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Abstract. Nature-inspired synchronisation protocols have been widely
adopted to achieve consensus within wireless sensor networks. We anal-
yse the power consumption of such protocols, particularly the energy
required to synchronise all nodes across a network. We use the model of
bio-inspired, pulse-coupled oscillators to achieve network-wide synchro-
nisation and provide an extended formal model of just such a protocol,
enhanced with structures for recording energy usage. Exhaustive analy-
sis is then carried out through formal verification, utilising the PRISM
model-checker to calculate the resources consumed on each possible sys-
tem execution. This allows us to investigate a range of parameter in-
stantiations and the trade-offs between power consumption and time to
synchronise. This provides a principled basis for the formal analysis of a
broader range of large-scale network protocols.
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1 Introduction

Minimising power consumption is a critical design consideration for wireless
sensor networks (WSNs) [20, 1]. Once deployed a WSN is generally expected
to function independently for long periods of time. In particular, regular bat-
tery replacement can be costly and impractical for remote sensing applications.
Hence, it is important to reduce the power consumption of the individual nodes
by choosing low-power hardware and/or energy efficient protocols. However, to
make informed choices, it is also necessary to have good estimations of the power
consumption for individual nodes. While the general power consumption of the
hardware can be extracted from data sheets, estimating the overall power con-
sumption of different protocols is more demanding.
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Soua and Minet provided a general taxonomy for the analysis of wireless
network protocols with respect to energy efficiency [21] by identifying the con-
tributing factors of energy wastage, for instance packet collisions and unneces-
sary idling. These detrimental effects can be overcome by allocating time slots
for node communication. That is, nodes within a network synchronise their clock
values and use time slots for communication to avoid packet collisions [23, 19].

Biologically inspired synchronisation protocols are well-suited for WSNs since
centralised control is not required to achieve synchrony. The protocols build on
the underlying mathematical model of pulse-coupled oscillators (PCOs) [18, 17,
15]; integrate-and-fire oscillators with pulsatile coupling, such that when an os-
cillator fires it induces some phase-shift response determined by a phase response
function. Mutual interactions can lead to all oscillators firing synchronously.

In this work we use a population model [6, 5, 8, 9] to encode information about
groups of oscillators sharing the same configuration. Furthermore, we introduce
broadcast failures where an oscillator may fail to broadcast its message. Since
WSNs operate in stochastic environments under uncertainty we encode these
failures within a probabilistic model. Our model also encapsulates means to as-
sociate different current draws with its states, thus enabling us to measure the
energy consumption of the overall network. We employ the probabilistic model
checker Prism [14] to analyse the average and worst-case energy consumption
for both the synchronisation of arbitrarily configured networks, and restabilisa-
tion of a network, where a subset of oscillators desynchronised. We defined a
metric derived from the complex order parameter of Kuramoto [13]. Since exact
time synchronisation in real-world scenarios is not possible, it is sufficient for all
oscillators to fire within some defined time window [3].

The structure of the paper is as follows. In Sect. 2 we discuss related work,
and in Sect. 3 we introduce the general PCO model, from which we derive pop-
ulation models. Section 4 introduces the derived synchronisation metric. The
construction of the formal model used for the analysis is presented in Sect. 5.
Subsequently, in Sect. 6 we evaluate the results for certain parameter instanti-
ations and discuss their trade-offs with respect to power consumption and time
to synchronise. Section 7 concludes the paper.

2 Related Work

Formal methods, in particular model checking, have been successfully used to
model and analyse protocols for wireless sensor systems. Heidarian et al. used
model checking to analyse clock synchronisation for medium access protocols
[11]. They considered both fully-connected networks and line topologies with
up to four nodes. Model checking of biologically inspired coupled oscillators
has also been investigated by Bartocci et al. [2]. They present a subclass of
timed automata suitable to model biological oscillators, and a model checking
algorithm. However, their analysis was restricted to a network of three oscillators.

We introduced a formal population model for a network of PCOs [9], and
investigated both the probability and expected time for an arbitrarily configured
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population of oscillators to synchronise. For very small devices with limited
resources, it is important to minimise the cost of low-level functionalities, such
as as synchronisation. Even a floating point number may need too much memory,
compared to an implementation with, for example, a four-bit vector. Hence, in
our model the oscillators synchronise over a finite set of discrete clock values.

The oscillation cycle includes a refractory period at the start of the oscilla-
tion cycle where an oscillator cannot be perturbed by other firing oscillators.
This corresponds to a period of time where a WSN node enters a low-power
idling mode. In this work we extend this approach by introducing a metric for
global power consumption and discuss refinements of the model that allows us
to formally reason about much larger populations of oscillators.

Wang et al. proposed an energy-efficient strategy for the synchronisation
of PCOs [22]. In contrast to our work, they consider real-valued clocks and
delay-advance phase response functions, where both positive and negative phase
shifts can occur. A result of their choice of phase response function is that
synchronisation time is independent of the length of the refractory period, in
contrast to our model. Furthermore, they assume that the initial phase difference
between oscillators has an upper bound. They achieve synchrony for refractory
periods larger than half the cycle, while our models do not always synchronise
in these cases, as we do not impose a bound on the phase difference of the
oscillators. We consider all possible differences in phase since we examine the
energy consumption for the resynchronisation of a subset of oscillators.

Konishi and Kokame conducted an analysis of PCOs where a perceived pulse
immediately resets oscillators to the start of their cycle [12]. Their goal was to
maximise refractory period length, while still achieving synchronisation within
some number of clock cycles. Similarly to our work, they restricted their analysis
to a fully coupled network. They assumed that the protocol was implemented as
part of the physical layer of the network stack by using capacitors to generate
pulses, therefore their clocks were continuous and had different frequencies. We
assume that the synchronisation protocol resides on a higher layer, where the
clock values are discretised and oscillate with the same frequency.

3 Oscillator Model

We consider a fully-coupled network of PCOs with identical dynamics over dis-
crete time, since homogeneous wireless sensor networks are prevalent. The phase
of an oscillator i at time t is denoted by φi(t). The phase of an oscillator pro-
gresses through a sequence of discrete integer values bounded by some T ≥ 1.
The phase progression over time of a single uncoupled oscillator is determined
by the successor function, where the phase increases over time until it equals T ,
at which point the oscillator will fire in the next moment in time and the phase
will reset to one. The phase progression of an uncoupled oscillator is therefore
cyclic with period T , and we refer to one cycle as an oscillation cycle.

When an oscillator fires, it may happen that its firing is not perceived by
any of the other oscillators coupled to it. We call this a broadcast failure and
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denote its probability by µ ∈ [0, 1]. Note that µ is a global parameter, hence
the chance of broadcast failure is identical for all oscillators. The occurrences
of broadcast failures are statistically independent, since, the parameter µ repre-
sents detrimental effects on the communication medium itself, for example fog
impairing vision, or static electricity interfering with radio messages.

When an oscillator fires, and a broadcast failure does not occur, it perturbs
the phase of all oscillators to which it is coupled; we use αi(t) to denote the
number of all other oscillators that are coupled to i and will fire at time t. The
phase response function is a positive increasing function ∆ : {1, . . . , T} × N ×
R+ → N that maps the phase of an oscillator i, the number of other oscillators
perceived to be firing by i, and a real value defining the strength of the coupling
between oscillators, to an integer value corresponding to the perturbation to
phase induced by the firing of oscillators where broadcast failures did not occur.

We can introduce a refractory period into the oscillation cycle of each oscil-
lator. A refractory period is an interval of discrete values [1, R] ⊆ [1, T ] where
1 ≤ R ≤ T is the size of the refractory period, such that if φi(t) is inside the
interval, for some oscillator i at time t, then i cannot be perturbed by other
oscillators to which it is coupled. If R = 0 then we set [1, R] = ∅, and there is
no refractory period at all. The refractory function ref : {1, . . . , T} × N → N is
defined as ref(Φ, δ) = Φ if Φ ∈ [1, R], or ref(Φ, δ) = Φ + δ otherwise, and takes
as parameters δ, the degree of perturbance to the phase of an oscillator, and φ,
the phase, and increases the phase by δ if φ is outside of the refractroy period.

The phase evolution of an oscillator i over time is then defined as follows,
where the update function and firing predicate, respectively denote the updated
phase of oscillator i at time t in the next moment in time, and the firing of
oscillator i at time t,

updatei(t) = 1 + ref(φi(t), ∆(φi(t), αi(t), ε)), firei(t) = updatei(t) > T,

φi(t+ 1) =

{
1 if firei(t)

updatei(t) otherwise.

3.1 Population Model

Let ∆ be a phase response function for a network of N identical oscillators, where
each oscillator is coupled to all other oscillators, and where the coupling strength
is given by ε. Each oscillator has a phase in 1, . . . , T , and a refractory period
defined by R. The probability of broadcast failure in the network is µ ∈ [0, 1]. We
define a population model of the network as S = (∆,N, T,R, ε, µ). Oscillators in
our model have identical dynamics, and two oscillators are indistinguishable if
they share the same phase. We therefore encode the global state of the model
as a tuple 〈k1, . . . , kT 〉 where each kΦ is the number of oscillators with phase Φ.

A global state of S is a T -tuple σ ∈ {0, . . . , N}T , where σ = 〈k1, . . . , kT 〉
and

∑T
Φ=1 kΦ = N . We denote by Γ (S) the set of all global states of S, and

will simply use Γ when S is clear from the context. Fig. 1 shows four global
states of a population model of N = 8 oscillators with T = 10 discrete val-
ues for their phase and a refractory period of length R = 2. For example
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σ0 = 〈2, 1, 0, 0, 5, 0, 0, 0, 0, 0〉 is the global state where two oscillators have a phase
of one, one oscillator has a phase of two, and five oscillators have a phase of five.
The starred node indicates the number of oscillators with phase ten that will
fire in the next moment in time, while the shaded nodes indicate oscillators with
phases that lie within the refractory period (one and two). If no oscillators have
some phase Φ then we omit the 0 in the corresponding node.

We distinguish between states where one or more oscillators are about to fire,
and states where no oscillators will fire at all. We refer to these states as firing
states and non-firing states respectively. Given a population model S, a global
state 〈k1, . . . , kT 〉 ∈ Γ is a firing state if, and only if, kT > 0. We respectively
denote the sets of firing and non-firing states of S by Γ F(S) and ΓNF(S).

3.2 Successor States

We now define how the global state of a population model evolves over time. Since
our population model encodes uncertainty in the form of broadcast failures, firing
states may have more than one possible successor state. We denote the transition
from a firing state σ to a possible successor state σ′ by σ → σ′. With every firing
state σ ∈ Γ F we associate a non-empty set of failure vectors, where each failure
vector is a tuple of broadcast failures that could occur in σ. A failure vector is
a T -tuple where the Φth element denotes the number of broadcast failures that
occur for all oscillators with phase Φ. If the Φth element is ? then no oscillators
with a phase of Φ fired. We denote the set of all possible failure vectors by F .
Oscillators with phase less than T may fire due to being perturbed by the firing
of oscillators with a phase of T . This is discussed in detail later in this section.
We refer the reader to [9] for a detailed description of failure vector calculations.

A non-firing state will always have exactly one successor state, as there is no
oscillator that is about to fire. Therefore, the dynamics of all oscillators in that
state are determined solely by the successor function. That is, the phase of every
oscillator is simply updated by one in the next time step. This continues until
one or more oscillators fire and perturb the phase of other oscillators. Given
a sequence of global states σ0, σ1, . . . , σn−1, σn where σ0, . . . σn−1 ∈ ΓNF and
σn ∈ Γ F, we omit transitions between σi and σi+1 for 0 ≤ i < n, and instead
introduce a direct transition σ0 � σn from the first non-firing state to the next
firing state in the sequence. This is a refinement of the model presented in [9].

σ0 2 k1k1σ0

1

k2

σ0σ0σ0

5

σ0σ0σ0σ0σ0 σ1 k1k1σ1

k2

σ1σ1σ1σ12 σ1

1

σ1σ1σ1

5

σ2 6 k1k1σ2

k2

σ2σ2σ2σ2σ2σ2σ2σ2
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σ3 2 k1k1σ3

6
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σ3σ3σ3σ3σ3σ3σ3σ3

Fig. 1. Evolution of the global state over four discrete time steps.
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While the state space remains the same the number of transitions in the model is
substantially decreased. Hence the time and resources required to check desirable
properties are reduced. We denote the transition from a non-firing state σ to its

single successor σ′ by σ � σ′. For example, in Fig. 1 we have
�

succ(σ0) = σ1.

For real deployments of protocols for synchronisation the effect of one or more
oscillators firing may cause other oscillators to which they are coupled to fire in
turn. This may then cause further oscillators to fire, and so forth, and we refer to
this event as a chain reaction. When a chain reaction occurs it can lead to multi-
ple groups of oscillators being triggered to fire and being absorbed by the initial
group of firing oscillators. These chain reactions are usually near-instantaneous
events. Since we model the oscillation cycle as a progression through a number
of discrete states, we choose to encode chain reactions by updating the phases
of all perturbed oscillators in a single time step. Since we only consider fully-
connected topologies, any oscillators sharing the same phase will always perceive
the same number of other oscillators firing.

For the global state σ1 of Fig. 1 we can see that five oscillators will fire in
the next moment in time. In the successive state σ2, the single oscillator with
a phase of seven in σ1 perceives the firing of the five oscillators. The induced
perturbation causes the single oscillator to also fire and therefore be absorbed
by the group of five. The remaining two oscillators with a phase of six in σ1
perceive six oscillators to be firing, but the induced perturbation is insufficient
to cause them to also fire, and they instead update their phases to ten.

With every firing state we have by definition that at least one oscillator is
about to fire in the next time step. Since the firing of this oscillator may, or may
not, result in a broadcast failure we can see that at least two failure vectors will
be associated with any firing state, and that additional failure vectors will be
associated with firing states where more than one oscillator is about to fire. Given
a firing state σ and a failure vector F associated with that state, we can compute
the successor of σ. For each phase Φ ∈ {1, . . . ,T} we calculate the number
of oscillators with a phase greater than Φ perceived to be firing by oscillators
with phase Φ. We simultaneously calculate updateΦ(σ, F ), the updated phase of
oscillators with phase Φ, and fireΦ(σ, F ), the predicate indicating whether or not
oscillators with phase Φ fired. Details of these constructions are given in [9].

We can then define the function that maps phase values to their updated val-
ues in the next moment in time. Since we do not distinguish between oscillators
with the same phase we only calculate a single updated value for their phase.
The phase transition function τ : Γ F×{1, . . . ,T}×F → N maps a firing state σ,
a phase Φ, and a failure vector F for σ, to the updated phase in the next moment
in time, with respect to the broadcast failures defined in F , and is defined as
τ(σ, Φ, F ) = 1 if fireΦ(σ, F ), and τ(σ, Φ, F ) = updateΦ(σ, F ) otherwise.

Let UΦ(σ, F ) be the set of phase values Ψ where all oscillators with phase
Ψ in σ will have the updated phase Φ in the next time step, with respect to
the broadcast failures defined in F . Formally, UΦ(σ, F ) = {Ψ | Φ ∈ {1, . . . , T} ∧
τ(σ, Ψ, F ) = Φ}. We can now calculate the successor state of a firing state σ and
define how the model evolves over time. Observe that the population model does
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not encode oscillators leaving or joining the network, therefore the population
N remains constant. The firing successor function

→
succ : Γ F × F → Γ maps

a firing state σ and a failure vector F to a global state σ′, and is defined as
→

succ(〈k1, . . . , kT 〉, F ) = 〈k′1, . . . , k′T 〉, where k′Φ=
∑
Ψ∈UΦ(σ,F ) kΨ for 1 ≤ Φ ≤ T .

3.3 Transition Probabilities

We now define the probabilities that will label the transitions in our model. Given
a global state σ ∈ Γ , if σ is a non-firing state then it has exactly one successor
state. If σ is a firing state then to construct the set of possible successor states
we must first construct Fσ, the set of all possible failure vectors for σ. Given a
global state σ ∈ Γ we define next(σ), the set of all successor states of σ, as

next(σ) =

{
{ →succ(σ, F ) | F ∈ Fσ} if σ ∈ Γ F

{ �
succ(σ)} if σ ∈ ΓNF.

For every non-firing state σ ∈ ΓNF we have |next(σ)| = 1, since there is always

exactly one successor state
�

succ(σ), and we label the transition σ �
�

succ(σ)
with probability one. We now consider each firing state σ = 〈k1, . . . , kn〉 ∈ Γ F,

and for every successor
→

succ(σ, F ) ∈ next(σ), we calculate the probability that

will label σ → →
succ(σ, F ). Recalling that µ is the probability of a broadcast

failure occurring, let PMF : {1, . . . ,N}2 → [0, 1] be a probability mass function
where PMF(k, f) = µf (1−µ)k−f

(
k
f

)
is the probability that f broadcast failures

occur given that k oscillators fire. Then let PFV : Γ F×F → [0, 1] be the function
mapping a firing state σ = 〈k1, . . . , kT 〉 and a failure vector F = 〈f1, . . . , fT 〉 ∈ F
to the probability of the failures in F occurring in σ, given by

PFV(σ, F ) =
∏T
Φ=1

{
PMF(kΦ, fΦ) if fΦ 6= ?

1 otherwise.

We can now describe the evolution of the global state over time. A run of a
population model S is an infinite sequence σ0, σ1, σ2, · · · , where σ0 is called the
initial state, and σi+1 ∈ next(σi) for all i ≥ 0.

4 Synchronisation and Metrics

Given a population model S = (∆,N, T,R, ε, µ), and a global state σ ∈ Γ , we
say that σ is synchronised if all oscillators in σ share the same phase. We say
that a run of the model σ0, σ1, σ2, · · · synchronises if there exists an i > 0 such
that σi is synchronised. Note that if a state σi is synchronised then any successor
state σi+1 of σi will also be synchronised.

We can extend this binary notion of synchrony by introducing a phase coher-
ence metric for the level of synchrony of a global state. Our metric is derived from
the order parameter introduced by Kuramoto [13] as a measure of synchrony for
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a population of coupled oscillators. If we consider the phases of the oscillators as
positions on the unit circle in the complex plane we can represent the positions
as complex numbers with magnitude 1. The function pC : {1, . . . , T} → C maps
a phase value to its corresponding position on the unit circle in the complex
plane, and is defined as pC(Φ) = eiθΦ , where θΦ = 2π

T (Φ− 1).
A measure of synchrony r can then be obtained by calculating the magnitude

pC(6)

pC(7) pC(10)

Im

Re

θ6

θ7

θ10

1−1

i

−i

Φ

Fig. 2. Argand diagram of the
phase positions for global state
σ1 = 〈0, 0, 0, 0, 0, 2, 1, 0, 0, 5〉.

of the complex number corresponding
to the mean of the phase positions.
A global state has a maximal value
of r = 1 when all oscillators are syn-
chronised and share the same phase
Φ, mapped to the position defined by
pC(Φ). It then follows that the mean
position is also pC(Φ) and |pC(Φ)| = 1.
A global state has a minimal value
of r = 0 when all of the positions
mapped to the phases of the oscilla-
tors are uniformly distributed around
the unit circle, or arranged such that
their positions achieve mutual coun-
terpoise. The phase coherence func-
tion PCF : Γ → [0, 1] maps a global
state to a real value in the interval [0, 1], and is given by

PCF(〈k1, . . . , kT 〉) =
∣∣∣ 1N ∑T

Φ=1 kΦp
C(Φ)

∣∣∣ .
Note that for any global state σ where synch(σ) we have that PCF(σ) = 1, since
all oscillators in σ share the same phase.

Figure 2 shows a plot on the complex plane of the positions of the phases
for N = 8, T = 10, and the global state σ1 = 〈0, 0, 0, 0, 0, 2, 1, 0, 0, 5〉. The phase

positions are given by pC(6) = eiπ for 2 oscillators with phase 6, pC(7) = e
6iπ
5 for

1 oscillator with phase 7, and pC(10) = e
9iπ
5 for 5 oscillators with phase 10. We

can then determine the phase coherence as PCF(σ) = | 18 (2eiπ + e
6iπ
5 + 5e

9iπ
5 )| =

0.4671. The mean phase position is indicated on the diagram by Φ.

5 Model Construction

We use Prism [14] to formally verify properties of our model. Given a proba-
bilistic model of a system, Prism can be used to reason about temporal and
probabilistic properties of the input model, by checking requirements expressed
in a suitable formalism against all possible runs of the model. We define our
input models as Discrete Time Markov Chains (DTMCs). A DTMC is a tuple
(Q, σ0,P) where Q is a set of states, σ0 ∈ Q is the initial state, and P : Q×Q→
[0, 1] is the function mapping pairs of states (q, q′) to the probability with which
a transition from q to q′ occurs, where

∑
q′∈Q P(q, q′) = 1 for all q ∈ Q.



The Power of Synchronisation 9

Given a population model S = (∆,N, T,R, ε, µ) we construct a DTMC
D(S) = (Q, σ0,P). We define the set of states Q to be Γ (S) ∪ {σ0}, where
σ0 is the initial state of the DTMC. In the initial state all oscillators are uncon-
figured. That is, oscillators have not yet been assigned a value for their phase.
For each σ = 〈k1, . . . , kT 〉 ∈ Q \ {σ0} we define

P(σ0, σ) =
1

TN

(
N

k1, . . . , kT

)
to be the probability of moving from σ0 to a state where ki arbitrary oscillators
are configured with the phase value i for 1 ≤ i ≤ T . The multinomial coefficient
defines the number of possible assignments of phases to distinct oscillators that
result in the global state σ. The fractional coefficient normalises the multinomial
coefficient with respect to the total number of possible assignments of phases to
all oscillators. In general, given an arbitrary set of initial configurations (global
states) for the oscillators, the total number of possible phase assignments is TN .

We assign probabilities to the transitions as follows: for every σ ∈ Q \ {σ0}
we consider each σ′ ∈ Q \ {σ0} where σ′ =

→
succ(σ, F ) for some F ∈ Fσ, and set

P(σ, σ′) = PFV(σ, F ). For all other σ ∈ Q \ {σ0} and σ′ ∈ Q, where σ 6= σ′ and
σ′ 6∈ next(σ), we set P(σ, σ′) = 0.

To facilitate the analysis of parameterwise-different population models we
provide a Python script that allows the user to define ranges forN , T ,R, ε, and µ.
The script then automatically generates a model for each set of parameter values,
checks given properties in the model using Prism, and writes user specified
output to a file which can be used by statistical analysis tools.1

5.1 Reward Structures

We can annotate DTMCs with information about rewards (or costs) by assigning
values to states and transitions. By calculating the expected value of these re-
wards we can reason about quantitative properties of the models. For a network
of WSN nodes we are interested in the time taken to achieve a synchronised
state and the power consumption of the network. Given a population model
S = (∆,N, T,R, ε, µ), and its corresponding DTMC D(S) = (Q, σ0,P), we de-
fine the following reward structures:

Synchronisation Time We are interested in the average and maximum time
taken for a population model to synchronise. By accumulating the reward along
a path until some synchronised global state is reached we obtain a measure of
the time taken to synchronise. Recall that we omit transitions between non-firing
states; instead a transition is taken to the next global state where one or more
oscillators do fire. By assigning a reward of 1

T to each transition from each firing

state, and assigning a reward of T−δ
T to transitions from non-firing states to

1 The scripts, along with the verification results, can be found at https://github.

com/PaulGainer/mc-bio-synch/tree/master/energy-analysis
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successor states, where δ is the highest phase of any oscillator in the non-firing
state, and hence T − δ is the number of omitted transitions where no oscillators
fire, we obtain a measure of synchronisation time for a population model.

Power Consumption Let Iid, Irx, and Itx be the current draw in amperes for the
idle, receive, and transmit modes, V be the voltage, C be the length of the oscil-
lation cycle in seconds, and Mt be the time taken to transmit a synchronisation
message in seconds. Let Wid = IidV C

3600T and Wrx = IrxV C
3600T be the power consump-

tion in Watt-hours of one node for one discrete step within its oscillation cycle
in idle and receive mode, and let Wtx = ItxVMt

3600 be the power consumption in
Watt-hours to transmit one synchronisation message.

The function pow : Q \ {σ0} → R maps a state to the power consumption of
the network in that state, given by

pow(σ) =

R∑
Φ=1

kΦWid +

T∑
Φ=R+1

kΦWrx.

The function
�

pow : Q ∩ ΓNF → R maps a non-firing state to the total power
consumed by the network to reach the next firing state. For a non firing state
σ = 〈k1, . . . , kT 〉 and maximal phase δ = max{Φ | Φ ∈ {1, . . . T} ∧ kΦ > 0} of
any oscillator in that state, we define

�
pow(σ)=

(T−δ)−1∑
j=0

R−j∑
Φ=1

kΦWid +

δ∑
Φ=(R+1)−j

kΦWrx

 .

From a non-firing state σ ∈ Q∩ΓNF the power consumed by the network to reach
the next firing state is equivalent to the accumulation of the power consumption
of the network in σ and any successive non-firing states that are omitted in

the transition from σ to
�

succ(σ). The formula captures this by accumulating
the power consumption over both σ, and the subsequent (T − δ)− 1 non-firing
states, where each left and right summand accumulates the power consumption
of oscillators within, and outside of the refractory period, respectively.

Finally, for each firing state σ ∈ Q∩Γ F we assign a reward of k1Wtx to every
transition from σ to a successor state σ′ = 〈k1, . . . , kT 〉. This corresponds to the
total power consumption for the transmission of k1 synchronisation messages.

5.2 Restabilisation

A network of oscillators is restabilising if it has reached a synchronised state,
synchrony has been lost due to the occurrence of some external event, and the
network must then again achieve synchrony. We could, for instance, imagine the
introduction of additional nodes with arbitrary phases to an established and
synchronised network. While such a change is not encoded within our model, we
can represent it by partitioning the set of oscillators into two subsets. We define
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Fig. 3. Power/Time per Node to Achieve Synchronisation

the parameter U to be the number of oscillators with arbitrary phase values
that have been introduced into a network of N − U synchronised oscillators,
or to be the number of oscillators in a network of N oscillators whose clocks
have reset to an arbitrary value, where U ∈ N and 1 ≤ U < N . Destabilising U
oscillators in this way results in configurations where at least N−U oscillators are
synchronised, since the destabilised oscillators may coincidentally be assigned the
phase of the synchronised group. We can restrict the set of initial configurations
by identifying the set ΓU = {〈k1, . . . , kT 〉 | 〈k1, . . . , kT 〉 ∈ Γ and ki ≥ N −
U for some 1 ≤ i ≤ T}, where each σ ∈ ΓU is a configuration for the phases such
that at least N − U oscillators share some phase and the remaining oscillators
have arbitrary phase values. As we decrease the value of U we also decrease the
number of initial configurations for the phases of the oscillators. Since our model
does not encode the loss or addition of oscillators we can observe that all global
states where there are less than N − U oscillators sharing the same phase are
unreachable by any run of the system beginning in some state in ΓU .

6 Evaluation

In this section, we present the model checking results for instantiations of the
model given in the previous section. To that end, we instantiate the phase
response function presented in Sect. 3 for a specific synchronisation model,
and vary the length of the refractory period R, coupling constant ε, and the
probability µ of broadcast failures. We use a synchronisation model where the
perturbation induced by the firing of other oscillators is linear in the phase
of the perturbed oscillator and the number of firing oscillators [15]. That is,
∆(Φ, α, ε) = [Φ·α·ε], where [ ] denotes rounding of a value to the nearest integer.
The coupling constant determines the slope of the linear dependency.

For many experiments we set ε = 0.1 and µ = 0.2. We could have conducted
analyses for different values for these parameters. For a real system, the proba-
bility µ of broadcast failure occurrence is highly dependent on the deployment
environment. For deployments in benign environments we would expect a rela-
tively low rate of failure, for instance a WSN within city limits under controlled
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Fig. 4. Power Consumption in Relation to Broadcast Failure Probability and Average
Power Consumption for Resynchronisation to Network Size

conditions, whilst a comparably high rate of failure would be expected in harsh
environments such a a network of off-shore sensors below sea level. The coupling
constant ε is a parameter of the system itself. Our results suggest that higher val-
ues for ε are always beneficial, however this is because we restrict our analysis to
fully connected networks. High values for ε may be detrimental when considering
different topologies, since firing nodes may perturb synchronised subcomponents
of a network. However we defer such an analysis to future work.

As an example we analyse the power consumption for values taken from the
datasheet of the MICAz mote [16]. For the transmit, receive and idling mode,
we assume Itx = 17.4 mA, Irx = 19, 7 mA, and Iid = 20µA, respectively.
Furthermore, we assume that the oscillators use a voltage of 3.0 V .

To analyse our models, we use the model checker Prism [14] and specify the
properties of interest in PCTL [10] extended with reward operators, allowing
us to compute expected rewards for the reward structures defined in Sect. 5.1.
For simplicity, we will omit the name of the reward structures when expressing
properties, since they should be clear from the context.

Synchronisation of a whole network We analyse the power consumption and
time for a fully connected network of eight oscillators with a cycle period of
T = 10 to synchronise. Increasing the granularity of the cycle period, or the
size of the network, beyond these values leads to models where it is infeasible to
check properties due to time and memory constraints2. However, compared to
our previous work [9], we were able to increase the network size.

Figures 3a and 3b show both the average and maximal power consumption
per node (in mWh) and time (in cycles) needed to synchronise, in relation to the
phase coherence of the network with respect to different lengths of the refractory
period, where ε = 0.1 and µ = 0.2. That is, they show how much power is con-
sumed (time is needed, resp.) for a system in an arbitrary state to reach a state
where some degree of phase coherence has been achieved. The corresponding

2 While most individual model checking runs finished within a minute, the cumulative
model checking time over all analysed models was very large. The results shown in
Fig. 3a already amount to 80 distinct runs.
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Fig. 5. Avg. (Max.) Power Consumption to Avg. (Max.) Time for Synchrony

PCTL properties are Ravg
=? [F coherentλ] and Rmax

=? [F coherentλ], where coherentλ
is a predicate that holds for any state σ with PCF(σ) ≥ λ, and Ravg and Rmax

refer to the average and maximal reward accumulation respectively3.

The much larger values obtained for R = 1 and phase coherence ≥ 0.9 are
not shown here, to avoid distortion of the figures. The energy consumption for
these values is roughly 2.4mWh, while the time needed is around 19 cycles.
Observe that we only show values for the refractory period R with R < T

2 . For
larger values of R not all runs synchronise [9], resulting in an infinitely large
reward being accumulated for both the maximal and average cases. We do not
provide results for the minimal power consumption (or time) as it is always zero,
since we consider all initial configurations (global states) for oscillator phases. In
particular, we consider the runs where the initial state is already synchronised.

As would be expected when starting from an arbitrary state, the time and
power consumption increases monotonically with the order of synchrony to be
achieved. On average, networks with a higher refractory period require less power
for synchronisation, and take less time to achieve it. The only exception is that
the average time to achieve synchrony with a refractory period of four is higher
than for two and three. However, if lower phase coherence is sufficient then this
trend is stable. In contrast to that, the maximal power consumption of networks
with R = 4 is consistently higher than of networks with R = 3. In addition, the
maximal time needed to achieve synchrony for networks with R = 4 is generally
higher than for lower refractory periods, except when the phase coherence is
greater than or equal to 0.9. We find that networks with a refractory period
of three will need the smallest amount of time to synchronise, regardless of
whether we consider the maximal or average values. Furthermore, the average
power consumption for full synchronisation (phase coherence one) differs only
slightly between R = 3 and R = 4 (less than 0.3 mWh). Hence, for the given
example, R = 3 gives the best results. These relationships are stable even for
different broadcast failure probabilities µ, while the concrete values increase only
slightly. This is illustrated in Fig. 4a, which shows the average and maximal
power consumption for different broadcast failure probabilities when ε = 0.1.

3 Within Prism this can be achieved by using the filter construct
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The general relationship between power consumption and time needed to
synchronise is shown in Figs. 5a and 5b. Within these figures, we do not distin-
guish between different coupling constants and broadcast failure probabilities.
We omit the two values for R = 1, ε = 0.1 and µ ∈ {0.1, 0.2} in Fig. 5b to
avoid distortion of the graph, since the low coupling strength and low probabil-
ity of broadcast failure leads to longer synchronisation times and hence higher
power consumption. While this might seem surprising it has been shown that
uncertainty in discrete systems often aids convergence [9, 7].

The relationship between power consumption and time to synchronise is lin-
ear, and the slope of the relation decreases for higher refractory periods. While
the linearity is almost perfect for the average values, the maximal values have
larger variation. The figures again suggest that R = 3 is a sensible and reli-
able choice, since it provides the best stability of power consumption and time
to synchronise. In particular, if the broadcast failure probability changes, the
variations are less severe for R = 3 than for other refractory periods.

Resynchronisation of a small number of nodes We now analyse the power con-
sumption if the number of redeployed nodes is small compared to the size of
the network. The approach presented in Sect. 5.2 allows us to significantly in-
crease the network size. In particular, the smallest network we analyse is already
larger than that in Sect. 6, while the largest is almost five times as large. This
is possible because the model has a much smaller number of initial states.

The average power consumption per node for networks of size 10, 15, . . . , 35,
where the oscillators are coupled with strength ε = 0.1, and broadcast failure
probability µ = 0.2, is shown in Fig. 4b. The corresponding PCTL property
is Ravg

=? [F coherent1], that is, we are only interested in the power consumption
until the system is fully synchronised. The solid lines denote the results for
a single redeployed node, while the dashed lines represent the results for the
redeployment of two and three nodes, respectively. As expected, the more nodes
need to resynchronise, the more energy is consumed. However, we can also extract
that for higher refractory periods, the amount of energy needed is more or less
stable, in particular, in case R = 4, which is already invariant for more than
ten nodes. For smaller refractory periods, increasing the network size, decreases
the average energy consumption. This behaviour can be explained as follows.
The linear synchronisation model implies that oscillators with a higher phase
value will be activated more and thus are more likely to fire. Hence, in general a
larger network will force the node to resynchronise faster. The refractory period
determines how large the network has to be for this effect to stabilise.

7 Conclusion

We presented a formal model to analyse power consumption in fully connected
networks of PCOs. To that end, we extended an existing model for synchrony
convergence with a reward structure to reflect the energy consumption of wireless
sensor nodes. Furthermore, we showed how to mitigate the state-space explosion
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typically encountered when model-checking. In particular, the model can be re-
duced by ignoring transitions where there are no interactions between oscillators.
When investigating the restabilisation of a small number of oscillators in an al-
ready synchronised network we can reduce the state space significantly, since
only a small subset of the initial states needs to be considered. We used these
techniques to analyse the power consumption for synchronisation and restabil-
isation of a network of MICAz motes, using the pulse-coupled oscillator model
developed by Mirollo and Strogatz [17] with a linear phase response function. By
using our model we were able to extend the size of the network compared with
previous work [9] and discuss trade-offs between the time and power needed to
synchronise for different lengths of the refractory period (or duty cycle).

Results obtained using these techniques can be used by designers of WSNs
to estimate the overall energy efficiency of a network during its design phase.
That is, unnecessary energy consumption can be identified and rectified before
deployment of the network. Additionally, our results provide guidance for esti-
mating the battery life expectancy of a network depending on the anticipated
frequency of restabilisations. Of course, these considerations only hold for the
maintenance task of synchronising the network. The energy consumption of the
functional behaviour has to be examined separately.

It is clear that our approach is inhibited by the usual limitation of exact prob-
abilistic model checking for large-scale systems. We could overcome this by using
approximated techniques, such as statistical model checking, or approaches based
on fluid-flow approximation extended with rewards [4]. This would, of course,
come at the expense of precision. An investigation of such a trade-off is deferred
to future work. Our current approach is restricted to fully connected networks of
oscillators. While this is sufficient to analyse the behaviour of strongly connected
components within a network, further investigation is needed to assess different
network topologies. To that end, we could use several interconnected population
models thus modelling the interactions of the networks subcomponents. Fur-
thermore, topologies that change over time are of particular interest. However,
it is not obvious how we could extend our approach to consider such dynamic
networks. The work of Lucarelli and Wang may serve as a starting point for fur-
ther investigations [15]. Stochastic node failure, as well as more subtle models of
energy consumption, present significant opportunities for future extensions. For
example, in some cases, repeatedly powering nodes on and off over short periods
of time might use considerably more power than leaving them on throughout.
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