Investigating Parametric Influence on Discrete

Synchronisation Protocols using Quantitative
Model Checking *

Paul Gainer, Sven Linker, Clare Dixon, Ullrich Hustadt, and Michael Fisher

University of Liverpool, UK
{p.gainer, s.linker, cldixon, u.hustadt, mfisher}@liverpool.ac.uk

Abstract. Synchronisation is an emergent phenomenon observable in
nature. Natural synchronising systems have inspired the development of
protocols for achieving coordination in a diverse range of distributed dy-
namic systems. Spontaneously synchronising systems can be mathemat-
ically modelled as coupled oscillators. In this paper we present a novel
approach using model checking to reason about achieving synchrony for
different models of synchronisation. We describe a general, formal pop-
ulation model where oscillators interact at discrete moments in time,
and whose cycles are sequences of discrete states. Using the probabilistic
model checker PRISM, we investigate the influence of various parame-
ters of the model on the likelihood of, and time required for, achieving
synchronisation.

1 Introduction

Synchronisation is an emergent phenomenon observable throughout nature; pace-
maker cells in the sinoatrial node of the heart synchronise to set the rate and
rhythm of a heartbeat, tree crickets chirp in harmony, and populations of fire-
flies synchronise their flashing to attract mates [6]. These decentralised natural
systems have inspired the development of protocols for achieving synchrony in
a diverse range of artificial decentralised systems; in particular swarm robotic
systems and wireless sensor networks (WSNs). Applications include detecting
faults in members of a robotic swarm [8], synchronising the duty cycles of sensor
nodes in a network [19], auto-tuning mobile networks to save energy [4], and
coordinating data dissemination for a WSN [5].

The cyclic behaviour of systems where synchrony spontaneously occurs can
be modelled as networks of coupled oscillators with similar frequencies. Oscilla-
tors are coupled when some process results in the transferral of energy between
them. In some systems oscillators are coupled such that their oscillations have
a continuous influence on each other. The strength of the coupling between
oscillators is determined by some global constant. When the mutual agitation

* This work was supported by both the Sir Joseph Rotblat Alumni Scholarship at
Liverpool and the EPSRC Research Programme EP/N007565/1 Science of Sensor
System Software.

of oscillators takes place only at discrete instances in time the oscillators are
pulse-coupled [15,17]. At some distinguished point in the oscillation cycle a pulse-
coupled oscillator fires and influences other nearby oscillators. An oscillator that
is perturbed by another oscillator shifts or resets the phase of its own oscillation
cycle to more closely match that of its neighbour. Over time this can lead to
all oscillators matching phase, and synchronisation is achieved if all oscillators
fire synchronously. In nature, the oscillation cycle of oscillators often includes
a refractory period. The refractory period is an interval in the oscillation cycle
during which its phase cannot be perturbed by other firing oscillators. This re-
fractory period can prevent spurious mutual stimulation of the oscillators, which
could lead to perpetual asynchrony. The introduction of a refractory period to
oscillators in artificial systems not only helps to achieve synchrony, but can also
be thought of as a period during which robots in a swarm, or nodes in a WSN,
can turn off their wireless antennas and save energy.

The emergence of synchronisation in robot swarms, WSNs, and other dis-
tributed and dynamic systems is often investigated by designing and analysing
simulations. Simulations can give detailed insight into how global behaviours
of these systems emerge over time. Formal approaches can complement simula-
tions, where desirable properties for the system can be unambiguously formu-
lated, and rigorously checked against some formal model of the system, often
finding corner cases that may not be covered even by a large number of tests
of a simulation. Model checking has been successfully applied to qualitatively,
and quantitatively, analyse control algorithms and protocols for both swarm sys-
tems [2,11,14] and WSNs [7,13]. In particular, model checking has been used to
formally investigate the emergence of synchronisation in networks of oscillators.
A general model of synchronisation for oscillators was introduced in [3], where
oscillators were modelled as timed automata [1], and a model checking algorithm
was used to determine the reachability of a synchronised state for distinguished
runs of the model. More recently, Heidarian et al. [13] also used timed automata
to exhaustively analyse a specific clock synchronisation protocol.

Our contribution in this paper is the development of a formal and general
model for oscillator synchronisation, which is parameterised by a synchronisation
model and a configuration for both oscillators and the network. In contrast to
previous applications of model checking to detect synchronisation, our model is
discrete. That is, the oscillators interact at discrete moments in time, and their
oscillation cycles are defined as sequences of discrete states. Given an instanti-
ation of our general model we automatically generate a discrete time Markov
chain (DTMC). We discuss the results of model checking two instantiations of
our model with regards to energy consumption.

In Sect. 2 we present the dynamics of individual oscillators with discrete os-
cillation cycles. We formally define our general, parameterised population model
for a network of oscillators in Sect. 3, and describe how we construct the corre-
sponding DTMC in Sect. 4. We discuss the results of checking synchronisation
properties for two concrete instantiations of our formal model in Sect. 5. Con-
cluding remarks and suggestions for further work are given in Sect. 6.

2 Discrete Oscillator Model

We consider a fully-connected network of N pulse-coupled oscillators with iden-
tical dynamics over discrete time. We denote the set of these oscillators by
O = {1,...,N}, where each i € O corresponds to a single pulse-coupled os-
cillator. The value or phase of an oscillator ¢ in O at time ¢ is denoted by ¢; ().
The phase of an oscillator progresses through a sequence of discrete integer values
bounded by some T > 1.

Definition 1. The evolution function s a strictly increasing function evol :
{1,...,T} = N with evol(®) > & for all ® € {1,...,T}, that maps the current
phase of an oscillator to its phase in the next discrete time step.

We now introduce the update function and firing predicate, which respectively
denote the updated phase of an oscillator 7 at time ¢ after one time step, and
the firing of oscillator i at time ¢,

update,(t) = evol(g;(t)), fire;(t) = update,(t) > T.

The precise evolution of phase over time for an oscillator ¢ is then given by

bilt+1) = {1 if ﬁrei('t)
update;(t) otherwise,

where phase increases over time until evol(¢;(t)) > T, at which point oscillator
i fires, that is, ¢;(t + 1) becomes 1 and the oscillator attempts to broadcast a
firing signal to all other oscillators coupled to it. The phase progression of an
uncoupled oscillator is cyclic, and we refer to one cycle as an oscillation cycle.

An oscillator’s firing signal perturbs the phase of all coupled oscillators; we
use «;(t) to denote the number of all other oscillators in O that are coupled to i
and will broadcast their firing signal at time ¢. Furthermore, we define u € [0, 1]
to be the probability that a broadcast failure occurs when an oscillator fires, but
the attempt to broadcast its firing signal fails (the oscillator still resets its phase
to 1). Note that p is a global parameter, hence the chance of broadcast failure is
identical for all oscillators. Observe that «;(t) is defined globally even though the
model is not deterministic, however we defer the reader to the detailed discussion
of probabilities in the following section.

Definition 2. The perturbation function is an increasing function pert :
{1,...,T} x N x R* — N that maps the phase of an oscillator i, the num-
ber of oscillators that have fired and perturbed i, and a real value defining the
strength of the coupling between oscillators, to an integer value corresponding to
the induced perturbation to phase.

We refine the update function to include the perturbation to phase induced by
the firing of other oscillators that are coupled to oscillator ¢ at time ¢, update,(t) =
evol(g;(t)) + pert(p;(t), a;(t),e). We can introduce a refractory period into the

oscillation cycle of each oscillator. A refractory period is an interval of discrete
values [1,R] C [1,T] where 0 < R < T is the size of the refractory period,
such that if ¢;(¢) is inside the interval, for some oscillator i at time ¢, then i
cannot be perturbed by other oscillators to which it is coupled. If R = 0 then
we set [1, R] = (), and there is no refractory period at all. To be consistent with
the literature we only consider refractory periods that occur at the start of the
oscillation cycle.

Definition 3. The refractory function ref : {1,...,7} x N — N is defined as
ref(®,A) =0 if & € [1, R], or ref(P, A) = A otherwise.

Given A, a degree of perturbance to the phase of an oscillator, and &, the phase
of that oscillator, ref(®, A) returns 0 if @ is in the refractory period defined by R,
or A otherwise. We again amend the update function to include the refractory
function, giving update;(t) = evol(¢;(t)) + ref(¢;(¢t), pert(p;(t), c;(t), €)).

3 Population Model

Let O ={1,...,N} be a fully connected network of N identical oscillators with
phases in the range 1,...,T, whose dynamics are determined by the functions
evol and pert, with a refractory period defined by R, coupled with strength € €
[0, 1], and where the probability of broadcast failure is u € [0, 1]. The population
model of the network O is defined by § = (N, T, R, €, evol, pert, u).

Since all oscillators in our model are behaviourally identical we do not need
to distinguish between oscillators sharing the same phase, and can reason about
groups of oscillators, instead of individuals. The global state of the model is
therefore a tuple, where each element ng of the tuple (n1,...,nr) corresponds
to the number of oscillators sharing a phase value of . The population model
does not account for the introduction of additional oscillators to a network, or the
loss of existing coupled oscillators. That is, the population N remains constant.

Definition 4. A global state of a population model S = (N, T, R, €, evol, pert,)
is a T-tuple © € {0,..., N}T, where 7 = (ny,...,nr) and Zgzl ng = N. The
set of all global states of S is I'(S), or simply I' when S is clear from the context.

Ezample 1. Figure 1 shows three global states for an instantiated population
model, § = (5,6,2,0.15, evol, pert, 0.1), where the synchronisation model de-
scribed in [8] is instantiated by defining the evolution function as evol(®) = $+1,
and the perturbation function as pert(®, a,e) = [® - « - €], where [x] denotes x
rounded to the nearest integer. The label for each node ng is the number of
oscillators with phase @. We omit the label if ng = 0. Oscillators at node ng are
about to fire, and oscillators at nodes ny and no are in their refractory period,
and cannot be perturbed by the firing of other oscillators. The global states can
be denoted by 7o = (0,1,0,2,2,0), m = (0,0,1,0,2,2), and m = (5,0,0,0,0,0).
Later we will explain how transitions between these global states are made. Note
that directional arrows indicate cyclic direction, and do not represent transitions.

With every global state m we associate a non-empty set of failure vectors, where
each failure vector is a tuple of broadcast failures that could occur in .

Definition 5. A failure vector is a T-tuple B € ({0,..., N}U{x})T. We denote
the set of all possible failure vectors by B.

Given a failure vector B = (b1, ...,br), bg € {0,..., N} indicates the number of
broadcast failures that occur for all oscillators with a phase of @. If by = % then
no oscillators with a phase of @ fire, for all 1 < @ < T'. Semantically, by = 0 and
by = « differ in that the former indicates that all (if any) oscillators with phase
& fire and no broadcast failures occur, while the latter indicates that all (if any)
oscillators with a phase of @ do not fire. If no oscillators fire at all in a global
state then we have only one possible failure vector, namely {x}*.

3.1 Transitions

Later in this section we will describe how we can calculate the set of all possible
failure vectors for a global state, and thereby identify all of its successor states.
However we must first show how we can calculate the single successor state of a
global state 7, given some failure vector B.

Absorptions. For real deployments of synchronisation protocols it is often the
case that the duration of a single oscillation cycle will be at least several seconds
[8,18]. The perturbation induced by the firing of a group of oscillators may lead
to groups of other oscillators to which they are coupled firing in turn. The firing
of these other oscillators may then cause further oscillators to fire, and so forth,
leading to a “chain reaction”, where each group of oscillators triggered to fire is
absorbed by the initial group of firing oscillators. Since the whole chain reaction
of absorptions may occur within just a few milliseconds, and in our model the
oscillation cycle is a sequence of discrete states, when a chain reaction occurs
the phases of all perturbed oscillators are updated at one single time step.
Since we are considering a fully connected network of oscillators, two oscil-
lators sharing the same phase will have their phase updated to the same value

0 1 T2
ni ni ni
ng ne N2 ne N2 e
n3 ns N3 ns N3 ns
n4 N4 n4

Fig. 1. Evolution of the global state over three discrete time steps.

in the next time step. They will always perceive the same number of other os-
cillators firing. Therefore, for each phase @ we define the function a®: I' x B —
{1,..., N}, where a® (7, B) is the number of oscillators with a phase greater than
@ perceived to be firing by oscillators with phase &, in some global state, incor-
porating the broadcast failures defined in the failure vector B. This allows us
to encode the aforementioned chain reactions of firing oscillators. Note that our
encoding of chain reactions results in a global semantics that differs from typical
parallelisation operations, for example, the construction of the crossproduct of
the individual oscillators.

Given a global state 7 = (n,...,ny) and a failure vector B = (b1, ...,br),
the following mutually recursive definitions show how we calculate the values
al(m,B),...,a”(r, B), and how functions introduced in the previous section
are modified to indicate the update in phase, and firing, of all oscillators sharing
the same phase ®. Observe that to calculate any of(B,7) we only refer to
definitions for phases greater than @ and the base case is @ = T, that is, values
are computed from T down to 1.

update® (r, B) = evol(®) + ref(®, pert(®, o (7, B), €))
fire? (n, B) = update® (x,B) > T

0 if =T
a®(m,B) = { a®t(7,B)+ng1—boy1 if P<T, bpy1# + and fire? ™ (7, B)
a®tl(x, B) otherwise

Transition Function. We now define the transition function that maps phase
values to their updated values in the next time step. Note that since we no
longer differentiate between different oscillators with the same phase we only
need to calculate a single value for their evolution and perturbation.

Definition 6. The phase transition function 7: I' x {1,...,T} x B — N maps
a global state, a phase @, and some possible failure vector B for mw, to the updated

phase in the next discrete time step, with respect to the broadcast failures defined
i B, and is defined as

1 if fire? (n, B)
update® (m, B) otherwise.

7(m,®,B) = {

Lemma 1. The range of the function 7 is bound by T'. That is, for any =, for
any possible failure vector B for m, and for oll ® € {1,...,T}, we have that
1<7(m,®,B)<T.

Proof. By construction.

Let Ug(m, B) be the set of phase values & where all oscillators with phase ¥ in
7 will have their phase updated to @ in the next time step, with respect to the
broadcast failures defined in B. Formally,

Up(m,B) = {¥ | W e {1,...,T} Ar(r, ¥, B) = &}.

We can now calculate the successor state of a global state m and define how the
model evolves over time.

Definition 7. The successor function succ : I' x B — I" maps a global state ©
and a failure vector B to a state ', and is defined as succ({ny,...,nr), B) =
(nh,...,np), where ng=73 g cyip(n,py e for 1 <O <T.

Ezxample 2. Consider the global state my of Fig 1 where no oscillators will fire
since ng = 0. We therefore have one possible failure vector for 7y, namely B =
{x}6. Since no oscillators fire the dynamics of the oscillators are determined
solely by evol, and all oscillators simply increase their phase by 1 in the next
time step. Now consider the global state w3 and B=(x,*,0,0,0,1), a possible
failure vector for my, indicating that oscillators with phases of 3 to 6 will fire and
one broadcast failure will occur for one of the two oscillators that will fire with
phase 6. Despite the broadcast failure occurring, a chain reaction will occur as
the firing of the single oscillator with phase 6 will perturb the two oscillators with
phase 5 to fire also. The combined perturbation induced by the firing of all three
oscillators will cause the final oscillator with phase 3 to fire. All oscillators are
therefore absorbed into the initial group of firing oscillators. Since ﬁreﬁ(wh B)
holds we have that a® (w1, B) = a®(m1, B)+n6—bg = 0+2—1 = 1. Similarly since
ﬁre5(7r1) holds we have that a*(my, B) = o®(71, B) + n5 = 1 + 2 = 3. We then
continue calculating a® (71, B) for 3 > & > 1, and conclude that U, (71, B) =
{6,5,4,3} and Us(m1, B) = Us(m1, B) = Uy(m1, B) = 0. Since R = 2 we have
that Us(m1, B) = {2} and Us(m1, B) = {1}. We calculate the successor of 7 as
o = succ((0,0,1,0,2,2), B) = (ng+ns+ns+ns,ni,ne2,0,0,0) = (5,0,0,0,0,0).

Lemma 2. The number of oscillators is invariant during transitions, i.e., the
successor function only creates tuples that are states of the given model. For-
mally, let 1 = (nq1,...,nr) and © = (n},...,nl) be two states of a model S
such that ™ = succ(rw, B), where B is some possible failure vector for w. Then

T T
Y1 Ne =D g ng=N

Proof. By construction.

3.2 Failure Vector Calculation

We construct all possible failure vectors for a global state by considering every
group of oscillators in decreasing order of phase. At each stage we determine if the
oscillators would fire. If they fire then we consider each outcome where any, all,
or none of the firings result in a broadcast failure. We then add a corresponding
value to a partially calculated failure vector and consider the next group of
oscillators with a lower phase. If the oscillators do not fire then there is nothing
left to do, since by Def. 1 we know that evol is strictly increasing, and by Def. 2
we know that pert is increasing, therefore all oscillators with a lower phase will
also not fire. We can then pad the partial failure vector with x appropriately to
indicate that no failure could happen since no oscillators fired.

Table 1 illustrates how a possible failure vector for global state m; in Fig. 1 is
iteratively constructed. The first three columns respectively indicate the current
iteration ¢, the global state 7y with the currently considered oscillators indicated,
and the elements of the failure vector B computed so far. The fourth column is
true if the oscillators with phase T+1—i would fire given the broadcast failures
in the partial failure vector. We must consider all outcomes of any or all firings
resulting in broadcast failure. The final column therefore indicates whether the
value added to the partial failure vector in the current iteration is the only
possible value (false), or if a choice from one of several possible values (true).

Initially we have an empty partial failure vector. At the first iteration there
are 2 oscillators with a phase of 6. These oscillators will fire so we must consider
each case where 0,1 or 2 broadcast failures occur. Here we choose 1 broadcast
failure, which is then added to the partial failure vector. At iteration 2, oscillators
with a phase of 5 fire, and again we must consider each case with 0,1 or 2
broadcast failures occur; here we choose 0. At iteration 3 oscillators with a phase
of 4 would have fired, but since there are no oscillators with a phase of 4 we only
have one possible value to add to the partial failure vector, namely 0. At iteration
4 a single oscillator with a phase of 3 fires, and we choose the case where the
firing did not result in a broadcast failure. In the final iteration oscillators with
a phase of 2 do not fire, hence we can conclude that oscillators with a phase of
1 also do not fire, and can pad the partial failure vector appropriately with x.

Formally, we define a family of functions f indexed by @, where each fg takes
as parameters some global state m, and V', a vector of length T'— @. V represents
all broadcast failures for all oscillators with a phase greater than @. The function
fo then computes the set of all possible failure vectors for 7 with suffix V. Here
we use the notation v v’ to indicate vector concatenation.

Definition 8. We define fo : I'x{0,...,N}T=% = P(({0,..., N}U{x})T), for
1< @< T, as the family of functions indexed by ®, where m = (ny,...,nr) and
Ur2o fo—1(m, (k)7V) if 1 < ® < T and fire® (m,{x}*" V)
fo(m, V) = Uy {(k) "V} if & =1 and fire' (7, (x)"V)
{x}" v} otherwise
Definition 9. Given a global state m € I', we define B, the set of all possible

failure vectors for that state, as By = fr(m,()), and define next(w), the set of
all successor states of w, as next(n) = {succ(w, B) | B € Br}.

Table 1. Construction of a possible failure vector for a global state 71 = (0,0,1,0,2,2).

iteration (7) ! failure vector B | fired | branches
0 (0,0,1,0,2,2) () - false
1 (0,0,1,0,2,2) (1) | true true
2 (0,0,1,0,2,2) (0,1) | true true
3 (0,0,1,0,2,2) (0,0,1) | true false
4 (0,0,1,0,2,2) (0,0,0,1) | true true
5 (0,0,1,0,2,2) (*,%,0,0,0,1) | false -

Note that for some global states |next(w)| < |By|, since we may have that
succ(m, B) = succe(r, B') for some B, B’ € B, with B # B’.

Given a global state 7 and a failure vector B € B, we will now compute the
probability of a transition being made to state succ(m, B) in the next time step.
Recall that p is the probability with which a broadcast failure occurs. Firstly
we define the probability mass function Py, : {1,..., N} x {1,...,N} — [0,1],
where Ppi(n,b) gives the probability of b broadcast failures occurring given
that n oscillators fire, as Ppa(n,b) = p’(1 — p)"~?(}). We then denote by
P, () : B — [0,1] the function mapping a possible broadcast failure vector B
for 7, to the probability of the failures in B occurring. That is,

T .
Pl ne)) (o, br)) = T {lff“il("@’b@) s
P=1

otherwise

Lemma 3. For any global state w, P.(w) is a discrete probability distribution
over By. Formally, > pcps Pr(m)(B) = 1.

Proof. By induction over a tree where internal nodes are partially constructed
failure vectors and leaf nodes are failure vectors.

Ezample 3. We consider again the global states m = (0,0,1,0,2,2) and mp =
(5,0,0,0,0,0), given in Fig. 1, of the population model instantiated in Example 1,
and the failure vector B = (x,*,0,0,0,1) given in Example 2, noting that B €
B, , succ(my, B) = mg, and p = 0.1. We calculate the probability of a transition
being made from ; to w2 as P-((0,0,1,0,2,2))({*,*,0,0,0,1)) = 1-1-P;(1,0)-
Pi(0,0) - P2i(2,0) - Paa(2,1) =1-1-0.9-1-0.81-0.18 = 0.13122.

We now have everything we need to fully describe the evolution of the global
state of a population model over time. A run of a population model S is an
infinite sequence of global states II = g — m; — w2 — 73 - - -, where g is called
the initial state, and for all k > 0, mp, — 1 if, and only if, w11 € next(mw).
We denote the set of all possible runs of S by I1(S).

3.3 Synchronisation

When all oscillators in a population model have the same phase in a global state
we say that the state is synchronised. Formally, a global state 7 = (ny,...,nr)
is synchronised if, and only if, there is some @ € {1,...,T} such that ng = N.
Hence, for all &' # &, we have that ng: = 0. We use the notation synch(m) to
indicate that some global state 7 is synchronised. We will often want to reason
about whether some particular run II of a model leads to a global state that
is synchronised. We say that a run Il = myg — m — ... synchronises if, and
only if, there exists some k > 0 with synch(my). We use the notation synch(II)
to indicate that some run IT synchronises. Once a synchronised global state is
reached any successor states will remain synchronised. Finally we can say that a
model synchronises if, and only if, synch(IT) for all IT € I1(S). In Fig. 1 global
state my is synchronised, since ny = N.

4 Model Generation

We choose to use the probabilistic model checker PrISM [16] to formally verify
properties of our model. Given a probabilistic model of a system, PRISM can be
used to reason about both temporal and probabilistic properties of the input
model, by checking some requirement expressed in a suitable formalism against
all possible runs of the model. We define our input models as Discrete Time
Markov Chains (DTMCs). A DTMC is a tuple (Q, init, P) where @ is a set of
states, init € @ is the initial state, and P : @ x @ — [0, 1] is the function mapping
ordered pairs of states (g, ¢’) to the probability with which a transition from ¢
to ¢’ occurs, where Zq’EQ P(q,q¢') =1 for all ¢ € Q.

Given a population model S = (N, T, R, ¢, evol, pert, u1), we construct a DTMC
(Q, init, P). We define the set of states @ to be I'(S) U {init}. In the initial state
all oscillators are considered to be unconfigured. That is, oscillators have not yet
been assigned a value for their phase. For each ¢ € @, where ¢ € I'(S) and
q={(ni,...,n), we define

P(init, q) = T% lj (N) (%5:% nj))

to be the probability of moving from init to a state where the oscillators are
configured with the phase values defined in ¢, since there are N choose n, ways
to select nj oscillators to have a phase of 1, then N — n; choose ns ways to
select ng oscillators to have a phase of 2, and so forth. For every ¢ € Q \ init
we consider each ¢’ € @\ init where ¢’ = succ(g, B) for some B € B,, and set
P(q,q¢") = P-(q)(B). For all other ¢ € Q \ init and ¢’ € Q, where ¢ # ¢ and
q ¢ next(q), we set P(q,q’) = 0.

A state in PRISM is a valuation for a set of variables over the domain con-
sisting of finitely bound booleans and integers. Global states in I" are encoded
using T finitely bound integer variables ranging over N discrete values. To fa-
cilitate the analysis of many different oscillator population models we provide a
Python script! that allows the user to define ranges for N, T, R, € and p, for
some fixed definitions for evol and pert. Then, given a list of properties, for each
combination of parameters the script generates a model, checks all properties
using PRISM, and writes user specified output (e.g. result, model checking time,
etc.) to a comma separated value file which can be used by statistical analysis
tools. Even though models in PRISM can be parametric, the parameters may
only be used to describe probabilities. Therefore, our generated models can only
be parameterised by u, since changing the value of u does not result in the loss
or addition of any transitions to the model.

! The model generation script and the results presented in this paper can be found at
https://github.com/PaulGainer/mc-bio-synch

10

https://github.com/PaulGainer/mc-bio-synch

5 Evaluation

Within this section we will discuss the properties of two instantiations of the for-
mal model defined in Sect. 3. To that end, we created concrete models for PRisSM
for different parameters of the models, e.g. number of oscillators and different
coupling constants. Each of these models was subsequently checked by PRisMm
with respect to different properties. Other case studies could also be considered
for alternative models of synchronisation where the dynamics of oscillators, and
their interactions, can be described by some evolution and perturbation function.

Properties to be checked are specified using Probabilistic Computation Tree
Logic (PCTL) [12]. PCTL consists of classical logical operators, temporal opera-
tors including ¢, “at some future point ¢ holds”, and the probabilistic operator
P [¢], where < is a relational operator and v € [0, 1] is a probability threshold.
We can therefore specify properties such as P>g.1[0¢], “¢ holds at some future
point with a probability of at least 0.1”. In addition to assertions, PRISM al-
lows the specification of properties that evaluate to a numerical value, using the
syntax P_+[p], “what is the probability that ¢ holds?”. Furthermore, rewards
can be associated with states, and the reachability reward operator R can be
used to calculate expected rewards. For example R_7[0y] expresses “what is the
expected reward for reaching a state where ¢ holds?”.

We are interested in the probability of eventual synchronisation and in the
average time needed to achieve synchronisation. We formalise these properties in
PCTL as p1=P_2[0 synchronised], and 02= R {1ime_to_synch}=2[0 synchronised).

In these formulas synchronised is a name for the formula \/Z‘T:1 n; = N used
within the PRISM model, while time_to_synch is a reward structure associating
a value of % with each state where oscillators are configured (i.e., not init) and
where the system is not synchronised, that records the number of cycles taken to
achieve synchrony. As a consequence, the result of model checking with respect
to @9 is the expected value of the reward time_to_synch accumulated along a
path until synchrony occurs. Observe that PRISM gives a result of Infinity for
accumulating time_to_synch along a run that does not synchronise. Since PRISM
computes the expected value over all paths, this implies that a system with
non-synchronising paths will also result in Infinity for ¢s.

In the following, we present the model checking results for two instantiations
of our model. We will discuss these results and the resulting trade-offs for param-
eter choices. For a network of sensor nodes, several attributes can be weighted
against each other: (i) probability of synchronisation, (ii) time for achieving syn-
chrony, (iii) battery life of a single oscillator. While we get direct results for the
first two properties from PRISM, battery life is dependent on the energy con-
sumption, which can only be estimated from the parameters of the model. In
WSNs, communication is costly with respect to energy consumption. Communi-
cation is either active when sending a message, i.e., when a node fires, or passive,
when receiving messages from other nodes. Hence, during periods where a sensor
does neither, the antenna can be shut down to save energy. In our models, this
interval of inactivity corresponds to the refractory period. That is, the longer
the refractory period is, the less energy will be consumed.

11

M&S Synchronisation Probability (N=7, T=10, £¢=0.1) M&S Synchronisation Time (N=7, T=10, £¢=0.1)
— o o o = 100 RP

)
3
a

S
3
Aniqeqoid "ouAs
Expected Sync. Time (in Cycles)
5

Fig. 2. Mirollo & Strogatz synchronisation: synchronisation probabilities for different
refractory periods, and synchronisation times for different rates of broadcast failure.

Mirollo and Strogatz Synchronisation Model. Here, we present the results of
model checking population models where the perturbation function is a dis-
cretisation of the Mirollo and Strogatz (M&S) model of synchronisation used
by Perez et al. [18], namely pert(®,a,e) = [® - - €]. Note that, here, the per-
turbation induced by the firing of another oscillator increases linearly with the
phase of the perturbed oscillator. The evolution function is simply the successor
function, evol(®) = ¢+ 1. With these functions fixed, we created models for dif-
ferent numbers of oscillators 3<N<7, cycle lengths 4<7'<10, coupling constants
€€{0,0.1,...,1.0}, refractory periods 0<SR<T, and probabilities of message loss
©€{0,0.1,...,1.0}. We used PRISM to analyse models with respect to ¢1 and ps.
Figure 2a plots the probability of synchronisation for different rates of broad-
cast failure against the refractory period for N=7, T=10, and ¢=0.1. We can
extrapolate a trade-off between a high refractory period and high synchronisa-
tion probability. As long as the refractory period is less than half the oscillation
cycle, synchronisation will be achieved in almost all cases. Higher values for R
result in a rapid drop in synchronisation probability. The exceptions are the
edge cases p=0 and p=1. Unsurprisingly, if all firings result in broadcast failures
(u=1), the synchronisation probability is almost zero. In fact, the only runs that
synchronise in this case are runs whose initial states are synchronised. The com-
parably bad synchronisation probabilities for =0 may seem surprising. If u=0,
a model is deterministic. This can lead to unwanted cyclic behaviour, an artefact
of the discreteness of the phase values, where very minor perturbations to phase
are ignored due to rounding, leading to groups of oscillators staying unsynchro-
nised forever. Similar phenomena have also been observed in other approaches
used to model emergent synchronisation [10]. When some level of uncertainty is
introduced to the model perpetually asynchronous cycles no longer occur.

12

MP Synchronisation Probability (N=7, T=10) MP Synchronisation Time (N=7, T=10)

S
3
Aniqeqoid "ouAs
Expected Sync. Time (in Cycles)

Fig. 3. Mean Phase synchronisation: synchronisation probabilities for different refrac-
tory periods, and synchronisation times for different rates of broadcast failure.

Figure 2b shows us that a higher refractory period results in shorter syn-
chronisation times when the probability for broadcast failure is low. In general,
a longer refractory period up to half the cycle length improves the rate of con-
vergence to synchrony, which is consistent with the findings of [9]. Furthermore,
for high values of p the differences in synchronisation times for different refrac-
tory period lengths are negligible. Hence, a refractory period of slightly less than
half the cycle, with a low coupling constant e, is optimal for this model of syn-
chronisation. As € is increased the results remain similar, but with a decrease in
synchronisation times.

Mean Phase Synchronisation Model. We now instantiate the evolution and
perturbation functions for a model of synchronisation similar to the work of
Breza [5]. To that end, we set the evolution function to be the successor function,
as in the previous section; however the perturbation function is more involved.
In Breza’s model, an oscillator perturbed by another firing oscillator updates its
phase to be the average of its current phase and the phase of the firing oscillator
(fixed as T' in our model). For this model of synchronisation there is no notion of
coupling strength between oscillators, that is, € is ignored. However our general
oscillator model can still be instantiated to formalise such a protocol. We derive
the following perturbation function: pert(®,a,e) = [55 (@ + T(2* —1))] — &.
Informally, the function calculates the result of iteratively taking the mean of
the phase and T, for « iterations, and returns the difference between this and
the original phase. Note that the perturbation induced by the firing of another
oscillator is inversely proportional to 2%.

We generate models for the parameter values examined for the M&S model
of synchronisation, and again analyse the models with respect to ¢ and ¢s.
Figure 3a shows the synchronisation probability for different rates of broadcast
failure and lengths of refractory period. It has similar characteristics to Fig. 2a.

13

That is, for almost all cases of u, the oscillators will always synchronise when
the refractory period is less than half the cycle. Again as expected, i = 1 results
in almost no synchronising runs, and p = 0 creates cyclic behaviour that leads
to perpetual asynchrony. We can see that the Mean Phase (MP) synchronisation
model is slightly more robust in this case, than a loosely coupled oscillator with
the M&S synchronisation model. If we increase the coupling strength of the
latter, however, it performs even better.

We now consider the time required to achieve synchronisation. Fig. 3b shows
that, in most cases, a short (but non-zero) refractory period results in shorter
synchronisation times. In general, it therefore seems optimal to choose a short,
non-zero length refractory period. For low broadcast failure probabilities, how-
ever, there are negligible differences for refractory periods of different lengths. If
we expect robust communication for a deployed network then we should choose
a longer refractory period and so conserve energy.

Network Synchronisation Scalability. Figures 4a and 4b plot the synchronisation
time against the population size for different rates of broadcast failure, for the
M&S and Mean Phase synchronisation models respectively. For the M&S model
we see that when p > 0.3, increasing the population size results in shorter syn-
chronisation times, while a higher rate of broadcast failure yields longer synchro-
nisation times. We conjecture that the surprising peaks for p < 0.3 are again an
artefact of the rounding, resulting in cyclic behaviour, similar to that observed
in deterministic models, as discussed for the M&S model. For the Mean Phase
synchronisation model, we can again observe that a higher rate of broadcast fail-
ure yields longer synchronisation times. Similarly, increasing the population size
results in shorter synchronisation times. However, in this case the rate at which
synchronisation time decreases, given an increase in the size of the population,
is more pronounced. Unlike the M&S model there are no peaks in the graphs
indicating undesirable asynchronous cyclic behaviour. For the M&S model we
observed that low coupling strength resulted in minor perturbations to phase
being ignored due to rounding. In the Mean Phase model this does not occur,
since the fractional part of the calculated mean phase is always > 0.5.

Model Checking Scalability. Using for- Table 2. Memory for Model Checking (in
mal population models to analyse net- MB) and Time for Model Construction (11’1
works of indistinguishable oscillators —seconds), for T=10, RP=1, e=0.1, u=0.1.
is a promising approach. We checked
networks with up to 7 oscillators,
while to the best of our knowledge,
other formal analyses using model
checking turned out to be infeasible
for more than four nodes for fully
connected networks [13]. Memory and
time used for model checking and con-
struction of a single model, resp., are
shown in Tab. 2. The increase in memory usage is as expected, and differences

M&S MP
N Mem. Time Mem. Time
3 124.63 0.09 131.30 0.09
4 161.33 0.37 162.42 0.43
5
6
7

262.62 1.65 261.39 1.61
592.94 5.28 610.20 5.42
1604.76 17.13 1495.59 16.88

14

M&S Synchronisation Time (T=10, RP=1, £=0.1) MP Synchronisation Time (T=10, RP=1)

w
&
w
S

u+0.1+0,3éf05 0.7 0.9 =0 +02<04=0608
“£-02— 04506 08 ugoweo,a;o.s 0.7+ 09

N
S
N
S

5

|
/

(s3940 ur) awi] "ouks pajoadxg
Expected Sync. Time (in Cycles)

<)
o

Fig. 4. Synchronisation times for different number of oscillators for Mirollo & Strogatz
synchronisation (left), and Mean Phase synchronisation (right).

between the two models are relatively small. The properties can be checked in
under a second. While our approach allows us to postpone the state space explo-
sion problem, we cannot escape it completely. The major bottleneck is not the
model checking time itself, but rather the model construction time. For individ-
ual models this was relatively short, but greatly accumulated for the parameter
combinations we investigated, where thousands of models were constructed.

6 Conclusion

In this paper we presented a formal general model for networks of pulse-coupled
oscillators, whose oscillation cycles are defined as a sequence of discrete states.
We instantiated the general model for two different models of synchronisation
used for the coordination of wireless sensor networks and swarm robotic systems.
For each instantiation, and for a range of different values for model parameters,
we automatically generated input for the probabilistic model checker PRISM,
encoded as a discrete time Markov chain. Finally, we used the results of model
checking to analyse parametric influence on both the rate at which synchronisa-
tion occurs, and the time taken for it to occur; in particular, we discussed the
trade-offs for parameter choices to minimise energy consumption in a network.
For future work, we intend to extend our current binary notion of synchro-
nisation by introducing a metric, in the form of a reward structure, allowing us
to reason about different degrees of synchronisation for global states. We also
intend to formally encode energy consumption reward structures that will allow
us to obtain quantitative results for those we reasoned about informally in this
paper. A population model is appropriate when nodes are indistinguishable and
the network is fully coupled. To analyse other network topologies, for instance a
network of fully connected subcomponents, we could encode each such subcom-

15

ponent as a single population model, and take the cross product of the models
for all subcomponents. To accomplish this it is likely that we would need to
further refine our model, as this would greatly increase the state space.

References

1.
2.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Alur, R., Dill, D.L.: A theory of timed automata. TCS 126(2), 183-235 (1994)
Amin, S., Elahi, A., Saghar, K., Mehmood, F.: Formal modelling and verification
approach for improving probabilistic behaviour of robot swarms. In: Proc. IBCAST
2017. pp. 392-400. IEEE (2017)

Bartocci, E., Corradini, F., Merelli, E., Tesei, L.: Detecting synchronisation of

biological oscillators by model checking. TCS 411(20), 1999-2018 (2010)

Bojic, 1., Podobnik, V., Ljubi, 1., Jezic, G., Kusek, M.: A self-optimizing mobile
network: Auto-tuning the network with firefly-synchronized agents. Inf. Sci. 182(1),
77-92 (2012)

Breza, M.: Bio-Inspired Tools for a Distributed Wireless Sensor Network Operating
System. Ph.D. thesis, Imperial College London (Mar 2013)

Buck, J.: Synchronous rhythmic flashing of fireflies. II. Q. Rev. Bio. 63(3), 265-289
1988

l(3ucu1?, D., Kwiatkowska, M.: On software verification for sensor nodes. J. Syst.
Softw. 84(10), 1693-1707 (2011)

Christensen, A.L., Grady, R.O., Dorigo, M.: From fireflies to fault-tolerant swarms

of robots. IEEE Trans. Evolut. Comput. 13(4), 754-766 (2009)

Degesys, J., Basu, P., Redi, J.: Synchronization of strongly pulse-coupled oscillators

with refractory periods and random medium access. In: Proc. SAC 2008. pp. 1976—
1980. ACM (2008)

Fates, N.: Remarks on the cellular automaton global synchronisation problem. In:
Proc. AUTOMATA 2015. LNCS, vol. 9099, pp. 113-126. Springer (2015)

Gainer, P., Dixon, C., Hustadt, U.: Probabilistic model checking of ant-based posi-
tionless swarming. In: Proc. TAROS 2016. LNCS, vol. 9716, pp. 127-138. Springer
2016

élamss)om7 H., Jonsson, B.: A logic for reasoning about time and reliability. FAC
6(5), 512-535 (1994)

Heidarian, F., Schmaltz, J., Vaandrager, F.: Analysis of a clock synchronization
protocol for wireless sensor networks. TCS 413(1), 87-105 (2012)

Konur, S., Dixon, C., Fisher, M.: Analysing robot swarm behaviour via probabilis-
tic model checking. Robot. Auton. Syst. 60(2), 199-213 (2012)

Kuramoto, Y.: Collective synchronization of pulse-coupled oscillators and excitable
units. Physica D: Nonlinear Phenomena 50(1), 15-30 (1991)

Kwiatkowska, M., Norman, G., Parker, D.: Prism 4.0: Verification of probabilistic
real-time systems. In: Proc. CAV 2011. LNCS, vol. 6806, pp. 585-591. Springer
2011

1(\/Iiroll)o, R.E., Strogatz, S.H.: Synchronization of pulse-coupled biological oscilla-
tors. STAM J. App. Math. 50(6), 1645-1662 (1990)

Perez-Diaz, F., Trenkwalder, S., Zillmer, R., Gross, R.: Emergence and inhibition
of synchronization in robot swarms. In: Proc. DARS 2016. Springer Tracts in Ad-
vanced Robotics, Springer (in press)

Werner-Allen, G., Tewari, G., Patel, A., Welsh, M., Nagpal, R.: Firefly-inspired
sensor network synchronicity with realistic radio effects. In: Proc. SenSys 2005.
pp. 142-153. ACM (2005)

16

	Investigating Parametric Influence on Discrete Synchronisation Protocols using Quantitative Model Checking

