disjunctive formulae requires
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1. t0 [I]
2. ¬t1 ∨ ¬x11 ∨ ¬x21 [U ]
3. ¬t2 ∨ ¬x11 ∨ ¬x31 [U ]
4. ¬t3 ∨ ¬x21 ∨ ¬x31 [U ]
5. ¬t4 ∨ ¬x12 ∨ ¬x22 [U ]
6. ¬t5 ∨ ¬x12 ∨ ¬x32 [U ]
7. ¬t6 ∨ ¬x22 ∨ ¬x32 [U ]
8. ¬t7 ∨ x11 ∨ x12 [U ]
9. ¬t8 ∨ x21 ∨ x22 [U ]

10. ¬t9 ∨ x31 ∨ x32 [U ]
11. t0→[∅]t1 [N ]
12. t0→[∅]t2 [N ]
13. t0→[∅]t3 [N ]
14. t0→[∅]t4 [N ]
15. t0→[∅]t5 [N ]
16. t0→[∅]t6 [N ]
17. t0→[1]t7 [N ]
18. t0→[2]t8 [N ]
19. t0→[3]t9 [N ]

20. x12 ∨ ¬t1 ∨ ¬t7 ∨ ¬x21 [U , GRES1, 2, 8,¬x11]
21. x12 ∨ ¬t2 ∨ ¬t7 ∨ ¬x31 [U , GRES1, 3, 8,¬x11]
22. x21 ∨ ¬t4 ∨ ¬t8 ∨ ¬x12 [U , GRES1, 5, 9,¬x22]
23. x31 ∨ ¬t5 ∨ ¬t9 ∨ ¬x12 [U , GRES1, 6, 10,¬x32]
24. x21 ∨ ¬t6 ∨ ¬t8 ∨ ¬x32 [U , GRES1, 7, 9,¬x22]
25. x31 ∨ ¬t1 ∨ ¬t5 ∨ ¬t7 ∨ ¬t9 ∨ ¬x21 [U , GRES1, 20, 23, x12]
26. x21 ∨ ¬t2 ∨ ¬t4 ∨ ¬t7 ∨ ¬t8 ∨ ¬x31 [U , GRES1, 21, 22, x12]
27. x21 ∨ x31 ∨ ¬t6 ∨ ¬t8 ∨ ¬t9 [U , GRES1, 24, 10,¬x32]
28. x31 ∨ ¬t1 ∨ ¬t5 ∨ ¬t6 ∨ ¬t7 ∨ ¬t8 ∨ ¬t9 [U , GRES1, 25, 27,¬x21]
29. ¬t2 ∨ ¬t3 ∨ ¬t4 ∨ ¬t7 ∨ ¬t8 ∨ ¬x31 [U , GRES1, 26, 4, x21]
30. ¬t1 ∨ ¬t2 ∨ ¬t3 ∨ ¬t4 ∨ ¬t5 ∨ ¬t6 ∨ ¬t7 ∨ ¬t8 ∨ ¬t9 [U , GRES1, 28, 29, x31]
31. t0→[∅]¬t2 ∨ ¬t3 ∨ ¬t4 ∨ ¬t5 ∨ ¬t6 ∨ ¬t7 ∨ ¬t8 ∨ ¬t9 [N , CRES2, 11, 30, t1]
32. t0→[∅]¬t3 ∨ ¬t4 ∨ ¬t5 ∨ ¬t6 ∨ ¬t7 ∨ ¬t8 ∨ ¬t9 [N , CRES2, 12, 31, t2]
33. t0→[∅]¬t4 ∨ ¬t5 ∨ ¬t6 ∨ ¬t7 ∨ ¬t8 ∨ ¬t9 [N , CRES2, 13, 32, t3]
34. t0→[∅]¬t5 ∨ ¬t6 ∨ ¬t7 ∨ ¬t8 ∨ ¬t9 [N , CRES2, 14, 33, t4]
35. t0→[∅]¬t6 ∨ ¬t7 ∨ ¬t8 ∨ ¬t9 [N , CRES2, 15, 34, t5]
36. t0→[∅]¬t7 ∨ ¬t8 ∨ ¬t9 [N , CRES2, 16, 35, t6]
37. t0→[1]¬t8 ∨ ¬t9 [N , CRES1, 17, 36, t7]
38. t0→[1, 2]¬t9 [N , CRES1, 18, 37, t8]
39. t0→[1, 2, 3]false [N , CRES1, 19, 38, t9]
40. ¬t0 [U , RW1, 39]
41. false [I, IRES1, 1, 40, t0]

Figure 2: Derivation from D3
2 by calculus RESCL
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α α1, . . . , αn
¬¬ϕ ϕ

ϕ1 ∧ . . . ∧ ϕn ϕ1, . . . , ϕn
¬(ϕ1 ∨ . . . ∨ ϕn) ¬ϕ1, . . . ,¬ϕn

〈〈∅〉〉2ϕ ϕ, [∅]〈〈∅〉〉2ϕ
(a) α rules.

β β1 | . . . | βn
ϕ1 ∨ . . . ∨ ϕn ϕ1 | . . . | ϕn

ϕ1 ∧ . . . ∧ ϕn → ψ ¬ϕ1 | . . . | ¬ϕn | ψ
(b) β-rules

Table 1: Tableau Rules

only one conclusion to be added to the set of formulae. We also note that we have extended the α and
β rules to deal with n-ary conjunctions and n-ary disjunctions, respectively. The rules given here can
be simulated by several applications of the rules given in [9]. Also note that in a coalition problem
in DSNFCL, there is no formulae of the form 〈Σ〉ϕ (as the application of the transformation rule τΣφ

rewrites such formulae) and the corresponding α rule has been suppressed. Prestates are also sets of
formulae, but they do not need to be downward saturated; they are used as auxiliary constructs that
will be further unwound into states. In the prestate elimination phase, prestates are removed, leaving
only states in the graph; also, the edges are rearranged producing a directed graph called an initial
tableau. The last phase removes from the tableau those states which contain inconsistencies (i.e. the
constant false, ¬true, or a formula and its negation) or do not have all the required successors.

We note that in order to fully capture the semantic nature of a coalition problem in DSNFCL
(I,U ,N ), the clauses in U and N must be included in every state of the resulting tableau. Instead of
extending the tableau procedure for the next-time fragment of ATL, by explicitly adding those clauses
to states, we make use of the existing α rule for the 〈〈∅〉〉2 operator given in the tableau procedure
for full ATL. We define CL+ to be the language of CL plus the 〈〈∅〉〉2 operator that is only allowed to
occur positively in CL+ formulae. The semantics of the 〈〈∅〉〉2 is defined in terms of a run:

Definition 21. Let F = (Σ,S, s0, d, δ) be a CGF. A run in F is an infinite sequence λ = s′0, s
′
1, . . .,

s′i ∈ S for all i ≥ 0, where s′i+1 is a successor of s′i. The indexes i, i ≥ 0, in a sequence λ are called
positions. Let λ = s′0, s

′
1, . . . , s

′
i, . . . , s

′
j , . . . be a run. We denote by λ[i] = s′i the i-th state in λ and by

λ[i, j] = s′i, . . . , s
′
j the finite sequence that starts at s′i and ends at s′j . If λ[0] = s, then λ is called a

s-run.

Intuitively, 〈〈∅〉〉2ϕ means that, for all runs, ϕ always holds on them. Formally, a strategy F∅ for ∅
(or ∅-strategy) at a state s is given by F∅({s}) ∈ D(∅, s), i.e. F∅({s}) is the ∅ −move, F∅({s}) = σ∅.
The outcome of F∅ at state s ∈ S, denoted by out(s, F∅) is the set of all runs λ such that λ[i + 1] ∈
out(λ[i], F∅(λ[i])), for all i ≥ 0. Briefly, the outcome of F∅ at state s is a set consisting of every possible
s-run. Finally, given a model M, a state s ∈ M, and a formula ϕ, 〈M, s〉 |= 〈〈∅〉〉2ϕ if, and only if,
there exists an ∅-strategy F∅ such that 〈M, λ[i]〉 |= ϕ for all λ ∈ out(s, F∅) and all positions i ≥ 0.
The definition of positive coalition formula is now extended to a formula of the form [A]ϕ, where ϕ is
a CL+ formula. Negative coalition formulae and coalition formulae are defined as before. Note that
formulae in the form of 〈〈∅〉〉2 always occur positively in the set of formulae used in the construction
of the tableau for a coalition problem in DSNFCL. Also, as it is clear from the procedure given below,
the deletion rule for eventualities (formulae that hold at some future time of a run), which is part
of the full tableau procedure, is not applied here and will not contribute to remove nodes from the
tableau.

Before presenting the construction rules, we give two definitions that will be used later.

Definition 22. Let ∆ be a set of CL+ formulae. We say that ∆ is downward saturated if ∆ satisfies
the following two properties:

• If α ∈ ∆, then {α1, . . . , αn} ⊆ ∆;

• If β ∈ ∆, then β1 ∈ ∆, or . . ., or βn ∈ ∆.

Definition 23. Let Γ and ∆ be sets of CL+ formulae. We say that ∆ is a minimal downward saturated
extension of Γ if ∆ satisfies the following three properties:

• Γ ⊆ ∆;
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• ∆ is downward saturated;

• there is no downward saturated set ∆′ such that Γ ⊆ ∆′ ⊂ ∆.

As mentioned, the construction phase builds a directed graph which contains states and prestates.
States are downward saturated sets of formulae. Prestates are sets of formulae used to help the
construction of the graph, in a similar fashion to the tableau construction for PTL [31]. There are
two construction rules. The first, SR, creates states from prestates by saturation and the application
of fix-point operations, that is, by applications of α and β rules. We note that the set of α rules also
includes a rule for the 〈〈∅〉〉2 operator. According to the α decomposition rules in [9], 〈〈∅〉〉2ϕ should be
decomposed into ϕ and 〈〈∅〉〉#〈〈∅〉〉2ϕ. The ATL formula 〈〈∅〉〉#〈〈∅〉〉2ϕ corresponds to the CL+ formula
[∅]〈〈∅〉〉2ϕ, which explains the decomposition rule we give for 〈〈∅〉〉2ϕ. The second rule, Next, creates
prestates from states in order to ensure that coalition formulae are satisfied. There are two types of
edges: double edges, from prestates to states; and labelled edges from states to prestates. Intuitively,
the last type of edge represents the possible moves for the agents.

The construction starts by creating a prestate, which we call initial prestate, with a set of formulae
Φ being tested for satisfiability. Then, the two construction rules are applied until no new states or
prestates can be created. SR is the first of those rules.

SR Given a prestate Γ do:

(1) Create all minimal downward saturated extensions ∆ of Γ as states;

(2) For each state ∆ obtained in step (1), if ∆ does not contain any coalition formulae, add
[ΣΦ]true to ∆;

(3) For each state ∆ resulting from steps (1) and (2), if there is already in the pretableau
a state ∆′ such that ∆ = ∆′, add a double edge from Γ to ∆′; otherwise, add ∆ and a
double edge from Γ to ∆ (i.e. Γ =⇒ ∆) to the pretableau.

In the following, we call initial states the states created from the first application of the rule SR in
the construction of the tableau. The second rule, Next, is applied to states in order to build a set
of prestates, which correspond intuitively to possible successors of such states. In order to define the
moves which are available to agents and coalition of agents in each state, an ordering over the coalition
formulae in that state is defined. This ordering results in a list L(∆), where each positive coalition
formula precedes all negative coalition formulae. Intuitively, each index in this ordering refers to a
possible move choice for each agent. The number of moves, at a state ∆, for each agent mentioned in
a formula ϕ ∈ ∆, is then given by the number of coalition formulae occurring in ∆, i.e., the size of
the list L(∆). We also note that, from the construction of a tableau, the list L(∆) is never empty, as
the formula [Σϕ]true is included in the state ∆ if there are no other coalition formulae in ∆.

Once the moves available to all agents are defined, they are combined into move vectors. A move
vector labels one or more edges from a state to its successors, which are prestates in the tableau. The
decision of which formulae will be included in the successor prestate Γ′ of a state ∆ by a move σ, is
based on the votes of the agents. Suppose [A]ϕ ∈ ∆ and that [A]ϕ is the i-th formula in L(∆). If
all a ∈ A vote for ϕ, i.e. the corresponding action for agent a is i in σ, then ϕ is included in Γ′. For
〈A〉ϕ ∈ ∆, the decision whether ϕ is included in Γ′ depends on the collective vote of the agents which
are not in A. We first present the Next rule and then show an example of how a collective vote is
calculated. We say a state ∆ is consistent if, and only if, {¬true, false} ∩∆ = ∅ and for all formulae
ϕ, {ϕ,¬ϕ} 6⊆ ∆. A state is inconsistent if, and only if, it is not consistent.

Next Given a consistent state ∆, do the following:

(1) Order linearly all positive and negative coalition formulae in ∆ in such a way that the pos-
itive coalition formulae precede the negative coalition formulae. Let L(∆) be the resulting
list:

L(∆) = ([A0]ϕ0, . . . , [Am−1]ϕm−1, 〈A′0〉ψ0, . . . , 〈A′l−1〉ψl−1)

and let r∆ = |L(∆)| = m + l. Denote by D(∆) = {0, . . . , r∆}|ΣΦ|, the set of move vectors
available at state ∆. For every σ ∈ D(∆), let N(σ) = {i | σi ≥ m} be the set of
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agents voting for a negative formula in the particular move vector σ. Finally, let neg(σ) =
(Σi∈N(σ)(σi −m)) mod l.

(2) For each σ ∈ D(∆):

(a) create a prestate

Γσ = {ϕi | [Ai]ϕi ∈ ∆ and σa = i,∀a ∈ Ai}
∪ {ψj | 〈A′j〉ψj ∈ ∆, neg(σ) = j and ΣΦ \ A′j ⊆ N(σ)}

If Γσ = ∅, let Γσ be {true}.
(b) if Γσ is not already a prestate in the pretableau, add Γσ to the pretableau and connect

∆ and Γσ by an edge labelled by σ; otherwise, just add an edge labelled by σ from ∆
to the existing prestate Γσ (i.e. add ∆

σ−→ Γ).

Let prestates(∆) = {Γ | ∆
σ−→ Γ for some σ ∈ D(∆)}. Let L(∆) be the resulting list of ordered

coalition formulae in ∆ and ϕ ∈ L(∆). We denote by n(ϕ,L(∆)) the position of a coalition formula
ϕ in L(∆); if L(∆) is clear from the context, we write n(ϕ) for short.

It is easy to see that the Next rule is sound with respect to the axiomatisation given in Section 2.2.
A prestate Γσ contains both positive coalition formulae [A]ϕA and [B]ϕB only if A ∩ B = ∅, because
there can be no i ∈ ΣΦ such that σi = n([A]ϕA) and σi = n([B]ϕB) for [A]ϕA 6= [B]ϕB. Also, a
prestate Γσ contains both coalition formulae [A]ϕA and 〈B〉ϕB only if A ⊆ B. If A 6⊆ B, then there is
A′ ⊆ A such that A′ ⊆ ΣΦ \ B ⊆ N(σ). However, all agents in A vote for positive formulae; therefore
they cannot be a subset of N(σ), which is the set of agents voting for negative formulae.

Prestate Elimination Phase. In this phase, the prestates (and edges from and to it) are removed
from the pretableau. Let PΦ be the pretableau obtained by applying the construction procedure to
the initial prestate containing the set Φ. Let states(Γ) = {∆ | Γ =⇒ ∆}, for any prestate Γ. The
deletion rule is given below.

PR For every prestate Γ in PΦ:

(1) remove Γ from PΦ;

(2) for all states ∆ in PΦ such that ∆
σ−→ Γ and all states ∆′ ∈ states(Γ) put ∆

σ−→ ∆′.

The graph obtained from exhaustive application of PR to PΦ is the initial tableau, denoted by T Φ
0 .

State Elimination Phase. In this phase, states that cannot be satisfied in any model are removed
from the tableau. There are essentially two reasons to remove a state ∆: ∆ is inconsistent (as defined
on page 15); or for some move σ ∈ D(∆), there is no state ∆′ such ∆

σ−→ ∆′ is in the tableau. The
deletion rules are applied non-deterministically, removing one state at every stage. We denote by T Φ

m+1

the tableau obtained from T Φ
m by an application of one of the state elimination rules given below. Let

SΦ
m be the set of states of the tableau T Φ

m .
The elimination rules are defined as follows.

E1 If ∆ is not consistent, obtain T Φ
m+1 from T Φ

m by eliminating ∆, i.e. let SΦ
m+1 = SΦ

m \ {∆};

E2 If for some σ ∈ D(∆), there is no ∆′ such that ∆
σ−→ ∆′, then obtain T Φ

m+1 from T Φ
m by

eliminating ∆, i.e. let SΦ
m+1 = SΦ

m \ {∆};

The elimination procedure consists of applying E1 until all inconsistent states are removed. Then, the
rule E2 is applied until no states can be removed from the tableau. The resulting tableau, called final
tableau, is denoted by T Φ.

Definition 24. The final tableau T Φ is open if Φ ⊆ ∆ for some ∆ ∈ SΦ. A tableau T Φ
m , m ≥ 0, is

closed if Φ 6⊆ ∆, for every ∆ ∈ SΦ.

Theorem 4 ([17]). Let Φ be a finite set of formulae in CL+. The tableau construction for Φ terminates
in time exponential in the size of Φ and Φ is unsatisfiable if, and only if, the final tableau for Φ, T Φ,
is closed.
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Tableaux for Coalition Problems. In order to use the tableau procedure outlined above to deter-
mine the satisfiability of a coalition problem in (unit) DSNFCL and then to use the resulting method in
our completeness proof for RESCL on coalition problems in unit DSNFCL, we need to translate coalition
problems into CL+.

Firstly, we define the set of disjunctions that might occur in a coalition problem in DSNFCL C =
(I,U ,N ). We denote by ΠC the set of propositional symbols occurring in C, and by ΛC = ΠC ∪ {¬p |
p ∈ ΠC} the set of literals that might occur in C. Let DC be {simp(

∨
l∈M l) | M ∈ 2ΛC}\{true, false},

where simp is defined by simp(D ∨ l ∨ ¬l) = true and simp(D ∨ true) = true; in any other case,
simp(D) = D, for any disjunction D. Thus, DC contains any (non trivial) disjunction that can be
formed by either propositional symbols or their negations occurring in the coalition problem C. Let
ΘC be the set {(D ∨ ¬D) | D ∈ DC}. In the following, we refer to ΘC as the set of tautologies.

Let C0, C1, C2, . . . , Cn be a derivation by RESCL, with Ci = (Ii,Ui,Ni) for each i, 0 ≤ i ≤ n. We
construct the initial tableau T Ci0 for Ci from a prestate containing the following set of formulae:

{D | D ∈ Ii} ∪
{〈〈∅〉〉2D′ | D′ ∈ Ui} ∪
{〈〈∅〉〉2D′′ | D′′ ∈ Ni} ∪
{〈〈∅〉〉2D′′′ | D′′′ ∈ ΘCi}

We thereby obtain a sequence T C00 , . . . , T Cn0 . For each Ci, 0 ≤ i ≤ n, we denote by T Ci+ the tableau

obtained from the initial tableau T Ci0 after the deletion rule E1 has been exhaustively applied and
we denote by T Ci the final tableau obtained from T Ci0 after both deletion rules E1 and E2 have been
exhaustively applied.

We will use the following lemmata from [17]:

Lemma 3. Let C = (I,U ,N ) be a coalition problem in DSNFCL. If I ∪ U is unsatisfiable, there is a
refutation for I ∪ U using only the inference rules IRES1 and GRES1.

Lemma 4. Let C = (I,U ,N ) be a coalition problem in DSNFCL. Let T C0 be the initial tableau for C
and SC0 the set of states in T C0 . If ϕ ∈ U ∪ N ∪ΘC , then ϕ ∈ ∆, for all ∆ ∈ SC0 .

Lemma 5. Let C = (I,U ,N ) be a coalition problem in DSNFCL and C → D be a clause in N , where
C = l1∧ . . .∧ ln, for some n ≥ 0. Let T C be the tableau for C and ∆ a state in T C+ . If {l1, . . . , ln} ⊆ ∆,
then D ∈ ∆.

We now establish two further lemmata before we state and prove the completeness of RESCL for
coalition problems in unit DSNFCL.

Lemma 6. Let C = (I,U ,N ) be a coalition problem in (unit) DSNFCL and T C+ be the tableau for C
after the rule E1 has been exhaustively applied. If I ∪ U is unsatisfiable, then T C+ is closed.

Proof. Let T C0 be the initial tableau for C and let SC0 be set of states in T C0 . Let ∆ be an arbitrary
initial state in T C0 . According to Lemma 4, U ⊆ ∆. Also, by construction, I ⊆ ∆. If false ∈ I ∪ U ,
then false ∈ ∆ and ∆ would be eliminated by an application of E1 and ∆ would not occur in T C+ .
Consequently, T C+ would be closed.

Assume that false 6∈ I∪U . Since ∆ is downward closed, for each propositional clause
∨n
j=1 lj ∈ I∪

U , ∆ contains at least one literal lj , 1 ≤ j ≤ n. Let P(∆) = {l ∈ ∆ | C ∈ I∪U and l is a literal in C}.
Suppose there is no propositional symbol p ∈ Π such that {p,¬p} ⊆ P(∆). Then P(∆)∩Π would be
a propositional model of I ∪U contradicting that I ∪U is unsatisfiable. Thus, there exists p ∈ Π such
that {p,¬p} ⊆ P(∆), ∆ would be eliminated by an application of E1, it would therefore not occur in
T C+ , and T C+ would be closed.

Lemma 7. Let C = (I,U ,N ) be an unsatisfiable coalition problem in unit DSNFCL such that I ∪ U
is satisfiable. Let ∆ ∈ T C+ be the first state to be eliminated by rule E2 in the state elimination phase
that will result in the final tableau T C for C. Then we can derive a global clause C 6∈ U from C.
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Proof. Since I ∪ U is satisfiable, T C+ is not closed, but since C is unsatisfiable, the final tableau T C
must be closed. Therefore, T C+ contains at least one state that can be deleted by an application of
the deletion rule E2. Let ∆ be the first state to which rule E2 is applied. By definition of E2, ∆ is
deleted if there is a move vector σ ∈ D(∆) such that there is no ∆′ with ∆

σ−→ ∆′. Let L(∆) be the
ordered list of coalition formulae in ∆ and for any coalition formula ϕ ∈ ∆ let pos(ϕ,L(∆)) be the
position of ϕ in L(∆). From Lemma 4, all clause in U and in N are in ∆ and each coalition formula
in ∆ corresponds to the right-hand side of coalition clause in N . By Lemma 5, the right-hand side of
coalition formulae are in the states where the left-hand side is satisfied. Therefore, by Lemmas 4 and
5, and by the definition of the rule Next in the tableau construction, which gives the set of prestates
that are connected from ∆ by an edge labelled by σ, we obtain that ∆′ is one of the minimal downward
saturated sets built from U ∪ΘC ∪ Pp0 ∪ Pn0 ∪N where

P+
0 = {p | [A]p ∈ E+

0 }
E+

0 = {[A]p | P → [A]p ∈ N+
0 }

N+
0 = {P → [A]p | P → [A]p ∈ N ,∆ |= P, σa = pos([A]p,L(∆)) for all a ∈ A}

P−0 = {p | 〈A〉p ∈ E−0 } \ P
+
0

E+
0 = {〈A〉p | P → 〈A〉p ∈ N−0 }
N−0 = {P → 〈A〉p | P → 〈A〉p ∈ N ,∆ |= P,ΣC \ A ⊆ N(σ), neg(σ) = pos(〈A〉p,L(∆))}

Recall that (a-i) for any [A]p, [A′]p′ ∈ E+
0 with [A]p 6= [A′]p′ we have A ∩ A′ = ∅, (a-ii) N−0 , E−0 and

P−0 are either all empty sets or all singleton sets, and (a-iii) for any [A]p ∈ E+
0 and 〈A′〉p′ ∈ E−0 we

have A ⊆ A′.
Since ∆′ is not in T C+ , it must have been deleted by an application of E1, because ∆ is the first

state being deleted by E2. Therefore, by the definition of E1, ∆′ contains propositional inconsistencies.
As neither the tautologies in ΘC nor the formula in N contribute to propositional inconsistencies in
∆′, the formula

∧
C∈S0

C where S0 = U0 ∪ P+
0 ∪ P

−
0 , with U0 = U , is unsatisfiable. Since both U

and P+
0 ∪ P

−
0 are satisfiable, S0 can only be unsatisfiable if the clause C =

∨
p∈P+

0 ∪P
−
0
¬p is logically

implied by U . Therefore, by Theorem 3, there is a clause C ′ that can by derived from U that subsumes
C. Since C ′ subsumes C, there must be sets Q+

0 ⊆ P
+
0 and Q−0 ⊆ P

−
0 such that C ′ =

∨
p∈Q+

0 ∪Q
−
0
¬p.

Linearly order Q+
0 ∪Q

−
0 such that for non-empty Q−0 its one element comes last. Let (p1, . . . , pm)

be the resulting list. We associate each pi in this list with a set of coalition clauses using the following
functions:

cl+(pi) = {P → [A]pi | P → [A]pi ∈ N ,∆ |= P, σa = pos([A]pi,L(∆))}
cl−(pi) = {P → 〈A〉pi | P → 〈A〉pi ∈ N ,∆ |= P,ΣC \ A ⊆ N(σ), neg(σ) = pos(〈A〉p,L(∆))}

cl(pi) =

{
cl+(pi) if cl+(pi) 6= ∅
cl−(pi) otherwise

Note that by construction, cl(pi) is non-empty for every i, 1 ≤ i ≤ m. With each pi ∈ Q+
0 ∪ Q

−
0 ,

1 ≤ i ≤ m, we then uniquely associate a clause κi, with κi = Pi → [Ai]pi or κi = Pi → 〈Ai〉pi, in
cl(pi). If cl(pi) contains more than one clause, then we can choose κi arbitrarily among the elements
of cl(pi).

A refutation S0, . . . ,Sn, with n ∈ N, of S0 can then be constructed that satisfies the following
properties:

(b-i) there is an index k, 0 ≤ k < n, such that C ′ ∈ Sk and for each i, 0 ≤ i < k, Si+1 = Ui+1∪P+
0 ∪P

−
0

and Ui+1 = Ui ∪ {Di+1} where Di+1 is a resolvent of two clauses in Ui;
(b-ii) Sk+1 = Sk ∪ {Dk+1} where Dk+1 is a resolvent of C ′ and p1;

(b-iii) for every i, k + 1 ≤ i ≤ k + m = n, Si+1 = Si ∪ {Di+1} where Di+1 is a resolvent of Di and
pi+1−k, that is, the clause C ′, Dk+1, . . . , Dn form a linear input derivation.

Property (b-i) reflects that C ′ can be derived from U alone; the slightly complicated formulation of
the property is necessitated by the fact that U and P+

0 ∪ P
−
0 may not be disjoint. Clearly, in the
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derivation of C ′ we can make use of unit clauses that occur in both U and P+
0 ∪ P

−
0 but not those

that only occur in P+
0 ∪ P

−
0 .

That a refutation satisfying the last two properties exists follows from the fact that C’ is a negative
clause and that we can ‘eliminate’ the literals in C’ one by one using unit resolution steps with positive
unit clauses in Q+

0 ∪Q
−
0 , and that we can do so in an arbitrary order.

We inductively construct a derivation C = C0, . . . , Cn that satisfies the following properties:

(c-i) for all i, 0 ≤ i ≤ k, Ci = (I,Ui,N );

(c-ii) Ck+1 = (I,Uk,Nk+1) where Nk+1 = N ∪ {P1 → [A1]Dk+1} if κ1 = P1 → [A1]p1 or Nk+1 =
N ∪ {P1 → 〈A1〉Dk+1} if κ1 = P1 → 〈A1〉p1;

(c-iii) for all i, k + 1 ≤ i ≤ n − 2, Ci+1 = (I,Uk,Ni+1) with Ni+1 = Ni ∪ {P1 ∧ . . . ∧ Pi+1−k →
[A1 ∪ · · · ∪ Ai+1−k]Di+1};

(c-iv) Cn = (I,Uk,Nn) whereNn contains either a clause of the form P1∧. . .∧Pm → [A1∪· · ·∪Am]false
or P1 ∧ . . . ∧ Pm → 〈Am \ (A1 ∪ · · · ∪ Am−1)〉false.

In the base case, i = 0, C0 = C = (I,U ,N ) and as U = U0, property (c-i) is satisfied.
For the induction step, let C0, . . . , Ci, i ≥ 0, be the derivation already constructed and we assume

that properties (c-i) to (c-iii) hold for that derivation.

1. If i < k, then Si+1 = Si ∪ {D ∨ D′} where D ∨ D′ is obtained by resolving clauses D ∨ l and
D′∨¬l ∈ Ui. Since Ci = (I,Ui,N ), D∨ l and θ(D′∨¬l) are both global clauses in Ci. These can be
resolved using GRES1 resulting in the global clause D∨D′. We define Ci+1 = (I,Ui∪{D∨D′},N ).
Then, Ci+1 = (I,Ui+1,N ) and property (c-i) holds for C1, . . . , Ci+1.

2. If i = k, then Si+1 = Si ∪ {Di+1} where Di+1 is obtained by resolving the clause C ′ = Di =
(Di+1 ∨ ¬p1) with the unit clause p1 from Qp0 ∪Qn0 ⊆ Si.
For the construction of Ci+1 there are two possibilities depending on the form κ1:

(a) κ1 = P1 → [A1]p1 ∈ N+
0 . Then let Ci+1 = (I,Uk,N ∪{P1 → [A1]Di+1}), where P1 → [A1]Di+1

is obtained by an application of CRES2 to the global clause Di+1 ∨¬p1 ∈ Uk and the coalition
clause κ1 ∈ N+

0 ⊆ N . Property (c-ii) holds for C1, . . . , Ci+1. If i + 1 = n, then Di+1 = false,
Ci+1 = Cn contains P1 → [A1]false, and Property (c-iv) holds for C1, . . . , Cn.

(b) κ1 = P1 → 〈A1〉p1 ∈ N−0 . Then let Ci+1 = (I,Uk,N ∪ {P1 → 〈A1〉Di+1}), where P1 →
〈A1〉Di+1 is obtained by an application of CRES4 to the global clause Di+1∨¬p1 ∈ Uk and the
coalition clause κ1 ∈ N−0 ⊆ N . Note that by construction of (p1, . . . , pm), κ1 is only a negative
coalition clause if m = 1 and therefore this is the last step in the refutation and Di+1 = false.
Property (c-iv) holds for C1, . . . , Ci+1 = Cn.

3. If i ≥ k + 1, then Si+1 = Si ∪ {Di+1} where Di+1 is obtained by resolving the clause Di =
(Di+1 ∨ ¬pi+1−k) in Si with the unit clause pi+1−k from Qp0 ∪Qn0 ⊆ Si.
By the induction hypothesis Ci = (I,Uk,Ni) whereNi = Ni−1∪{P1∧. . .∧Pi−k → [A1∪· · ·∪Ai−k]Di

and Di = Di+1∨¬pi+1−k. For the construction of Ci+1 there are two possibilities depending on the
form κi+1−k:

(a) κi+1−k = Pi+1−k → [Ai+1−k]pi+1−k. Let Ci+1 = (I,Uk,Ni ∪ {P1 ∧ . . . ∧ Pi+1−k → [A1 ∪ · · · ∪
Ai−k ∪ Ai+1−k]Di+1}), where P1 ∧ . . . ∧ Pi+1−k → [A1 ∪ · · · ∪ Ai−k ∪ Ai+1−k]Di+1 is obtained
by an application of CRES1 to P1 ∧ . . .∧Pi−k → [A1 ∪ · · · ∪Ai−k]Di and κi+1−k; this inference
is possible since by property (a-i), Ai+1−k ∩ (A1 ∪ · · · ∪ Ai−k) = ∅. Property (c-iii) holds
for C1, . . . , Ci+1. If i + 1 = n, then Di+1 = false, Ci+1 = Cn contains P1 ∧ . . . ∧ Pi+1−k →
[A1 ∪ · · · ∪ Ai−k ∪ Ai+1−k]false, and Property (c-iv) holds for C1, . . . , Cn.

(b) κi+1−k = Pi+1−k → 〈Ai+1−k〉pi+1−k. Let Ci+1 = (I,Uk,Ni ∪ {P1 ∧ . . . ∧ Pi+1−k → 〈Ai+1−k \
(A1 ∪ · · · ∪Ai−k)〉Di+1}), where P1 ∧ . . .∧Pi+1−k → 〈Ai+1−k \ (A1 ∪ · · · ∪Ai−k ∪Ai+1−k)〉Di+1

is obtained by an application of CRES3 to P1 ∧ . . . ∧ Pi−k → [A1 ∪ · · · ∪ Ai−k]Di and κi+1−k;
this inference is possible since by property (a-iii), (A1 ∪ · · · ∪ Ai−k) ⊆ Ai+1−k. Property (c-iv)
holds for C1, . . . , Ci+1 = Cn.
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In the end we obtain a derivation C0, . . . , Cn where Cn contains either P1∧. . .∧Pm → [A1∪· · ·∪Am]false,
to which we can apply the rewrite rule RW1, or P1∧. . .∧Pm → 〈Am\(A1∪· · ·∪Am−1)〉false, to which
we can apply the rewrite rule RW2. In both cases we obtain the global clause C ′′ = ¬P1 ∨ . . .∨¬Pm.

We claim that C ′′ 6∈ U . Assume the opposite. From Lemma 4, global clauses are in every state
of T C+ . So, the state ∆ contains C ′′. As ∆ is a minimal downward saturated set, ∆ entails ¬Pi for
some i, 1 ≤ i ≤ m. ∆ also contains all formulae in N+

0 , E+
0 N

−
0 , and E−0 . By construction, either

Pi → [Ai]pi ∈ N+
0 or Pi → 〈Ai〉pi ∈ N−0 . By definition of N+

0 and N−0 , ∆ |= Pi. However, ∆ |= ¬Pi
and ∆ |= Pi implies that ∆ is inconsistent and should have been removed by an application of rule
E1. This contradicts our assumption that ∆ is in T C+ .

Theorem 5 (Completeness of RESCL). Let C = (I,U ,N ) be an unsatisfiable coalition problem in unit
DSNFCL. Then there is a refutation for C using the inference rules IRES1, GRES1, CRES1-4, and
RW1-2.

Proof. Let C = (I,U ,N ) be an unsatisfiable coalition problem in unit DSNFCL. Firstly, if C is un-
satisfiable and only if C is unsatisfiable, by Theorem 4, we have that T C is closed. Obviously, if C is
unsatisfiable, every coalition problem in a derivation from C is also unsatisfiable. We show that if C is
unsatisfiable, then we can construct a refutation RC = C0, . . . , Cn, n ∈ N.

Let C0
0 = C. If T C

0
0

+ is closed, then all initial states in T C
0
0

+ have been removed by applications of E1
which means that I ∪U is unsatisfiable. By Lemma 3 there exists a refutation C0

0 , . . . , C
m0
0 for C0

0 using

only the inference rules IRES1 and GRES1. If T C
0
0

+ is not closed, then by Lemma 7, we can construct

a derivation C0
0 , . . . , C

m′0
0 = C0

1 = (I,U1,N1) such that there is a global clause κ with κ ∈ U1 but κ 6∈ U .

Depending on whether T C
0
1

0 is closed, we proceed as for C0
0 in the construction of the derivation.

We continue this construction until we derive a coalition problem C0
i for which T C

0
i

+ is closed and
for which we can then complete the construction of the refutation using Lemma 3. We know that
we will eventually derive such a coalition problem C0

i as the number of global clauses is finite, that

is, it cannot indefinitely be the case that T C
0
i

+ is open while the final tableau T C0
i is closed. On the

other hand if we were to derive a coalition problem C0
i such that both T C

0
i

+ and T C0
i are open, then by

Theorem 4 C0
i = (I,Ui,Ni) is satisfiable. As U ⊆ Ui and N ⊆ N this contradicts the assumption that

C = (I,U ,N ) is unsatisfiable.

4 Ordered Resolution for Coalition Logic

Ordering refinements are a commonly used approach to reduce the search space of resolution for
classical propositional and first-order logic. They are utilised by all state-of-the-art resolution-based
theorem provers for first-order logic, including E [24, 23], SPASS [30, 25], and Vampire [14, 27].
Ordering refinements have also been used in the context of modal and temporal logics including
PLTL [13], and CTL [32].

An atom ordering for RES�CL is a well-founded and total ordering � on the set Π. The ordering
� is extended to literals such that for each p ∈ Π, ¬p � p, and for each q ∈ Π such that q � p then
q � ¬p and ¬q � ¬p.

A literal l is (strictly) maximal with respect to a propositional disjunction C iff for every literal
l′ in C, l′ 6� l (l′ 6� l). Note that as long as a propositional disjunction C does not contain duplicate
literals, any literal l that is maximal with respect to C is also strictly maximal with respect to C.

We could use the ordering � to restrict the applicability of the rules IRES1, GRES1, CRES1 to
CRES4 so that a rule is only applicable if and only if the literal l in C ∨ l is maximal with respect C
and the literal ¬l in D ∨ ¬l is maximal with respect to D.

One would normally expect that the calculus we obtain by way of this restriction is complete for
any ordering, see, for example [4, 12, 13, 33].

However, it turns out that such a restriction would render our calculus incomplete, even on coalition
problems in unit DSNFCL. Consider the following example:
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1. t0 [I]
2. ¬t1 ∨ p [U ]
3. ¬t1∨¬p [U ]
4. t0→[1]t1 [N ]

Assume that the ordering on propositional symbols is t0 � t1 � p. Then the only inferences possible
are the following:

5. t0→[1]p [N , CRES2, 2, 4, t1]
6. t0→[1]¬p [N , CRES2, 3, 4, t1]

An resolution inference using CRES1 with Clauses (5) and (6) as premises is not possible as the sets
of agents in the two clauses is not disjoint. Using the unrefined calculus RESCL or using a different
ordering, namely, p � t1 � t0 allows us to construct a refutation for this example:

5’. ¬t1 [U , GRES1, 2, 3, p]
6’. t0→[1]false [N , CRES2, 4, 5′, t1]
7’. ¬t0 [U , RW1, 6′]
8’. false [U , IRES1, 1, 7′, t0]

As the example illustrates, the incompleteness of a naive ordering refinement of RESCL on coalition
problems in unit DSNFCL is closely related to the incompleteness of RESCL on coalition problems
in DSNFCL. We have observed that the latter is related to the fact that a derived clause does not
accurately reflect the constraints on the agents’ moves that are inherited from the premises that were
used in the resolution step. While unit DSNFCL is a sufficient approximation for RESCL to be complete,
for an ordering refinement of RESCL we need a better representation of the constraints imposed by
the clauses in a coalition problem. To this end we introduce the notions of coalition vector, positive
A-coalition vector and negative A-coalition vector, and use these to replace coalition modalities in
coalition clauses.

Definition 25. Let |Σ| = k. A coalition vector #�c is a k-tuple such that for every a, 1 ≤ a ≤ k, #�c [a]
is either an integer number not equal to zero or the symbol ∗ and for every a, a′, 1 ≤ a < a′ ≤ k, if
#�c [a] < 0 and #�c [a′] < 0 then #�c [a] = #�c [a′].

A coalition vector #�c is negative if #�c [a] < 0 for some a, 1 ≤ a ≤ k. Otherwise, #�c is positive. We
denote by #�c + that #�c is positive and by #�c − that #�c is negative.

We define the absolute value abs( #�c1) of a coalition vector #�c1 is the positive coalition vector #�c2 with
#�c2[a] = | #�c1[a]| for every a, 1 ≤ a ≤ k.

The set of free agents FA( #�c ) of a coalition vector #�c is the set of indices a with #�c [a] = ∗: FA( #�c ) =
{a | 1 ≤ a ≤ k ∧ #�c [a] = ∗}.

In analogy, the set of free agents FA(σA) of a A-move is the set of agents a with σA[a] = ∗:
FA( #�c ) = {a | 1 ≤ a ≤ k ∧ σA[a] = ∗}.

The set of bound agents BA( #�c ) of a coalition vector #�c is the set of indices a with #�c [a] > 0:
BA( #�c ) = {a | 1 ≤ a ≤ k ∧ #�c [a] > 0}.

The set of reactive agents RA( #�c ) of a coalition vector #�c is the set of indices a with #�c [a] < 0:
RA( #�c ) = {a | 1 ≤ a ≤ k ∧ #�c [a] < 0}.

For example, given Σ = {1, . . . , 6}, #�c1 = (1, ∗, ∗, 3, ∗, 1, ∗), #�c2 = (∗,−2, ∗, ∗, ∗,−2), and #�c 3 =
(1,−2, ∗, 3, ∗,−2) are coalition vectors, #�c1 is positive, while #�c2 and #�c 3 are negative. For #�c 3 we have
FA( #�c 3) = {3, 5}, BA( #�c 3) = {1, 4}, and RA( #�c 3) = {2, 6}.

Definition 26. A move vector σ extends a (positive or negative) coalition vector #�c , denoted by #�c v σ
or σ w #�c , if σ(a) = #�c [a] for every a ∈ BA( #�c ).

Definition 27. Let A, ∅ ⊆ A ⊆ Σ, be a coalition of agents with |Σ| = k and let i > 0 be a natural
number. A positive A-coalition vector #�c iA with index i (positive A-coalition vector for short) is a
k-tuple such that #�c iA(a) = i for every a ∈ A and #�c iA(a′) = ∗ for every a′ 6∈ A.
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Definition 28. Let A, ∅ ⊆ A ⊆ Σ, be a coalition of agents with |Σ| = k and let i > 0 be a natural
number. A negative A-coalition vector #�c −iA with index i (negative A-coalition vector for short) is a
k-tuple such that #�c −iA (a′) = −i for every a′ 6∈ A and #�c iA(a) = ∗ for every a ∈ A.

Definition 29. The set WFFVCL of VCL formulae is inductively defined as follows.

• if p is a propositional symbols in Π, then p and ¬p (negation) are VCL formulae;

• if ϕ and ψ are VCL formulae, then so are (ϕ→ ψ) (implication);

• if ϕi, 1 ≤ i ≤ n, n ∈ N0, are VCL formula, then so are (ϕ1 ∧ . . . ∧ ϕn) (conjunction), also written∧n
i=1 ϕi, and (ϕ1 ∨ . . . ∨ ϕn) (disjunction), also written

∨n
i=1 ϕi; and

• if #�c is a coalition vector and ϕ is a VCL formula, then so is #�c ϕ.

In order to define the semantics of WFFVCL formulae we can reuse Concurrent Game Frames, but
need to extend Concurrent Game Models with choice functions that give meaning to coalition vectors.

Definition 30. A Concurrent Game Model with Choice Functions (CGMCF) is a tupleM = (F ,Π, π, F+, F−),
where

• F = (Σ,S, s0, d, δ) is a CGF;

• Π is the set of propositional symbols;

• π : S −→ 2Π is a valuation function;

• F+ = {f i | i ∈ N} is a set of functions such that f i : S × Σ −→ N0 and f i(s, a) ∈ D(a, s) for every
i ∈ N, a ∈ Σ, and s ∈ S;

• F− = {gin | i ∈ N, n ∈ N0, and n ≤ |Σ|} is a set of functions such that gin : S × Σ× Nn0 −→ N0 and
gin(s, a, (m1, . . . ,mn)) ∈ D(a, s) for every i ∈ N, a ∈ Σ, s ∈ S, (m1, . . . ,mn) ∈ Nn0 .

Definition 31. LetM = (F ,Π, π, F+, F−) be a CGMCF and let s be a state in S. Let #�c be a coalition
vector where FA( #�c ) ∪ BA( #�c ) = {a1, . . . , an} with a1 < · · · < an. A move vector σ instantiates the
coalition vector #�c at state s, denoted by #�c v σ, if:
• σ[a] = f

#�c [a](s, a) for every a ∈ BA( #�c ),

• σ[a′] = g
| #�c [a′]|
n (s, a′, (σ[a1], . . . , σ[an])) for every a′ ∈ RA( #�c ).

The intuition underlying Definition 31 is the following. A coalition vector such as, for example,
(1,−2, ∗, 3, ∗,−2), indicates that agents 1 and 4 are committed to moves m1 and m4 that depend
only on the state s they are currently in and are determined by the choice functions f1 and f3:
m1 = f1(s, 1) and m4 = f3(s, 4), respectively. Agents 3 and 5 will perform arbitrary moves m3 and
m5 of their choice in s. Finally, agents 2 and 6 will choose their moves m2 and m6 in reaction to the

moves of all the other four agents and their moves are determined by the choice function g
|−2|
4 = g2

4 :
m2 = g2

4(s, 3, (m1,m3,m4,m5)) and m6 = g2
4(s, 6, (m1,m3,m4,m5)), respectively.

Definition 32. Let M = (F ,Π, π, F+, F−) be a CGMCF with s ∈ S. The satisfaction relation |=
between M, s and VCL formulae is inductively defined as follows.

• 〈M, s〉 |= p iff p ∈ π(s), for all p ∈ Π;

• 〈M, s〉 |= ¬ϕ iff 〈M, s〉 6|= ϕ;

• 〈M, s〉 |= (ϕ→ ψ) iff 〈M, s〉 |= ϕ implies 〈M, s〉 |= ψ;

• 〈M, s〉 |=
∧n
i=1 ϕi iff 〈M, s〉 |= ϕi for all i, 1 ≤ i ≤ n;

• 〈M, s〉 |=
∨n
i=1 ϕi iff 〈M, s〉 |= ϕi for some i, 1 ≤ i ≤ n;

• 〈M, s〉 |= #�c ϕ iff for all σ ∈ D(s), #�c v σ implies 〈M, δ(s, σ)〉 |= ϕ.

The notions of satisfiability of a VCL formula and a set of VCL formulae are defined as in Defini-
tions 10 and 11 but with respect to CGMCF’s instead of CGM’s.
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4.1 Normal Form Transformation

Definition 33. A coalition problem is a tuple (I,U ,N ), where I, the set of initial formulae, is a
finite set of propositional formulae; U , the set of global formulae, is a finite set of formulae in WFFVCL;
and N , the set of coalition formulae, is a finite set of coalition formulae, that is, formulae in which a
coalition modality occurs.

In analogy to coalition problems in DSNFCL, we introduce the notion of coalition problems in
DSNFVCL. As before, we use a clausal normal form:

initial clauses
∨n
j=1 lj

global clauses
∨n
j=1 lj

coalition clauses
∧m
i=1 l

′
i →

#�c
∨n
j=1 lj

where m,n ≥ 0 and l′i, lj , for all 1 ≤ i ≤ m, 1 ≤ j ≤ n, are literals such that within every conjunction
and every disjunction literals are pairwise different, and #�c is a coalition vector.

Definition 34. A coalition problem in DSNFVCL is a coalition problem (I,U ,N ) such that I is a set
of initial clauses, U is a set of global clauses, and N is a set of coalition clauses.

We define the rewriting system R4 as R4 = {⇒1
∧,⇒1

→,U ,⇒1
→,N ,⇒1

〈Σϕ〉,⇒
2
∨,⇒2

[ ],⇒
2
〈 〉,⇒

4
[ ],⇒

4
〈 〉}

together with simplification, where

(I,U ,N ∪ {t→ [A]ψ}) ⇒4
[ ] (I,U ,N ∪ {t→ #�c iAψ})

where ψ is a disjunction of literals, i is a natural number
not occurring as an index of some coalition vector in N , and
#�c iA is a positive coalition vector with index i

(I,U ,N ∪ {t→ 〈A〉ψ}) ⇒4
〈 〉 (I,U ,N ∪ {t→ #�c −iA ψ})

where ψ is a disjunction of literals, A 6= Σϕ, i is a natural
number not occurring as an index of some coalition vector in

N , and #�c −iA is a negative coalition vector with index i

Note that the condition that i is a natural number not occurring as an index of some coalition
vector in N implies that i only occurs in one particular clause and is uniquely associated with the CL
formula t→ [A]ψ or t→ 〈A〉ψ to which the rewriting rules is applied.

Lemma 8. Let C be a coalition problem in DSNFCL. Let C0, C1, . . . be a sequence of coalition problems
such that C0 = C and for each i, i > 0, Ci+1 is obtained from Ci by applying a rewriting rule in R4

combined with zero or more applications of the simplification rules to a formula in Ci. for each i, i > 0,
Ci+1 is obtained from Ci by applying a rewriting rule in R4 combined with zero or more applications
of the simplification rules to a formula in Ci. Then the sequence C0, C1, . . . terminates, i.e. there exists
an index n, n ≥ 0, such that no rewriting rule can be applied to Cn. Furthermore, Cn is a coalition
problem in DSNFVCL, the size of Cn is linear in the size of C, and Cn is satisfiable if, and only if, C is
satisfiable.

Proof. Let C = C0 = (I0,U0,N0). We construct a sequence C0, . . . such that for all i, i ≥ 0, Ci+1 =
(I0,U0,Ni+1) is obtained from Ci = (I0,U0,Ni) by applying ⇒4

[ ] or ⇒4
〈 〉 combined with zero or more

applications of the simplification rules to a formula in Ci. If nCL(C) is the number of occurrences of
a formula of the form [A]ψ or 〈A〉ψ, for some coalition A, in C, then nCL(Ci) = nCL(Ci+1) + 1, for
every i, i ≥ m. Thus, the sequence C0, . . . terminates, in particular, it terminates after nCL(C0) = |N0|
applications of the two rewriting rules and no rewriting rule can be applied to Cn where n = m+ |N0|.
Since each application of ⇒4

[ ] and ⇒4
〈 〉 replaces a CL formula by a VCL formula of the same size, we

have |C0| = |Cn| and therefore the size of Cn is linear in the size of ϕ. Also, Cn is in DSNFVCL.
It remains to show that Cn is satisfiable iff ϕ is satisfiable which is equivalent to showing that C0

is satisfiable iff Cn is satisfiable.
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First, assume that C0 is satisfiable and that M = (F ,Π, π) with F = (Σ,S, s0, d, δ) is a model of
C0. We construct a CGMCF M′ = (F ,Π, π, F+, F−) for Cn as follows:

(a) To construct F+ we proceed as follows. Let t → [A]ψ be a formula in N0 and let t → #�c iAψ be
the formula it is replaced with by ⇒4

[ ] where #�c iA is a positive coalition vector with index i and

i is a natural number not occurring in any other formula. Recall that #�c iA is a |Σ|-tuple such
that #�c iA[a] = i for every a ∈ A and #�c iA[a′] = ∗ for every a′ 6∈ A. We need to define a function
f i : S × Σ −→ N0.

Let s ∈ S be a state such that 〈M, s〉 |= [A]ψ. Then there exists an A-move σA ∈ D(A, s) such
that for all σ ∈ D(s) σA v σ implies 〈M, δ(s, σ)〉 |= ψ. Note that σA is a |Σ|-tuple such that
σA[a] ∈ D(a, s) for every a ∈ A and σA[a′] = ∗ for every a′ 6∈ A. We define f i(s, a) = σA[a] for
every a ∈ A and f i(s, a′) = 0 for every a′ 6∈ A.

For any state s ∈ S such that 〈M, s〉 6|= [A]ψ, we define f i(s, a) = 0 for every a ∈ Σ.

Finally, for any natural number i for which there is no positive coalition vector with index i in
Cn we define f i(s, a) = 0 for every s ∈ S and every a ∈ Σ.

(b) To construct F− we proceed as follows. Let t → 〈A〉ψ be a formula in N0 and let t → #�c −iA ψ be
the formula it is replaced with by⇒4

〈 〉 where #�c −iA is a negative coalition vector with index i and i

is a natural number not occurring in any other formula. Let A = {a1, . . . , an} with a1 < · · · < an.

Recall that #�c −iA is a |Σ|-tuple such that #�c −iA (a′) = −i for every a′ 6∈ A and #�c iA(a) = ∗ for every
a ∈ A. We need to define a function gin : S × Σ× Nn0 −→ N0.

Let s ∈ S be a state such that 〈M, s〉 |= 〈A〉ψ. Then for allA-moves σA ∈ D(A, s) exists σ ∈ D(s)
such that σA v σ and 〈M, δ(s, σ)〉 |= ψ. Again, σA is a |Σ|-tuple such that σA[a] = ma ∈ D(a, s)
for every a ∈ A and σA[a′] = ∗ for every a′ 6∈ A. Since σA v σ we have σA[a] = σ[a] for every
a ∈ A. Let (ma1 , . . . ,man) be the sequence of all of agents in A.

We define gin(s, a′, (ma1 , . . . ,man)) = σ[a′] for every a′ ∈ Σ. In fact, it is sufficient that we define
gin(s, a′, (ma1 , . . . ,man)) = σ[a′] for every a′ 6∈ A while for agents a ∈ A we could choose an arbi-
trary move in D(a, s). So, we might as well choose σ[a]. We also define gin(s, a′, (m′1, . . . ,m

′
n)) = 0

for every sequence (m1, . . . ,mn) ∈ Nn0 such that ma 6∈ D(a, s) for some a ∈ A.

For any natural number n′ with n′ 6= n, we define gin(s, a, (m1, . . . ,mn′)) = 0 for every s ∈ S,
every a ∈ Σ and every (m1, . . . ,mn′) ∈ Nn′0 .

Finally, for any natural number i for which there is no negative coalition vector with index i in
Cn and for every n ∈ N we define gin(s, a, (m1, . . . ,mn)) = 0 for every s ∈ S, every a ∈ Σ and
every (m1, . . . ,mn) ∈ Nn0 .

We now need to show that M′, s0 |= Cn.

• As the frame underlying both M and M′ and the valuation function π are the same, for every
propositional formula θ and every s ∈ S we have 〈M, s〉 |= θ iff 〈M′, s〉 |= θ.

As the sets of initial and universal clauses in Cn = (I0,U0,N0) are the same as in C0 and 〈M, s0〉 |= I0

and for every s ∈ S, 〈M, s〉 |= U0, we therefore have 〈M′, s0〉 |= I0 and for every s ∈ S, 〈M′, s〉 |= U0.

• It remains to show that for every Γ ∈ Nn, 〈M′, s〉 |= Γ.

– Let t → [A]ψ be a formula in N0 and let t → #�c iAψ be the formula it is replaced with by ⇒4
[ ]

where #�c iA is a positive coalition vector with index i and i is a natural number not occurring in
any other formula, #�c iA is a |Σ|-tuple such that #�c iA[a] = i for every a ∈ A and #�c iA[a′] = ∗ for
every a′ 6∈ A. Note that BA( #�c iA) = A.

If 〈M′, s〉 6|= t, then 〈M′, s〉 |= t→ #�c iAψ holds.

If 〈M′, s〉 |= t, then since 〈M, s〉 |= t iff 〈M′, s〉 |= t, we have 〈M, s〉 |= t and 〈M, s〉 |= [A]ψ. So,
there exists an A-move σA such that for all σ ∈ D(s), σA v σ implies 〈M, δ(s, σ)〉 |= ψ.

By construction of f i in case (a) above, for every a ∈ A, f i(s, a) = σA[a]. So, for all σ ∈ D(s),
σ[a] = f i(s, a) for every a ∈ BA( #�c ) implies σ[a] = σA[a] for every a ∈ A which in turn implies
σA v σ.
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Also, as the frame underlying both M and M′ and the valuation function π are the same, for
every propositional formula θ, for every state s′, for every σ′ ∈ D(s′), we 〈M, δ(s′, σ′)〉 |= θ iff
〈M′, δ(s′, σ′)〉 |= θ.

Therefore, for every σ ∈ D(s), #�c iA v σ is equivalent to σ[a] = f i(s, a) for every a ∈ BA( #�c )
which implies σA v σ, and σA v σ, implies 〈M, δ(s, σ)〉 |= ψ implies 〈M′, δ(s, σ)〉 |= ψ. Thus,
by definition of the semantics of VCL, 〈M′, s〉 |= #�c iAψ and 〈M′, s〉 |= t→ #�c iAψ.

– Let t → 〈A〉ψ be a formula in N0 and let t → #�c −iA ψ be the formula it is replaced with by ⇒4
[ ]

where #�c −iA is a negative coalition vector with index i and i is a natural number not occurring in
any other formula, #�c −iA is a |Σ|-tuple such that #�c −iA (a′) = −i for every a′ 6∈ A and #�c −iA (a) = ∗ for
every a ∈ A. Note that RA( #�c −iA ) = Σ \A. Let n = |A| and A = {a1, . . . , an} with a1 < · · · < an.

If 〈M′, s〉 6|= t, then 〈M′, s〉 |= t→ #�c −iA ψ.

If 〈M′, s〉 |= t, then since 〈M, s〉 |= t iff 〈M′, s〉 |= t, we have 〈M, s〉 |= t and 〈M, s〉 |= 〈A〉ψ. So,
for all A-moves σA ∈ D(A, s) exists σ ∈ D(s) such that σA v σ and 〈M, δ(s, σ)〉 |= ψ.

Let σ ∈ D(s) be a move vector such that #�c −iA v σ, that is, σ[a′] = gin(s, a′, (σ[a1], . . . , σ[an])) for
every a′ ∈ RA( #�c −iA ). Define σA as σA[a] = σ[a] for a ∈ A and σA[a′] = ∗ for a ∈ RA( #�c −iA ). Then
σA is anA-move in D(A, s) and σA v σ. By construction of gin in case (b) above, 〈M, δ(s, σ)〉 |= ψ
which in turn implies 〈M′, δ(s, σ)〉 |= ψ as ψ.

Therefore, for every σ ∈ D(s), σ v #�c −iA is equivalent to σ[a′] = gin(s, a′, (σ[a1], . . . , σ[an])) for
every a′ ∈ RA( #�c −iA ) which implies σA v σ, and σA v σ implies 〈M, δ(s, σ)〉 |= ψ implies
〈M′, δ(s, σ)〉 |= ψ. Thus, by definition of the semantics of VCL, 〈M′, s〉 |= #�c −iA ψ and 〈M′, s〉 |=
t→ #�c −iA ψ. for every i, 1 ≤ i ≤ n,

Second, assume that Cn = (I0,U0,Un) is satisfiable and that M′ = (F ,Π, π, F+, F−) with F =
(Σ,S, s0, d, δ) is a Concurrent Game Model with Choice Functions such that 〈M′, s0〉 |= Cn. Let
M = (F ,Π, π). We show that 〈M, s0〉 |= C0.

• As the frame underlying both M and M′ and the valuation function π are the same, for every
propositional formula θ and every s ∈ S we have 〈M, s〉 |= θ iff 〈M′, s〉 |= θ.

We therefore have 〈M, s0〉 |= I0 and for every s ∈ S, 〈M, s〉 |= U0.

• It remains to show that for every Γ ∈ N0 and every s ∈ S, 〈M, s〉 |= Γ.

– Let t → [A]ψ be a formula in N0 and let t → #�c iAψ be the formula it is replaced with by ⇒4
[ ]

where #�c iA is a positive coalition vector with index i and i is a natural number not occurring in
any other formula, #�c iA is a |Σ|-tuple such that #�c iA[a] = i for every a ∈ A and #�c iA[a′] = ∗ for
every a′ 6∈ A. Let A = {a1, . . . , an} with a1 < · · · < an. Note that BA( #�c iA) = A.

If 〈M, s〉 6|= t, then 〈M, s〉 |= t→ [A]ψ holds.

If 〈M, s〉 |= t, then since 〈M, s〉 |= t iff 〈M′, s〉 |= t, we have 〈M′, s〉 |= t and 〈M′, s〉 |= #�c iAψ. So,
for every σ ∈ D(s), if #�c iA v σ then 〈M′, δ(s, σ)〉 |= ψ. Recall that #�c iA v σ if σ[a] = f i(s, a) for
every a ∈ BA( #�c iA). Let σA be the A-move defined by σA[a] = f i(s, a) for every a ∈ BA( #�c iA) = A
and σA[a′] = ∗ for every a′ 6∈ A. Then for every σ ∈ D(s), #�c iA v σ implies σA v σ and therefore,
σA v σ implies 〈M′, δ(s, σ)〉 |= ψ. Thus, there exists an A-move σA such that for all σ ∈ D(s)
σA v σ implies 〈M, δ(s, σ)〉 |= ϕ, and consequently, 〈M, s〉 |= [A]ψ and 〈M, s〉 |= t→ [A]ψ.

– Let t → 〈A〉ψ be a formula in N0 and let t → #�c −iA ψ be the formula it is replaced with by ⇒4
〈 〉

where #�c −iA is a negative coalition vector with index i and i is a natural number not occurring in
any other formula, #�c −iA is a |Σ|-tuple such that #�c −iA (a′) = −i for every a′ 6∈ A and #�c −iA (a) = ∗ for
every a ∈ A. Let n = |A| and A = {a1, . . . , an} with a1 < · · · < an. Note that RA( #�c −iA ) = Σ \A.

If 〈M, s〉 6|= t, then 〈M, s〉 |= t→ 〈A〉ψ holds.

If 〈M, s〉 |= t, then since 〈M, s〉 |= t iff 〈M′, s〉 |= t, we have 〈M′, s〉 |= t and 〈M′, s〉 |= #�c −iA ψ.
Then for every σ ∈ D(s), #�c −iA v σ implies 〈M′, δ(s, σ)〉 |= ψ. Recall that #�c −iA v σ if σ[a′] =
gin(s, a′, (σ[a1], . . . , σ[an])) for every a′ ∈ RA( #�c −iA ).

Let σA be an arbitrary A-move. Let σ be the move vector defined by σ[a] = σA[a] for every
a ∈ A and σ[a′] = gin(s, a′, (σ[a1], . . . , σ[an])) for every a′ ∈ Σ \ A = RA( #�c −iA ). Then σA v σ and
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#�c −iA v σ and therefore 〈M′, δ(s, σ)〉 |= ψ. Thus, for every A-move σA there exists σ ∈ D(s) such
that σA v σ and 〈M, δ(s, σ)〉, and consequently, 〈M, s〉 |= 〈A〉ψ and 〈M, s〉 |= t→ 〈A〉ψ.

Theorem 6. Let ϕ ∈ WFFCL. Let C0, C1, . . . be a sequence of coalition problems such that C0 =
({tϕ}, {tϕ → τ0(ϕ)}, ∅) and Ci+1 is obtained from Ci by applying a rewriting rule in R4 combined with
zero or more applications of the simplification rules to a formula in Ci. Then the sequence C0, C1, . . .
terminates, i.e. there exists an index n, n ≥ 0, such that no rewriting rule can be applied to Cn.
Furthermore, Cn is a coalition problem in DSNFVCL, the size of Cn is linear in the size of ϕ, and Cn is
satisfiable if, and only if, ϕ is satisfiable.

Proof. The rewriting system R4 extends the rewriting system R2 with the additional rules ⇒4
[ ]

and ⇒4
〈 〉. Without loss of generality we can assume that R2 is first exhaustively applied to C0 =

({t0}, {t0 → τ0(ϕ)}, {}). By Theorem 1 we obtain a terminating sequence C0, . . . , Cm = (Im,Um,Nm)
such that no rewriting rule of R2 can be applied to Cm, Cm is in DSNFCL, and (i) the size of Cm is
linear in the size of ϕ and (ii) Cm is satisfiable if, and only if ϕ is satisfiable.

Then by Lemma 8, there is a terminating sequence Cm, . . . , Cn such that for each i, m ≤ i < n,
Ci+1 is obtained from Ci by applying a rewriting rule in R4 combined with zero or more applications
of the simplification rules to a formula in Ci, and (iii) Cn is a coalition problem in DSNFVCL, (iv) the
size of Cn is linear in the size of Cm, and (v) Cn is satisfiable if, and only if, Cm is satisfiable.

Properties (i) and (iv) together imply that Cn is linear in the size of ϕ, and properties (ii) and (v)
together imply that Cn is satisfiable if, and only if, ϕ is satisfiable.

We return to our previous example, a formalisation of the pigeon hole problem with three pigeons
and two holes in Coalition Logic, given by the formula ϕ3

2 (page 9). The transformation of ϕ3
2 into a

coalition problem C′32 in DSNFVCL using rewriting system R4 results in the ten clauses in Figure 3.

4.2 Resolution Calculus RES�CL

Definition 35. Let #�c 1 and #�c 2 be two coalition vectors. The coalition vector #�c 2 is an instance of
#�c 1 and #�c 1 is more general than #�c 2, written #�c 1 v #�c 2, if #�c 1[a] = #�c 2[a] for every a, 1 ≤ a ≤ |Σ|, with
#�c 1[a] 6= ∗. We say that a coalition vector #�c 3 is a common instance of #�c 1 and #�c 2 if #�c 3 is an instance
of both #�c 1 and #�c 2. A coalition vector #�c 3 is a most general common instance or merge of #�c 1 and #�c 2

if #�c 3 is a common instance of #�c 1 and #�c 2, and for any common instance #�c 4 of #�c 1 and #�c 2 we have
#�c 3 v #�c 4. If there exists a merge for two coalition vectors #�c 2 and #�c 2 then we say that #�c 1 and #�c 2 are
mergeable.

For example, (1, 3, 2, ∗), (1, ∗, 2, 1), (1, 3, 2, 1) are all instances of (1, ∗, 2, ∗), while (1, 3, 2, ∗) and
(1, 3, 2, 1) are instances of (∗, 3, 2, ∗). The coalition vectors (1, ∗, 2, ∗) and (∗, 3, 2, ∗) are mergeable
and (1, 3, 2, ∗) is the merge of the two vectors. While (1, 3, 2, 1) is an instance of both (1, ∗, 2, ∗) and
(∗, 3, 2, ∗), (1, 3, 2, ∗) is more general than (1, 3, 2, 1). In contrast, (1, ∗) and (2, 1) are not mergeable
as they do not have a common instance. Also, (1,−1, ∗) and (1, ∗,−2) are not mergeable as the vector
(1,−1,−2) is not a coalition vector, as it contains two different negative numbers.

Lemma 9. Let #�c 1 and #�c 2 be two coalition vectors. Let #�c 3 be the vector over Z ∪ {⊥} defined by

#�c 3[i] =


#�c 1[i], if (1) #�c 2[i] = ∗
#�c 2[i], if (2) #�c 1[i] = ∗
#�c 1[1], if (3) #�c 1[i] = #�c 2[i]

⊥, if (4) #�c 1[i] 6= ∗ and #�c 2[i] 6= ∗ and #�c 1[i] 6= #�c 2[i]

1. t0 [I]
2. t0 → (∗, ∗, ∗)¬x11 ∨ ¬x21 [N ]
3. t0 → (∗, ∗, ∗)¬x11 ∨ ¬x31 [N ]
4. t0 → (∗, ∗, ∗)¬x21 ∨ ¬x31 [N ]
5. t0 → (∗, ∗, ∗)¬x12 ∨ ¬x22 [N ]

6. t0→(∗, ∗, ∗)¬x12 ∨ ¬x32 [N ]
7. t0→(∗, ∗, ∗)¬x22 ∨ ¬x32 [N ]
8. t0→(1, ∗, ∗)x11 ∨ x12 [N ]
9. t0→(∗, 2, ∗)x21 ∨ x22 [N ]

10. t0→(∗, ∗, 3)x31 ∨ x32 [N ]

Figure 3: Pigeon hole problem in DSNFVCL
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for every i, 1 ≤ i ≤ |Σ|. If #�c 3 does not contain ⊥ and does not contain two distinct negative numbers,
then #�c 1 and #�c 2 are mergeable and #�c 3 is a merge of #�c 1 and #�c 2.

Proof. If #�c 3 contains ⊥, then there is some i with both #�c 1[i], #�c 2[i] ∈ Z and #�c 1[i] 6= #�c 2[i]. This implies
that #�c 1 and #�c 2 do not have a common instance. In the remainder of the proof we assume that #�c 3

does not contain ⊥.

By definition of coalition vectors, a coalition vector does not contain two different negative numbers.
If only one of #�c 1 and #�c 2 contains a negative number, say, −k, then #�c 3 also contains −k and no other
negative number. If #�c 1 contains the negative number −k #�c 1 and #�c 2 contains the negative number
−k #�c 2 , then #�c 3 contains both −k #�c 1 and −k #�c 2 . If −k #�c 1 6= −k #�c 2 , then #�c 3 contains two different
negative numbers and is not a coalition vector. This again implies that #�c 1 and #�c 2 do not have a
common instance. If −k #�c 1 = −k #�c 2 , then #�c 3 is a coalition vector.

Thus, #�c 3 is a coalition vector. Next, we need to show that it a common instance of #�c 1 and of #�c 2.
By definition, #�c 1 v #�c 3 if #�c 3[i] = #�c 1[i] for every i, 1 ≤ i ≤ |Σ|, with #�c 1[i] 6= ∗. If #�c 1[i] 6= ∗, then
#�c 3[i] = #�c 1[i] by case (1) or case (3) in the definition of #�c 3[i], as neither case (2) nor case (4) can
apply. In analogy, #�c 2 v #�c 3 if #�c 3[i] = #�c 2[i] for every i, 1 ≤ i ≤ |Σ|, with #�c 2[i] 6= ∗. If #�c 2[i] 6= ∗, then
#�c 3[i] = #�c 2[i] by case (2) or #�c 3[i] = #�c 1[i] = #�c 2[i] by case (3) in the definition of #�c 3[i].

It remains to show that for any common instance #�c 4 of #�c 1 and #�c 2 we have #�c 3 v #�c 4, that is,
#�c 3[i] = #�c 4[i] for every i, 1 ≤ i ≤ |Σ|, with #�c 3[i] 6= ∗. If #�c 3[i] 6= ∗, then #�c 1[i] ∈ Z and #�c 3[i] = #�c 1[i],
or #�c 2[i] ∈ Z and #�c 3[i] = #�c 2[i]. To be an instance of both #�c 1 and #�c 2, #�c 4[i] = #�c 1[i] if #�c 1[i] ∈ Z, and
therefore #�c 4[i] = #�c 1[i] = #�c 3[i], or if #�c 2[i] ∈ Z, #�c 4[i] = #�c 2[i] and therefore #�c 4[i] = #�c 2[i] = #�c 3[i].

Thus, #�c 3 is a merge of #�c 1 and #�c 2.

Lemma 10. Let #�c 1 and #�c 2 be two mergeable coalition vector and let both #�c 3 and #�c 4 be merges of
#�c 1 and #�c 2. Then #�c 3 = #�c 4.

Proof. Since both #�c 3 and #�c 4 are merges of #�c 1 and #�c 2, they are both most general common instances
of #�c 1 and #�c 2. In particular, #�c 3 v #�c 4, that is, (i) #�c 4[a] = #�c 3[a] for every a, 1 ≤ a ≤ |Σ|, with
#�c 3[a] 6= ∗, and #�c 4 v #�c 3, that is, (ii) #�c 3[a] = #�c 4[a] for every a, 1 ≤ a ≤ |Σ|, with #�c 4[a] 6= ∗. Because
of (i) and (ii), for every a, 1 ≤ a ≤ |Σ|, if #�c 3[a] 6= ∗ or #�c 4[a] 6= ∗ then #�c 3[a] = #�c 4[a]. On the
other hand, for every a, 1 ≤ a ≤ |Σ|, if #�c 3[a] = ∗ and #�c 4[a] = ∗ then trivially #�c 3[a] = #�c 4[a]. Thus,
#�c 3 = #�c 4.

Lemma 9 gives us a way to compute a merge of two coalition vectors and Lemma 10 shows that
there the merge of two coalition vectors is unique. We denote the merge of #�c 1 and #�c 2 by #�c 1↓ #�c 2 and
write #�c 1↓ #�c 2 = undef if #�c 1 and #�c 2 are not mergeable.

Lemma 11. Let #�c 1 and #�c 2 be two mergeable coalition vectors and let #�c 3 = #�c 1↓ #�c 2 be their merge.
Then FA( #�c 3) = FA( #�c 1) ∩ FA( #�c 2), BA( #�c 3) = BA( #�c 1) ∪ BA( #�c 2) and RA( #�c 3) = RA( #�c 1) ∪ RA( #�c 2).

Proof. By Definition 25, FA( #�c i) = {a | 1 ≤ a ≤ |Σ| ∧ #�c i[a] = ∗}, for every i, 1 ≤ i ≤ 3. It is
straightforward to see from the definition of a merge in Lemma 9 that #�c 1↓ #�c 2[a] = #�c 3[a] = ∗ iff
#�c 1[a] = ∗ and #�c 2[a] = ∗, for any a, 1 ≤ a ≤ |Σ|. Thus, FA( #�c 1↓ #�c 2) = FA( #�c 1) ∩ FA( #�c 2).

By Definition 25, BA( #�c i) = {a | 1 ≤ a ≤ k ∧ #�c i[a] > 0}, for every i, 1 ≤ i ≤ 3. Again, we can see
from the definition of a merge in Lemma 9 that #�c 1↓ #�c 2[a] = #�c 3[a] > 0 iff #�c 1[a] > 0 or #�c 2[a] > 0, for
any a, 1 ≤ a ≤ |Σ|. Thus, BA( #�c 1↓ #�c 2) = BA( #�c 1) ∪ FA( #�c 2).

By Definition 25, RA( #�c i) = {a | 1 ≤ a ≤ k ∧ #�c i[a] < 0}, for every i, 1 ≤ i ≤ 3. In analogy to
the previous case, #�c 1↓ #�c 2[a] = #�c 3[a] < 0 iff #�c 1[a] < 0 or #�c 2[a] < 0, for any a, 1 ≤ a ≤ |Σ|. Thus,
RA( #�c 1↓ #�c 2) = RA( #�c 1) ∪ RA( #�c 2).

Lemma 12. Let #�c 1 and #�c 2 be two mergeable coalition vectors and let σ be a move vector. If
#�c 1↓ #�c 2 v σ then #�c 1 v σ and #�c 2 v σ.

Proof. Let #�c 3 = #�c 1↓ #�c 2 v σ. Since #�c 3 v σ, (i) σ[a] = f
#�c 3[a](s, a) for every a ∈ BA( #�c 3) and

(ii) σ[a′] = g
| #�c 3[a′]|
n (s, a′, (σ[a1], . . . , σ[an])) for every a′ ∈ RA( #�c 3). By Lemma 11, BA( #�c 3) = BA( #�c 1)∪

BA( #�c 2) and RA( #�c 3) = RA( #�c 1) ∪ RA( #�c 2).
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To prove #�c 1 v σ, we need to prove (iii) σ[a] = f
#�c 1[a](s, a) for every a ∈ BA( #�c 1) as well as

(iv) σ[a′] = g
| #�c 1[a′]|
n (s, a′, (σ[a1], . . . , σ[an])) for every a′ ∈ RA( #�c 1). If a ∈ BA( #�c 1), then a ∈ BA( #�c 3)

and also, by the definition of #�c 1↓ #�c 2 in Lemma 9, #�c 3[a] = #�c 1[a]. So, f
#�c 1[a] = f

#�c 3[a] which means
that σ[a] = f

#�c 3[a](s, a) implies σ[a] = f
#�c 1[a](s, a). Analogously, a′ ∈ RA( #�c 1), then a′ ∈ RA( #�c 3) and

also, by the definition of #�c 1↓ #�c 2 in Lemma 9, #�c 3[a] = #�c 1[a′]. So, g
| #�c 1[a′]|
n = g

| #�c 3[a′]|
n which means that

σ[a′] = g
| #�c 3[a′]|
n (s, a′, (σ[a1], . . . , σ[an])) implies σ[a′] = g

| #�c 1[a′]|
n (s, a′, (σ[a1], . . . , σ[an])).

That #�c 2 v σ can be shown analogously.

Definition 36. Let Γ be a finite set of coalition vectors such that for all coalition vectors #�c 1 and #�c 2

in Γ:

(i) for each a, 1 ≤ a ≤ | #�c 1| = | #�c 2|, if #�c 1[a] ∈ N and #�c 2[a] ∈ N, then #�c 1[a] = #�c 2[a];

(ii) for each a and a′, 1 ≤ a < a′ ≤ | #�c 1|, if #�c 1[a] < 0 and #�c 2[a′] < 0, then #�c 1[a] = #�c 2[a′].

Then Γ is a pairwise mergeable set of coalition vectors.

Lemma 13. Let Γ be a pairwise mergeable set of coalition vectors. Let #�c 1 and #�c 2 be coalition vectors
in Γ. Then #�c 1 and #�c 2 are mergeable and for Γ′ = Γ ∪ { #�c 1↓ #�c 2} the following hold:

(a) For all #�c 3 and #�c 4 in Γ′, for each a, 1 ≤ a ≤ | #�c 3| = | #�c 4|, if #�c 3[a] ∈ N and #�c 4[a] ∈ N, then
#�c 3[a] = #�c 4[a].

(b) For all #�c 3 and #�c 4 in Γ′, for each a and a′, 1 ≤ a < a′ ≤ | #�c 3|, if #�c 3[a] < 0 and #�c 4[a′] < 0, then
#�c 3[a] = #�c 4[a′].

Proof. If #�c 1 = #�c 2, then the two vectors are trivially mergeable: #�c 1↓ #�c 2 = #�c 1. Also, since #�c 1↓ #�c 2 ∈ Γ,
properties (a) and (b) follow from conditions (i) and (b) for Γ.

If #�c 1 6= #�c 2, let #�c 4 be defined as in Lemma 9:

#�c 4[i] =


#�c 1[a], if (1) #�c 2[a] = ∗
#�c 2[a], if (2) #�c 1[a] = ∗
#�c 1[a], if (3) #�c 1[a] = #�c 2[i]

⊥, if (4) #�c 1[a] 6= ∗ and #�c 2[a] 6= ∗ and #�c 1[a] 6= #�c 2[a]

By condition (i), for each agent a, 1 ≤ a ≤ | #�c 1|, if #�c 1[a] 6= ∗ and #�c 2[a] 6= ∗ then #�c 1[a] = #�c 2[a]. So,
condition (4) in the definition of #�c 4 never applies. Also, by condition (ii), the set {i | #�c ∈Γ, 1 ≤ a ≤
| #�c |, #�c [a] = i < 0} is a singleton set. So, #�c 4 cannot contain two distinct negative numbers. Thus, #�c 1

and #�c 2 are mergeable and #�c 1↓ #�c 2 = #�c 4.

Let Γ′ = Γ∪ { #�c 1↓ #�c 2}. As #�c 1↓ #�c 2 does not contain any negative index that was not present in #�c 1

or #�c 2, property (b) holds for Γ′.

Note that in order to prove property (a) for Γ′, we just have to show that for all #�c 3 ∈ Γ, for each
a, 1 ≤ a ≤ | #�c 3|, if #�c 3[a] ∈ N and #�c 4[a] = #�c 1↓ #�c 2[a] ∈ N, then #�c 3[a] = #�c 1↓ #�c 2[a]. By condition (i), for
each a, 1 ≤ a ≤ | #�c 3|, if #�c 3[a] ∈ N and #�c 1[a] ∈ N then #�c 3[a] = #�c 1[a] and by definition of #�c 1↓ #�c 2 = #�c 4

above, #�c 1↓ #�c 2[a] = #�c 1[a], so #�c 3[a] = #�c 1↓ #�c 2[a]. Likewise, for each a, 1 ≤ a ≤ | #�c 3|, if #�c 3[a] ∈ N
and #�c 2[a] ∈ N then #�c 3[a] = #�c 2[a] and by definition of #�c 1↓ #�c 2 = #�c 4 above, #�c 1↓ #�c 2[a] = #�c 2[a], so
#�c 3[a] = #�c 1↓ #�c 2[a]. Since #�c 1↓ #�c 2[a] ∈ N iff #�c 1[a] ∈ N or #�c 2[a] ∈ N, for all #�c 3 ∈ Γ, for each a,
1 ≤ a ≤ | #�c 3|, if #�c 3[a] ∈ N and #�c 4[a] = #�c 1↓ #�c 2[a] ∈ N, then #�c 3[a] = #�c 1↓ #�c 2[a].

Corollary 1. Let Γ be a pairwise mergeable set of coalition vectors and let Γ′ = Γ ∪ { #�c 1↓ #�c 2} for
coalition vectors #�c 1 and #�c 2 in Γ. Then Γ′ is a pairwise mergeable set of coalition vectors.

Let (I,U ,N ) be a coalition problem in DSNFVCL; P , Q be conjunctions of literals; C, D be
disjunctions of literals; l, li be literals; and #�c , #�c 2 be coalition vectors.
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1. t0 [I]
2. t0 → (∗, ∗, ∗)¬x11 ∨ ¬x21 [N ]
3. t0 → (∗, ∗, ∗)¬x11 ∨ ¬x31 [N ]
4. t0 → (∗, ∗, ∗)¬x21 ∨ ¬x31 [N ]
5. t0 → (∗, ∗, ∗)¬x12 ∨ ¬x22 [N ]
6. t0 → (∗, ∗, ∗)¬x12 ∨ ¬x32 [N ]
7. t0 → (∗, ∗, ∗)¬x22 ∨ ¬x32 [N ]
8. t0 → (1, ∗, ∗)x11 ∨ x12 [N ]
9. t0 → (∗, 2, ∗)x21 ∨ x22 [N ]

10. t0 → (∗, ∗, 3)x31 ∨ x32 [N ]

11. t0→(∗, 2, ∗)¬x12 ∨ x21 [N , VRES1, 5, 9, x22]
12. t0→(∗, ∗, 3)¬x22 ∨ x31 [N , VRES1, 7, 10, x32]
13. t0→(∗, ∗, 3)¬x11 ∨ ¬x22 [N , VRES1, 12, 3, x31]
14. t0→(∗, 2, 3)¬x11 ∨ x21 [N , VRES1, 13, 9, x22]
15. t0→(∗, 2, 3)¬x11 [N , VRES1, 14, 2, x21]
16. t0→(∗, ∗, 3)¬x12 ∨ x31 [N , VRES1, 6, 10, x32]
17. t0→(∗, ∗, 3)¬x12 ∨ ¬x21 [N , VRES1, 16, 4, x31]
18. t0→(∗, 2, 3)¬x12 [N , VRES1, 17, 11, x21]
19. t0→(1, 2, 3)x11 [N , VRES1, 18, 8, x12]
20. t0→(1, 2, 3)false [N , VRES1, 19, 15, x11]
21. ¬t0 [U , RW, 20]
22. false [I, IRES1, 21, 1, t0]

Figure 4: Derivation from C′32 by RES�CL

The resolution calculus RES�CL, where � is an atom ordering, consists of the following rules:

IRES1
C ∨ l ∈ I
D ∨ ¬l ∈ I ∪ U
C ∨D ∈ I

GRES1
C ∨ l ∈ U
D ∨ ¬l ∈ U
C ∨D ∈ U

VRES1
P → #�c 1(C ∨ l) ∈ N
Q → #�c 2(D ∨ ¬l) ∈ N

P ∧Q → #�c 1↓ #�c 2(C ∨D) ∈ N
VRES2

C ∨ l ∈ U
Q → #�c (D ∨ ¬l) ∈ N
Q → #�c (C ∨D) ∈ N

RW

∧n
i=1 li →

#�c false ∈ N∨n
i=1 ¬li ∈ U

where

• in VRES1, #�c 1 and #�c 2 are mergeable; and

• in IRES1, GRES1, VRES1 and VRES2, l is be maximal with respect to C and ¬l is maximal with
respect to D.

Definition 37. A derivation from a coalition problem in DSNFVCL C = (I,U ,N ) by RES�CL is a
sequence C0, C1, C2, . . . of problems such that C0 = C, Ci = (Ii,Ui,Ni), and Ci+1 is either

• (Ii ∪ {D},Ui,Ni), where D is the conclusion of an application of IRES1;

• (Ii,Ui ∪ {D},Ni), where D is the conclusion of an application of GRES1, RW1; or

• (Ii,Ui,Ni ∪ {D}), where D is the conclusion of an application of VRES1 or VRES2.

Figure 4 shows a refutation of the coalition problem C′32 using the atom ordering x3
2 � x3

1 � x2
2 �

x2
1 � x1

2 � x1
1. The crucial step in the refutation is the derivation of Clause (20) from Clauses (15)

and (19). If we were to use coalition modalities as in RESCL, instead of coalition vectors, then Clause
(15) would correspond to the clause t0 → [2, 3](¬x1

1) and Clause (19) to the clause t0 → [1, 2, 3](x1
1).

It would not be possible to resolve these clauses as the sets of agents involved are not disjoint.

4.3 Soundness

Lemma 14. Let M be a CGM and s be a state in M. Let #�c be a coalition vector and σFA( #�c ) be a
FA( #�c )-move at s. Then FA(σFA( #�c )) = Σ \ FA( #�c ).

Proof. By definition, σFA( #�c ) is a k-tuple such that σFA( #�c )(a) ∈ D(a, s) for every a ∈ FA( #�c ) and
σFA( #�c )(a

′) = ∗ for every a 6∈ FA( #�c ). Since the free agents FA(σFA( #�c )) = {a | 1 ≤ a ≤ |Σ|∧σFA( #�c ) = ∗}
we have FA(σFA( #�c )) = Σ \ FA( #�c ).

Lemma 15 (Resolution). Let M = (Σϕ,S, s0, d, δ,Π, π) be a CGM, such that 〈M, s〉 |= C ∨ l and
〈M, s〉 |= D ∨ ¬l, for some s ∈ S. Then 〈M, s〉 |= C ∨D.
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Lemma 16 (IRES1). Let C = (I,U ,N ) be a coalition problem in DSNFVCL, such that C ∨ l ∈ I and
D ∨ ¬l ∈ I ∪ U . If C is satisfiable, then (I ∪ {D ∨D′},U ,N ) is satisfiable.

Lemma 17 (GRES1). Let C = (I,U ,N ) be a coalition problem in DSNFVCL, such that C ∨ l ∈ U
and D ∨ ¬l ∈ U . If C is satisfiable, then (I,U ∪ {C ∨D},N ) is satisfiable.

The proofs of Lemmas 15, 16 and 17 follow from the soundness of resolution for propositional
logic [22].

Lemma 18 (VRES1). Let C = (I,U ,N ) be a coalition problem in DSNFVCL, such that P → #�c 1(C ∨
l) ∈ N and Q→ #�c 2(D∨¬l) ∈ N . Let P ∧Q→ #�c ↓ #�c 2(C∨D) be derivable by an application of CRES1
to P → #�c 1(C ∨ l) and Q→ #�c 2(D∨¬l). If C is satisfiable, then (I,U ,N ∪{P ∧Q→ #�c 1↓ #�c 2(C ∨D)})
is satisfiable.

Proof. Let M = (F ,Π, π, F+, F−) with F = (Σ,S, s0, d, δ) be a CGMCF such that M |= C. By
the definition of satisfiability of coalition problems, all formulae in N are satisfied at all states. For
s ∈ S, we have that 〈M, s〉 |= P → #�c 1(C ∨ l) and 〈M, s〉 |= Q → #�c 2(D ∨ ¬l). If 〈M, s〉 6|= P ∧ Q,
then the implication P ∧ Q → #�c 1↓ #�c 2(C ∨D) is satisfied at s. Assume that 〈M, s〉 |= P ∧ Q. Then
〈M, s〉 |= #�c 1(C ∨ l) and 〈M, s〉 |= #�c 2(D ∨ ¬l), that is,

(i) for all σ ∈ D(s), #�c 1 v σ implies 〈M, δ(s, σ)〉C ∨ l and

(ii) for all σ ∈ D(s), #�c 2 v σ implies 〈M, δ(s, σ)〉D ∨ ¬l.

Let σ be an arbitrary move vector in D(s). By Lemma 12, if #�c 1↓ #�c 2 v σ then #�c 1 v σ and #�c 2 v σ.
So, by (i) and (ii), 〈M, δ(s, σ)〉C ∨ l and 〈M, δ(s, σ)〉D ∨ ¬l, which implies 〈M, δ(s, σ)〉(C ∨ l) ∧ (D ∨ ¬l).
By propositional reasoning, 〈M, δ(s, σ)〉(C ∨D).

So, for all σ ∈ D(s), #�c 1↓ #�c 2 v σ implies 〈M, δ(s, σ)〉C ∨D, which means that 〈M, s〉 |= #�c 1↓ #�c 2(C∨
D).

Thus, 〈M, s〉 |= #�c 1↓ #�c 2(C ∨D) and M is a model of (I,U ,N ∪ {P ∧Q→ #�c 1↓ #�c 2(C ∨D)}).

Lemma 19. Let |Σ| = k and let #�c = (∗, . . . , ∗) be a coalition vector of length k. Let C = (I,U ,N )
be a coalition problem in DSNFVCL andM be a model such thatM |= C. If ϕ is a formula in U , then
M |= (I,U ,N ∪ {true→ #�c ϕ}).

Lemma 20 (CRES2). Let C = (I,U ,N ) be a coalition problem in DSNFVCL, such that (C ∨ l) ∈ U
and C → #�c (D ∨ ¬l) ∈ N . If C is satisfiable, then (I,U ,N ∪ {C → #�c (C ∨D)}) is satisfiable.

Lemma 21 (RW1). Let C = (I,U ,N ) be a coalition problem in DSNFVCL, such that P → #�c false ∈
N . If C is satisfiable, then (I,U ∪ {¬P},N ) is satisfiable.

Theorem 7 (Soundness of RES�CL). Let C be a coalition problem in DSNFCL. Let C′ be the coalition
problem in DSNFVCL obtained from C by applying any of the inference rules IRES1, GRES1, CRES1,
CRES2 and RW1 to C. If C is satisfiable, then C′ is satisfiable.

4.4 Termination

Regarding termination, assume that we start a derivation with a coalition problem C. The number
of propositional symbols in C is finite and the inference rules do not introduce new propositional
symbols, we have that the number of possible literals occurring in clauses is finite and the number of
conjunctions (resp. disjunctions) on the left-hand side (resp. right-hand side) of clauses is finite. As we
keep propositional conjunctions and disjunction in simplified form, there are only finitely many that
may occur in a derivation. Also, in C only a finite set I ⊂ Z of numbers occurs in coalition vectors and
all coalition vectors in C have the same length, say, k. Then the number of coalition vectors that may
occur in a derivation is bounded by (|I|+ 1)k. Thus, only a finite number of clauses can be expressed
(modulo simplification). So, at some point either we derive a contradiction or no new clauses can be
generated.

Theorem 8. Let C = (I,U ,N ) be a coalition problem in DSNFVCL. Then any derivation from C by
RES�CL terminates.
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4.5 Completeness

In our completeness proof for RES�CL we show that a refutation of a CL formula ϕ by a tableau
procedure can be used to guide the construction of a refutation of ϕ in RES�CL. The tableau procedure
used in the proof is an adaptation of Goranko and Shkatov’s tableau procedure for ATL [9]. The
procedure proceeds in two phases, a construction phase in which a graph structure for ϕ is build, and
a elimination phase in which parts of the graph that cannot be used to create a CGM for ϕ are deleted.
The formula ϕ is satisfiable iff at the end of the elimination phase a non-empty graph remains.

In order to be able to use Goranko and Shkatov’s tableau procedure with minimal changes, we
need to transform coalition problems into a single formula. This is possible in the logic CL+, the
extension CL with the ATL-operator 〈〈∅〉〉2 which we only allow to occur positively in CL+ formulae.
The semantics of the 〈〈∅〉〉2 is defined in terms of a run:

Definition 38. Let F = (Σ,S, s0, d, δ) be a CGF. A run in F is an infinite sequence λ = s′0, s
′
1, . . .,

s′i ∈ S for all i ≥ 0, where s′i+1 is a successor of s′i. The indexes i, i ≥ 0, in a sequence λ are called
positions. Let λ = s′0, s

′
1, . . . , s

′
i, . . . , s

′
j , . . . be a run. We denote by λ[i] = s′i the i-th state in λ and by

λ[i, j] = s′i, . . . , s
′
j the finite sequence that starts at s′i and ends at s′j . If λ[0] = s, then λ is called a

s-run.

Intuitively, 〈〈∅〉〉2ϕ means that, for all runs, ϕ always holds on them.

Definition 39. Let F = (Σ,S, s0, d, δ) be a CGF. A strategy F∅ for ∅ (or ∅-strategy) at a state s ∈ S
is given by F∅({s}) ∈ D(∅, s), i.e. F∅({s}) is the ∅-move, F∅({s}) = σ∅. The outcome of F∅ at state
s ∈ S, denoted by out(s, F∅) is the set of all runs λ such that λ[i+ 1] ∈ out(λ[i], F∅(λ[i])), for all i ≥ 0.

Given a model M, a state s ∈ M, and a formula ϕ, 〈M, s〉 |= 〈〈∅〉〉2ϕ if, and only if, there exists
an ∅-strategy F∅ such that 〈M, λ[i]〉 |= ϕ for all λ ∈ out(s, F∅) and all positions i ≥ 0.

We extend the definition of positive coalition formulae to include formulae of the form [A]ϕ, where
ϕ is a CL+ formula. Negative coalition formulae and coalition formulae are defined as before.

Let C = (I,U ,N ) be a coalition problem in DSNFCL. Using the operator 〈〈∅〉〉2, we define [C]CL+

to be the CL+ formulae ∧
D∈I D ∧

∧
D′∈U∪N 〈〈∅〉〉2D′.

Then C is satisfiable iff [C]CL+ is satisfiable.

We also make two adaptations to the Goranko and Shkatov’s tableau procedure. First, we adapt
the procedure to coalition problems instead of full ATL, by removing one of the elimination rules that
is only relevant for language constructs specific to ATL. Second, we slightly change the notion of a
downward saturated set in order to be able to establish a correspondence between deletions during
the elimination phase and resolution inferences.

In the following, we briefly present the adapted tableau procedure. Before we present the con-
struction phase, we give two definitions that will be used later.

Definition 40. Let ∆ be a set of CL+ formulae. We say that ∆ is downward saturated if ∆ satisfies
the following properties:

i. If ¬¬ϕ ∈ ∆, then ϕ ∈ ∆;

ii. If
∧n
i=1 ϕi ∈ ∆ or ¬(

∨n
i=1 ϕi) ∈ ∆, then ϕi ∈ ∆ for every i, 1 ≤ i ≤ n;

iii. If 〈〈∅〉〉2ϕ ∈ ∆, then {ϕ, [∅]〈〈∅〉〉2ϕ} ⊆ ∆;

iv. If
∨n
i=1 ϕi ∈ ∆ or ¬(

∧n
i=1 ϕi) ∈ ∆, then ϕi ∈ ∆ for some i, 1 ≤ i ≤ n.

v. If (ϕ→ ψ) ∈ ∆, then ¬ϕ ∈ ∆ or {ϕ,ψ} ⊆ ∆.

Property (v) differs from Goranko and Shkatov’s definition. The later requires that if ϕ→ ψ ∈ ∆
then ¬ϕ ∈ ∆ or ψ ∈ ∆, which corresponds to an analytic cut on ϕ → ψ. Our definition corresponds
to a semantic cut on ϕ, creating cases ¬ϕ and ϕ, following by an application of modus ponens to ϕ
and (ϕ→ ψ) in the second case.
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Definition 41. Let Γ and ∆ be sets of CL+ formulae. We say that ∆ is a minimal downward saturated
extension of Γ if ∆ satisfies the following three properties:

i. Γ ⊆ ∆;

ii. ∆ is downward saturated;

iii. there is no downward saturated set ∆′ such that Γ ⊆ ∆′ ⊂ ∆.

Construction Phase As mentioned, the construction phase builds a directed graph which contains
states and prestates. States are downward saturated sets of formulae. Prestates are sets of formulae
used to help the construction of the graph, in a similar fashion to the tableau construction for PTL
[31]. There are two construction rules. The first, SR, creates states from prestates by saturation and
the application of fix-point operations, that is, by applications of α and β rules. We note that the set
of α rules also includes a rule for the 〈〈∅〉〉2 operator. According to the α decomposition rules in [9],
〈〈∅〉〉2ϕ should be decomposed into ϕ and 〈〈∅〉〉#〈〈∅〉〉2ϕ. The ATL formula 〈〈∅〉〉#〈〈∅〉〉2ϕ corresponds
to the CL+ formula [∅]〈〈∅〉〉2ϕ, which explains the decomposition rule we give for 〈〈∅〉〉2ϕ. The second
rule, Next, creates prestates from states in order to ensure that coalition formulae are satisfied. There
are two types of edges: double edges, from prestates to states; and labelled edges from states to
prestates. Intuitively, the last type of edge represents the possible moves for the agents.

The construction starts by creating a prestate, which we call initial prestate, with a set of formulae
Φ being tested for satisfiability. Then, the two construction rules are applied until no new states or
prestates can be created. SR is the first of those rules.

SR Given a prestate Γ do:

1. Create all minimal downward saturated extensions ∆ of Γ as states;

2. For each obtained state ∆, if ∆ does not contain any coalition formulae, add [ΣΦ]true to ∆;

3. Let ∆ be a state created in steps (1) and (2). If there is already in the pretableau a state
∆′ such that ∆ = ∆′, add a double edge from Γ to ∆′; otherwise, add ∆ and a double edge
from Γ to ∆ (i.e. Γ =⇒ ∆) to the pretableau.

In the following, we call initial states the states created from the first application of the rule SR
in the construction of the tableau.

The second rule, Next, is applied to states in order to build a set of prestates, which correspond
intuitively to possible successors of such states. In order to define the moves which are available to
agents and coalition of agents in each state, an ordering over the coalition formulae in that state
is defined. This ordering results in a list L(∆), where each positive coalition formula precedes all
negative coalition formulae. Intuitively, each index in this ordering refers to a possible move choice
for each agent. The number of moves, at a state ∆, for each agent mentioned in a formula ϕ ∈ ∆, is
then given by the number of coalition formulae occurring in ∆, i.e., the size of the list L(∆). We also
note that, from the construction of a tableau, the list L(∆) is never empty, as the formula [Σϕ]true
is included in the state ∆ if there are no other coalition formulae in ∆.

Once the moves available to all agents are defined, they are combined into move vectors. A move
vector labels one or more edges from a state to its successors, which are prestates in the tableau. The
decision of which formulae will be included in the successor prestate Γ′ of a state ∆ by a move σ, is
based on the votes of the agents. Suppose [A]ϕ ∈ ∆ and that [A]ϕ is the i-th formula in L(∆). If
all a ∈ A vote for ϕ, i.e. the corresponding action for agent a is i in σ, then ϕ is included in Γ′. For
〈A〉ϕ ∈ ∆, the decision whether ϕ is included in Γ′ depends on the collective vote of the agents which
are not in A. We first present the Next rule and then show an example of how a collective vote is
calculated. We say a state ∆ is consistent if, and only if, {¬true, false} ∩∆ = ∅ and for all formulae
ϕ, {ϕ,¬ϕ} 6⊆ ∆. A state is inconsistent if, and only if, it is not consistent.

Next Given a consistent state ∆, do the following:

1. Order linearly all positive and negative coalition formulae in ∆ in such a way that the positive
coalition formulae precede the negative coalition formulae. Let L(∆) be the resulting list:
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L(∆) = ([A0]ϕ0, . . . , [Am−1]ϕm−1, 〈A′0〉ψ0, . . . , 〈A′l−1〉ψl−1)

and let r∆ = |L(∆)| = m + l. Denote by D(∆) = {0, . . . , r∆}|ΣΦ|, the set of move vectors
available at state ∆. For every σ ∈ D(∆), let N(σ) = {i | σ[i] ≥ m} be the set of
agents voting for a negative formula in the particular move vector σ. Finally, let neg(σ) =
(Σi∈N(σ)(σ[i]−m)) mod l.

2. For each σ ∈ D(∆):

(a) create a prestate

Γσ = {ϕi | [Ai]ϕi ∈ ∆ and σa = i,∀a ∈ Ai}
∪ {ψj | 〈A′j〉ψj ∈ ∆, neg(σ) = j and ΣΦ \ A′j ⊆ N(σ)}

If Γσ = ∅, let Γσ be {true}.
(b) if Γσ is not already a prestate in the pretableau, add Γσ to the pretableau and connect

∆ and Γσ by an edge labelled by σ; otherwise, just add an edge labelled by σ from ∆
to the existing prestate Γσ (i.e. add ∆

σ−→ Γ).

Let prestates(∆) = {Γ | ∆
σ−→ Γ for some σ ∈ D(∆)}. Let L(∆) be the resulting list of ordered

coalition formulae in ∆ and ϕ ∈ L(∆). We denote by n(ϕ,L(∆)) the position of a coalition formula
ϕ in L(∆); if L(∆) is clear from the context, we write n(ϕ) for short.

It is easy to see that the Next rule is sound with respect to the axiomatisation given in Section 2.2.
A prestate Γσ contains both positive coalition formulae [A]ϕA and [B]ϕB only if A ∩ B = ∅, because
there can be no i ∈ ΣΦ such that σ[i] = n([A]ϕA) and σ[i] = n([B]ϕB) for [A]ϕA 6= [B]ϕB. Also, a
prestate Γσ contains both coalition formulae [A]ϕA and 〈B〉ϕB only if A ⊆ B. If A 6⊆ B, then there is
A′ ⊆ A such that A′ ⊆ ΣΦ \ B ⊆ N(σ). However, all agents in A vote for positive formulae; therefore
they cannot be a subset of N(σ), which is the set of agents voting for negative formulae.

Let ∆ be a state and 〈A〉ϕ ∈ ∆ be a negative coalition formula. As mentioned above, the decision
whether ϕ is included in a prestate Γ created from ∆ depends on the collective votes of the agents.
Note that ϕ might be included in Γ even if the agents a ∈ ΣΦ \ A do not vote for 〈A〉ϕ. For
instance, let ΣΦ = {1, 2, 3, 4} be the set of agents occurring in the set of formulae Φ, ∆ be a state,
L(∆) = ([1]p1, 〈2〉p2, 〈3〉p3, 〈4〉p4) be the list of coalition formulae in ∆, and consider the move vector
(2, 0, 2, 2). Agents in {1, 3, 4} all vote for the negative formula 〈3〉p3, whose index is 2. The collective
vote is given by ((2 − 1) + (2 − 1) + (2 − 1)) mod 3 = 0, that is, the agents collectively vote for the
first negative coalition formula, 〈2〉p2. As ΣΦ \ {2} ⊆ {1, 3, 4}, then p2 is included in the successor
prestate.

Prestate Elimination Phase In this phase, the prestates (and edges from and to it) are removed
from the pretableau. Let PΦ be the pretableau obtained by applying the construction procedure to
the initial prestate containing the set Φ. Let states(Γ) = {∆ | Γ =⇒ ∆}, for any prestate Γ. The
deletion rule is given below.

PR For every prestate Γ in PΦ:

1. remove Γ from PΦ;

2. for all states ∆ in PΦ such that ∆
σ−→ Γ and all states ∆′ ∈ states(Γ) put ∆

σ−→ ∆′.

The graph obtained from exhaustive application of PR to PΦ is the initial tableau, denoted by T Φ
0 .

State Elimination Phase In this phase, states that cannot be satisfied in any model are removed
from the tableau. There are essentially two reasons to remove a state ∆: ∆ is inconsistent (as defined
on page 32); or for some move σ ∈ D(∆), there is no state ∆′ such ∆

σ−→ ∆′ is in the tableau. The
deletion rules are applied non-deterministically, removing one state at every stage. We denote by T Φ

m+1

the tableau obtained from T Φ
m by an application of one of the state elimination rules given below. Let

SΦ
m be the set of states of the tableau T Φ

m .
The elimination rules are defined as follows.
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E1 If ∆ is not consistent, obtain T Φ
m+1 from T Φ

m by eliminating ∆, i.e. let SΦ
m+1 = SΦ

m \ {∆};

E2 If for some σ ∈ D(∆), there is no ∆′ such that ∆
σ−→ ∆′, then obtain T Φ

m+1 from T Φ
m by

eliminating ∆, i.e. let SΦ
m+1 = SΦ

m \ {∆};

The elimination procedure consists of applying E1 until all inconsistent states are removed. Then,
the rule E2 is applied until no states can be removed from the tableau. The resulting tableau, called
final tableau, is denoted by T Φ.

Definition 42. The final tableau T Φ is open if Φ ⊆ ∆ for some ∆ ∈ SΦ. A tableau T Φ
m , m ≥ 0, is

closed if Φ 6⊆ ∆, for every ∆ ∈ SΦ.

Theorem 9. Let Φ be a finite set of formulae in CL+. The tableau construction for Φ terminates in
time exponential in the size of Φ and Φ is unsatisfiable if, and only if, the final tableau for Φ, T Φ, is
closed.

Proof. Termination and complexity of the tableau construction follows from the results in Section 4
in [9]. Soundness and completeness follow from Theorem 5.15 and Theorem 5.39 of [9], respectively.
That our modification of the definition of a downward saturated set does not affect soundness and
completeness follows from the fact that ϕ→ ψ and ¬ϕ∨ (ϕ∧ψ) are equivalent formulae and that we
could replace all occurrences of ϕ→ ψ in Φ by ¬ϕ ∨ (ϕ ∧ ψ) to achieve the same effect.

In the following we use PC to denote P
{[C]CL+}
0 , that is, the pretableau for {[C]CL+}, also called the

pretableau for C, T C0 to denote T
{[C]CL+}

0 , that is, the initial tableau for {[C]CL+}, also called the inital

tableau for C, T C+ to denote the result of exhaustively applying the deletion rule E1 to T C0 , and T C to

denote T {[C]CL+}, that is, the final tableau for {[C]CL+}, also called the final tableau for C.

Lemma 22. Let C be a coalition problem in DSNFCL. The tableau construction for C terminates in
time exponential in the size of C and C is unsatisfiable if, and only if, the final tableau for C, T C , is
closed.

Proof. The tableau construction for C is a tableau construction for the set {[C]CL+} where the formula
[C]CL+ satisfiable iff C is satisfiable and the size of [C]CL+ is linear in the size of C. By Theorem 9, the
tableau construction for [C]CL+ terminates in time exponential in the size of [C]CL+ , and therefore in

time exponential in the size of C, and T {[C]CL+} is closed iff {[C]CL+} is unsatisfiable iff C is unsatisfiable.

Recall that a derivation, as given in Definition 16, is a finite sequence C0, C1, C2, . . . , Cn of coalition
problems in DSNFCL such that Ci+1 is obtained from Ci, 0 ≤ i < n, by an application of a resolution
rule to premises in Ci. For each Ci, 0 ≤ i ≤ n, we construct an initial tableau T Ci0 , thereby obtaining a
sequence T C0

0 , T C1
0 , T C2

0 , . . . , T Cn0 . For each Ci, 0 ≤ i ≤ n, we denote by T Ci+ the tableau obtained from

the initial tableau T Ci0 after the deletion rule E1 has been exhaustively applied. We show that T Cn+ is
closed if, and only if, Cn contains a contradiction. The proof is by induction on the number of nodes
of the tableaux in the sequence T C0

+ , T C1
+ , T C2

+ , . . . , T Cn+ .

Lemma 23. Let C = (I,U ,N ) be a coalition problem in DSNFCL. Let PC be the pretableau for C,
SC the set of states in PC , and RC the set of prestates in PC . If γ ∈ U ∪N , then the following holds:

1. γ ∈ ∆, for all ∆ ∈ SC ;
2. 〈〈∅〉〉2γ ∈ Γ, for all Γ ∈ RC .

Proof. The construction of the tableau proceeds by alternate rounds of applications of the rules SR
and Next.

1. Assume that 〈〈∅〉〉2γ is a formula in a prestate Γ of PC . By an application of SR, the states
generated from any prestate are downward saturated. More specifically, as this is a conjunctive
formula, every state ∆ generated from Γ contains γ and [∅]〈〈∅〉〉2γ. Thus, every state created from
Γ contains γ.
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2. Assume that ∆ is a state that contains [∅]〈〈∅〉〉2γ. Recall that by applying the Next rule, if Γσ is
a successor prestate generated from a state which contains [Ap]ϕp, then ϕp ∈ Γσ if σa = p for all
a ∈ A. As this condition holds vacuously for the empty coalition, every prestate generated from ∆
contains 〈〈∅〉〉2γ.

By construction, 〈〈∅〉〉2γ, for all γ ∈ U ∪ N , is one of the formulae of the initial prestate. Therefore,
from (1) and (2), by induction, all clauses γ ∈ U ∪N are in every state created during the construction
phase. Also, from (1) and (2), by induction, 〈〈∅〉〉2γ is in every prestate in PC .

Lemma 24. Let C = (I,U ,N ) be a coalition problem in DSNFCL. Let T C0 be the initial tableau for
C and SC0 the set of states in T C0 . If γ ∈ U ∪ N , then γ ∈ ∆, for all ∆ ∈ SC0 .

Proof. From Lemma 23, if γ ∈ U∪N , then γ is in all states in the pretableau PC . After the construction
phase, the rule PR only removes prestates. Thus, all the states in the initial tableau contain γ.

Lemma 25. Let C = (I,U ,N ) be a coalition problem in DSNFCL and P → ψ be a clause in N , where
P = l1 ∧ · · · ∧ ln, for some n ≥ 0. Let T C+ be the tableau for C after the E1 has been exhaustively and
let ∆ be a state in T C+ . If {l1, . . . , ln} ⊆ ∆, then ψ ∈ ∆.

Proof. If P → ψ is in N , then by Lemma 24, P → ψ is in every state of T C . If n = 0, then P is the
empty conjunction (true). Because ∆ is downward saturated, it must contain either ¬true or both
true and ψ. As states containing ¬true are removed by applications of E1, ∆ must contain ψ. If
n > 0, assume {l0, . . . , ln} ⊆ ∆. As states are downward saturated, by Definition definition:downward
saturated, every state contains either a literal in {¬l1, . . . ,¬ln} or both P and ψ. If for any lj ,
0 ≤ j ≤ n, we had that lj ∈ ∆, then ∆ would be inconsistent and, therefore, ∆ would have been
removed from the tableau T C+ . Therefore, as ∆ ∈ T C+ , we have that ψ ∈ ∆.

Lemma 26. Let C = (I,U ,N ) be a coalition problem in DSNFCL and T C+ be the tableau for C after
the E1 has been exhaustively applied. Then T C+ is closed iff I ∪ U is unsatisfiable.

Proof. By Lemma 24, if γ ∈ U ∪ N , then γ ∈ ∆, for all ∆ ∈ T C0 and, therefore, γ is in every initial
state. By construction, if γ ∈ I, because γ is in the initial prestate and states are downward saturated,
then γ is in all initial states.

Let us first assume that T C+ is closed. Then all initial states have been eliminated by E1, that is,
all initial states contain propositional inconsistencies. If all initial states are inconsistent, we have that∧

γ∈I
γ ∧

∧
γ′∈U

γ′ ∧
∧

(P→[A]C)∈N

(¬P ∨ (P ∧ [A]C))
∧

(P ′→〈A′〉C′)∈N

(¬P ′ ∨ (P ′ ∧ 〈A〉C ′))

is unsatisfiable. Since coalition modalities are not propositional, they do not contribute to the propo-
sitional (un)satisfiability of a state and can be ignored, that is, assumed to be true.

Therefore, the formula∧
γ∈I

γ ∧
∧
γ′∈U

γ′ ∧
∧

(P→[A]C)∈N

(¬P ∨ P )
∧

(P ′→〈A′〉C′)∈N

(¬P ′ ∨ P ′)

must be unsatisfiable. Now, obviously, tautologies (¬P ∨ P ) and (¬P ′ ∨ P ′) also do not contribute to
the unsatisfiability of this formula which implies that∧

γ∈I
γ ∧

∧
γ′∈U

γ′

is unsatisfiable and thus I ∪ U is unsatisfiable.
Now assume that I ∪ U = {γ1, . . . , γn} is unsatisfiable and let ∆ be an arbitrary initial state.

Since each the elements of I and U are propositional disjunctions and ∆ is downward closed, for each
γi ∈ I ∪ U with γi = li1 ∨ · · · ∨ limi , there is some liji , 1 ≤ ji ≤ mi, with liji in ∆. Let V = {l1j1 , . . . , l

n
jn
}

and V ′ = V ∩ Π. If V is consistent, that is, there is no propositional symbols p ∈ Π such that p ∈ V
and ¬p ∈ V , then V ′ is a valuation that satisfies I ∪ U , contradicting that I ∪ U is unsatisfiable. If V
is not consistent then there exists a propositional symbol p ∈ Π with p ∈ V ⊂ ∆ and ¬p ∈ V ⊂ ∆,
which means that ∆ can be eliminated by an application of E1 and could not occur in T C+ .
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The proof of Lemma 27 below uses the completeness of propositional ordered resolution:

Theorem 10 (Completeness of propositional ordered resolution [15]). Let � be a well-founded and
total ordering � on the set Π. If a set S of propositional clauses over Π is unsatisfiable, then there is
a refutation from S by RES�, where the inference rule RES is given by {(C ∨ l), (D ∨¬l)} ` (C ∨D),
if l is maximal with respect to C and ¬l is maximal with respect to D.

Lemma 27. Let C = (I,U ,N ) be a coalition problem in DSNFVCL. If I ∪ U is unsatisfiable, there is
a refutation for I ∪ U by RES�CL using only the inference rules IRES1 and GRES1.

Proof. If I ∪ U is unsatisfiable, by Theorem 10, there is a refutation by ordered resolution with the
ordering � from I ∪ U . Let S0, . . . ,Sn, with n ∈ N, be a sequence of sets of propositional clauses,
where S0 = I ∪U , false ∈ Sn, and, for each 1 ≤ i ≤ n, Si+1 is the set of clauses obtained by adding to
Si the resolvent of an application of the ordered resolution rule RES� to clauses in Si. We inductively
construct a refutation C0, . . . , Cn for C = (I,U ,N ) such that for every i, 1 ≤ i ≤ n, Si = Ii ∪ Ui, as
follows. In the base case, C0 = C and clearly S0 = I∪U = I0∪U0. For the induction step, let C0, . . . , Ci
be the derivation already constructed. In S0, . . . ,Si,Si+1, we obtained (D ∨D′) by an application of
RES� to (D ∨ l), where l is maximal with respect to D, and (D′ ∨ ¬l), ¬l is maximal with respect to
D′, in Si. As Si = Ii ∪ Ui, every clause in Si occurs in Ii or Ui (or both). We say that a clause D
originates from Ii if D is in Ii, otherwise we say that D originates from Ui.

(i) If both (D ∨ l) and (D′ ∨ ¬l) in Si originate from clauses in Ui, then let Ci+1 = (Ii,Ui ∪ {D ∨
D′},Ni), where D ∨D′ is obtained by an application of GRES1 to (D ∨ l) and (D′ ∨ ¬l) in Ci,
and we have Si+1 = Ii+1 ∪ Ui+1;

(ii) If (D ∨ l) ∈ Si originates from a clause in Ii Ci+1 = (Ii ∪ {D ∨ D′},Ui,Ni), where D ∨ D′ is
obtained by an application of IRES1 to (D∨l) and (D′∨¬l) in Ci, and we have Si+1 = Ii+1∪Ui+1;

(iii) If (D′ ∨ ¬l) ∈ Si originates from a clause in Ii then we proceed as in case (ii) using IRES1 to
construct Ci+1.

Note that applications of IRES1 and GRES1 as described above are possible as l is maximal with
respect to D and ¬l is maximal with respect to D′.

By construction, since false ∈ Sn, we have false ∈ In ∪ Un, and thus there is a refutation of C in
RES�CL using only the inference rules IRES1 and GRES1.

Lemma 28. Let C = (I,U ,N ) be an unsatisfiable coalition problem in DSNFCL such that I ∪ U is
satisfiable and let C′ = (I,U ,N ′) be the coalition problem in DSNFVCL resulting from exhaustively
applying the rules of rewriting system R4 to C. Let ∆ ∈ T C+ be the first state to be eliminated by rule
E2 in the state elimination phase that will result in the final tableau T C for C. Then we can derive a
global clause C 6∈ U from C′ by RES�CL.

Proof. Since I ∪ U is satisfiable, T C+ is not closed, but since C is unsatisfiable, the final tableau T C
must be closed. Therefore, T C+ contains at least one state that can be deleted by an application of
the deletion rule E2. Let ∆ be the first state to which rule E2 is applied. By definition of E2, ∆ is
deleted if there is a move vector σ ∈ D(∆) such that there is no ∆′ with ∆

σ−→ ∆′. Let L(∆) be
the ordered list of coalition formulae in ∆ and for any coalition formula ϕ ∈ ∆ let pos(ϕ,L(∆)) be
the position of ϕ in L(∆). From Lemma 24, all clause in U and in N are in ∆. By Lemma 25, the
right-hand side of coalition clauses are in the states where the left-hand side is satisfied. Therefore,
by Lemmas 24 and 25, and by the definition of the rule Next in the tableau construction, which gives
the set of prestates that are connected from ∆ by an edge labelled by σ, we obtain that ∆′ is one of
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the minimal downward saturated sets built from U ∪ P+
0 ∪ P

−
0 ∪N where

P+
0 = {C | [A]C ∈ E+

0 }
E+

0 = {[A]C | P → [A]C ∈ N+
0 }

L+
0 = {P | P → [A]C ∈ N+

0 }
N+

0 = {P → [A]C | P → [A]C ∈ N ,∆ |= P, σa = pos([A]C,L(∆)) for all a ∈ A}

P−0 = {C | 〈A〉C ∈ E−0 } \ P
+
0

E+
0 = {〈A〉C | P → 〈A〉C ∈ N−0 }
L−0 = {P | P → 〈A〉C ∈ N−0 }
N−0 = {P → 〈A〉C | P → 〈A〉C ∈ N ,∆ |= P,ΣC \ A ⊆ N(σ), neg(σ) = pos(〈A〉C,L(∆))}

Note that for every clause P → [A]C in N there is a corresponding clause P → #�c iAC in N ′ and for
every clause P → 〈A〉C in N there is a corresponding clause P → #�c −iA C in N ′.

We associate each C in U ∪ P+
0 ∪ P

−
0 with a subset of U ∪ N ′ as follows.

clu(C) = {C} ∩ U
cl+(C) = {P → #�c iAC | P → [A]C ∈ N ,∆ |= P, σa = pos([A]C,L(∆))}
cl−(C) = {P → #�c −iA C | P → 〈A〉C ∈ N ,∆ |= P,ΣC \ A ⊆ N(σ), neg(σ) = pos(〈A〉C,L(∆))}

cl(C) =


clu(C) if clu(C) 6= ∅
cl+(C) if clu(C) = ∅ and cl+(C) 6= ∅
cl−(C) otherwise

Note that by construction, cl(C) is non-empty for every C ∈ U∪P+
0 ∪P

−
0 . With each C ∈ U∪P+

0 ∪P
−
0 ,

we then uniquely associate a clause κC , with κC = C or κC = PC → #�c iAC or κC = PC → #�c −iA C in
cl(C). If cl(C) contains more than one clause, then we can choose κC arbitrarily among the elements
of cl(C).

Recall that (a-i) for any [A]C, [A′]C ′ ∈ E+
0 with [A]C 6= [A′]C ′ we have A∩A′ = ∅, (a-ii) N−0 , E−0

and P−0 are either all empty sets or all singleton sets, and (a-iii) for any [A]C ∈ E+
0 and 〈A′〉C ′ ∈ E−0

we have A ⊆ A′. Let Γ be the set of coalition vectors defined by:

Γ = { #�c iA | P → [A]C ∈ N ,∆ |= P, σa = pos([A]C,L(∆))}
∪ { #�c −iA | P → 〈A〉C ∈ N ,∆ |= P,ΣC \ A ⊆ N(σ), neg(σ) = pos(〈A〉C,L(∆))}

It follows from properties (a-i) to (a-iii) that Γ is a pairwise mergeable set of coalition vectors.

Since ∆′ is not in T C+ , it must have been deleted by an application of E1, because ∆ is the first state
being deleted by E2. Therefore, by the definition of E1, ∆′ contains propositional inconsistencies. As
the formulae in N do not contribute to propositional inconsistencies in ∆′, the set of propositional
clauses S0 = U0 ∪ P+

0 ∪ P
−
0 , with U0 = U , is unsatisfiable. Since S0 is unsatisfiable, there must be

a refutation by ordered resolution for this set. Let S0, . . . ,Sn, with n ∈ N, be a sequence of sets of
propositional clauses, where Sn contains the constant false and, for each 1 ≤ i ≤ n, Si+1 is the set of
clauses obtained by adding to Sj the resolvent of an application of RES� to clauses in Sj .

We inductively construct

(a) a derivation C′0, . . . , C′n such that C′j = (I,Uj ,N ′j) for every j, 1 ≤ j ≤ n, and C′n contains a clause

of the form P → #�c false such that P is conjunction of elements of L+
0 ∪ L

−
0 ;

(b) a sequence M′0, . . . ,M′n of sets of coalition clauses such that for every j, 1 ≤ j ≤ n, M′j ⊆ N ′j
and {κC | C ∈ Sj} ⊆ M′j ∪ Uj and for every P → #�c C ∈ M′j , P is a conjunction of elements of

L+
0 ∪ L

−
0 ;

(c) a sequence Γ0, . . . ,Γn of sets of pairwise mergeable coalition vectors such that for every j,
1 ≤ j ≤ n, { #�c | P → #�c C ∈M′j} ⊆ Γj .
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At the same time we extend the association between propositional clauses C in Sj and clauses κC in
C′j , for all j, 1 ≤ j ≤ n.

In the base case, C′0 = C′, M′0 = {P → #�c iAC | P → [A]C ∈ N ,∆ |= P, σa = pos([A]C,L(∆))} ∪
{P → #�c −iA C | P → 〈A〉C ∈ N ,∆ |= P,ΣC \ A ⊆ N(σ), neg(σ) = pos(〈A〉C,L(∆))}, Γ0 = Γ, and for
every clause C in S0 we have already defined a corresponding clause κC . Note that Γ0 is the set of all
coalition vectors occurring in M′0, {κC | C ∈ S0} ⊆ M′0 ∪ U , and for every P → #�c C ∈ M′0, P is an
element of L+

0 ∪ L−0.
For the induction step, assume that we have already constructed the derivation C′0, . . . , C′j =

(I,Uj ,N ′j), the sequence M′0, . . . ,M′j of coalition clauses, and the sequence Γ0, . . . ,Γj such that
M′j ⊆ N ′j ; {κC | C ∈ Sj} ⊆ M′j ∪ Uj ’; for all P → #�c C ∈ M′j , P is a conjunction of elements of

L+
0 ∪ L

−
0 ; { #�c | P → #�c C ∈M′j} ⊆ Γj ; and Γj is a pairwise mergeable set of coalition clauses.

In S0, . . . ,Sj ,Sj+1, we obtained (C ∨ D) by an application of RES� to (C ∨ l) ∈ Sj , where l is
maximal with respect to C, and (D ∨ ¬l) ∈ Sj , where ¬l is maximal with respect to D.

Depending on whether κ(C∨l) and κ(D∨¬l) are universal or coalition clauses we consider the following
cases:

1. Assume κ(C∨l) = P → #�c 1(C ∨ l) and κ(D∨¬l) = Q→ #�c 2(D ∨ ¬l). By induction hypothesis, κ(C∨l)
and κ(D∨¬l) are both in M′j and #�c 1 and #�c 2 are both in Γj . So, #�c 1 and #�c 2 are mergeable, let
#�c 3 = #�c 1↓ #�c 2. Using VRES1 we can derive the clause γj+1 = P ∧ Q → #�c 3(C ∨ D). Let C′j+1 =
(I,Uj+1,N ′j+1) with Uj+1 = Uj and N ′j+1 = N ′j ∪{γj+1},M′j+1 =M′j ∪{γj+1}, Γj+1 = Γj ∪{ #�c 3},
κ(C∨D) = γj+1.

We need to establish that these definitions satisfy the conditions for our construction:

• By induction hypothesis, M′j ⊆ N ′j and since by our definition N ′j+1 = N ′j ∪ {γj+1} and
M′j+1 =M′j ∪ {γj+1}, we have M′j+1 ⊆ N ′j+1.

• Also, we have Sj+1 = Sj∪{(C∨D)} and, by induction hypothesis, {κC | C ∈ Sj} ⊆ M′j∪Uj . So,
{κC | C ∈ Sj+1} = {κC | C ∈ Sj}∪{(C∨D)} ⊆ M′j∪{κ(C∨D)}∪Uj =M′j+1∪Uj =M′j+1∪Uj+1.

• By induction hypothesis, both P and Q are conjunctions of elements of L+
0 ∪L

−
0 and so is P ∧Q.

• By induction hypothesis { #�c | P → #�c C ∈ M′j} ⊆ Γj . So, { #�c | P → #�c C ∈ M′j+1} = { #�c | P →
#�c C ∈M′j} ∪ {

#�c 3} ⊆ Γj ∪ { #�c 3} = Γj+1.

• By Corollary 1, Γj+1 = Γj ∪ { #�c 1↓ #�c 2} with #�c 1 and #�c 2 in Γj is a pairwise mergeable set of
coalition vectors.

2. Assume κ(C∨l) = (C ∨ l) ∈ Uj and κ(D∨¬l) = Q→ #�c 2(D ∨ ¬l). By induction hypothesis, κ(D∨¬l) ∈
M′j . Using VRES2 we can derive the clause γj+1 = Q → #�c 2(C ∨D). Let C′j+1 = (I,Uj+1,N ′j+1)
with Uj+1 = Uj and N ′j+1 = N ′j ∪ {γj+1}, M′j+1 =M′j ∪ {γj+1}, Γj+1 = Γj , κ(C∨D) = γj+1.

We need to establish that these definitions satisfy the conditions for our construction:

• By induction hypothesis, M′j ⊆ N ′j and since by our definition N ′j+1 = N ′j ∪ {γj+1} and
M′j+1 =M′j ∪ {γj+1}, we have M′j+1 ⊆ N ′j+1.

• Also, we have Sj+1 = Sj∪{(C∨D)} and, by induction hypothesis, {κC | C ∈ Sj} ⊆ M′j∪Uj . So,
{κC | C ∈ Sj+1} = {κC | C ∈ Sj}∪{(C∨D)} ⊆ M′j∪{κ(C∨D)}∪Uj =M′j+1∪Uj =M′j+1∪Uj+1.

• By induction hypothesis, Q is a conjunction of elements of L+
0 ∪ L

−
0 .

• By induction hypothesis { #�c | P → #�c C ∈ M′j} ⊆ Γj . So, { #�c | P → #�c C ∈ M′j+1} = { #�c | P →
#�c C ∈M′j} ⊆ Γj = Γj+1.

• By induction hypthosis, Γj is a pairwise mergeable set of coalition vectors and so is Γj+1 = Γj .

3. There case where κ(C∨l) = P → #�c 1(C ∨ l) and κ(D∨¬l) = (D ∨¬l) ∈ Uj can be treated analogously
to the previous case.

4. Assume κ(C∨l) = (C ∨ l) ∈ Uj and κ(D∨¬l) = (D ∨ ¬l) ∈ Uj . Using GRES1 we can derive the
clause γj+1 = (C ∨ D). Let C′j+1 = (I,Uj+1,N ′j+1) with Uj+1 = Uj ∪ {γj+1} and N ′j+1 = N ′j ,
M′j+1 =M′j , Γj+1 = Γj , κ(C∨D) = γj+1.

We need to establish that these definitions satisfy the conditions for our construction:
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• By induction hypothesis, M′j ⊆ N ′j and since by our definition N ′j+1 = N ′j and M′j+1 =M′j
we have M′j+1 ⊆ N ′j+1.

• Also, we have Sj+1 = Sj∪{(C∨D)} and, by induction hypothesis, {κC | C ∈ Sj} ⊆ M′j∪Uj . So,
{κC | C ∈ Sj+1} = {κC | C ∈ Sj}∪ {(C ∨D)} ⊆ M′j ∪Uj ∪{κ(C∨D)} =M′j+1 ∪Uj ∪{κ(C∨D)} =
M′j+1 ∪ Uj+1.

• By induction hypothesis { #�c | P → #�c C ∈ M′j} ⊆ Γj . So, { #�c | P → #�c C ∈ M′j+1} = { #�c | P →
#�c C ∈M′j} ⊆ Γj = Γj+1.

• By induction hypthosis, Γj is a pairwise mergeable set of coalition vectors and so is Γj+1 = Γj .

Thus, there is a derivation C′0, . . . , C′n, which uses only the inference rules GRES1 and VRES1 such
that C′n contains a coalition clause of the form P → #�c false. As P → #�c false ∈M′n, P is a conjunction
of elements of L+

0 ∪ L
−
0 , that is, P = P1 ∧ . . . ∧ Pk with Pi ∈ L+

0 ∪ L
−
0 for each i, 1 ≤ i ≤ k.

Let C′n+1 be the coalition problem in DSNFVCL obtained from C′n by adding the result of an appli-
cation of RW1 P → #�c false to C′n, that is, C′n+1 = (I,Un ∪ {¬P},N ′n).

We claim that ¬P 6∈ U . Assume the opposite. From Lemma 24, global clauses are in every state
of T C+ . So, the state ∆ contains ¬P = ¬P1 ∨ . . . ∨ ¬Pk. As ∆ is a minimal downward saturated
set, ∆ entails ¬Pi for some i, 1 ≤ i ≤ k. ∆ also contains all formulae in N+

0 , E+
0 N

−
0 , and E−0 . By

construction, either Pi → [Ai]Ci ∈ N+
0 or Pi → 〈Ai〉Ci ∈ N−0 . By definition of N+

0 and N−0 , ∆ |= Pi.
However, ∆ |= ¬Pi and ∆ |= Pi implies that ∆ is inconsistent and should have been removed by an
application of rule E1. This contradicts our assumption that ∆ is in T C+ .

Theorem 11 (Completeness of RES�CL). Let C = (I,U ,N ) be an unsatisfiable coalition problem in
DSNFCL and let C′ = (I,U ,N ′) be the unsatisfiable coalition problem in DSNFVCL resulting from
exhaustively applying the rules of rewriting system R4 to C. Then there is a refutation for C′ by
RES�CL.

Proof. First, by Lemma 8, if C is unsatisfiable then C′ is unsatisfiable. Second, if C is unsatisfiable
and only if C is unsatisfiable, by Theorem 9, we have that T C is closed. In the following we construct
C′ = C′0, . . . , C′n, for some n ∈ N, of C′ using RES�CL.

Let C0,0 = C. If T C0,0+ is closed, then all initial states in T C0,0+ have been removed by applications of
E1 which means that I ∪U is unsatisfiable. As C′ = (I,U ,N ′), by Lemma 27 there exists a refutation

C′ = C′0,0, . . . , C′0,m0
of C′0,0 using only the inference rules IRES1 and GRES1 of RES�CL. If T C0,0+ is not

closed, then by Lemma 28, we can construct a derivation C′ = C′0,0, . . . , C′0,m′0 = C′1,0 = (I,U1,N ′1)

such that there is a global clause γ with γ ∈ U1 but γ 6∈ U . Let C1,0 = (I,U1,N ). We call C1,0 the
corresponding coalition problem to C′1,0. As U ⊂ U1, C1,0 is unsatisfiable. Depending on whether T C1,0
is closed, we proceed as for C0,0 in the construction of the derivation.

We continue this construction until we derive a coalition problem C′i,0 in DSNFVCL with correspond-

ing coalition problem Ci,0 in DSNFCL for which T Ci,0+ is closed and for which we can then complete
the construction of the refutation using Lemma 27. We know that we will eventually derive such a
coalition problem C′i,0 as the number of global clauses is finite, that is, it cannot indefinitely be the

case that T Ci,0+ is open while the final tableau T Ci,0 is closed. On the other hand if we were to derive
a coalition problem C′i,0 in DSNFVCL with corresponding coalition problem Ci,0 in DSNFCL such that

both T Ci,0+ and T Ci,0 are open, then by Theorem 9 Ci,0 = (I,Ui,Ni) is satisfiable. As U ⊆ Ui and
N ⊆ N this contradicts the assumption that C = (I,U ,N ) is unsatisfiable.

Theorem 12. Let ϕ ∈WFFCL. Let C′0 = (I,U ,N ′) be the coalition problem in DSNFVCL resulting from
exhaustively applying the rules of rewriting system R4 to C′ = ({tϕ}, {tϕ → τ0(ϕ)}, ∅). Let C′0, . . . , C′n
be a derivation from C′0 by RES�CL.

(a) If C′i, for some i, 1 ≤ i ≤ n, contains a contradiction, then ϕ is unsatisfiable.

(b) If C′n does not contain a contradition and any inference by RES�CL with premises in C′n only derives
a clause already in C′n, then ϕ is satisfiable.
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Proof. Statement (a) follows from Theorems 6 and 7: If C′0 is satisfiable, then C′i is satisfiable. Since
C′i contains a contradiction, it is obviously not satisfiable and therefore, by Theorem 7, C′0 is not
satisfiable. By Theorem 6, if C′0 is not satisfiable then ϕ is not satisfiable.

Regarding statement (b), let us first consider a derivation C′0 = C′′0 , . . . , C′′m such that any inference
by RES�CL with premises in C′′m only derives a clause already in C′′m. Then C′′m = C′n, there is one unique
coalition problem with this closure property derivable from C′0. Assume the opposite, that is, C′′m 6= C′n.
Without loss of generality assume that C′′m contains a clause γ that is not in C′n. Clearly, γ has been
derived by a sequence of inference steps from claues in C′′0 . However, since C′′0 = C′0 these clauses are
also present in C′0 and γ is derivable from C′0. So, γ must be present in C′n.

Statement (b) then follows from Theorems 6 and 11: Since any inference by RES�CL with premises
in C′n only derives a clause already in C′n and C′n is unique and contains no contradiction, there is no
refutation of C′n. Therefore, there is also no refutation of C′0 which by Theorem 11 implies that C′0 is
satisfiable. By Theorem 6, if C′0 is satisfiable then ϕ is satisfiable.

5 Conclusion

We have described a calculus RES�CL based on ordered resolution for Coalition Logic and sketched proofs
of its soundness and completeness. We have also shown that any derivation by RES�CL terminates. The
prover CLProver++ provides an implementation of RES�CL. Our evaluation of CLProver++ indicates that
the ordering refinement improves performance by several orders of magnitude compared to unrefined
resolution as implemented in CLProver. Our evaluation also shows that similar improvements can be
gained by optimising the normal form transformation that is used to obtain coalition problems from
CL formulae.

Our work on Coalition Logic is a first step towards the development of resolution calculi for more
expressive logics for reasoning about the strategic abilities of coalitions of agents. A wide variety of
such logics can be found in the literature, starting with Alternating-Time Temporal Logic ATL. The
notion of coalition vectors that we have introduced in this paper are closely related to the notion of
k-actions in Coalition Action Logic [5] and to the notion of commitment functions in ATLES [29].
We believe that the combination of the techniques developed in this paper with the techniques for
temporal logics with eventualities provide a good basis for the development of effective calculi for
logics such as ATL, Coalition Action Logic and ATLES.
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