
CLProver++: An Ordered Resolution Prover for Coalition Logic
Ullrich Hustadt1 Paul Gainer1 Clare Dixon1 Cláudia Nalon2 Lan Zhang3

1 Department of Computer Science, University of Liverpool
{uhustadt,sgpgaine,cldixon}@liverpool.ac.uk

2 Department of Computer Science, University of Brası́lia
nalon@unb.br

3 Information School, Capital University of Economics and Business, China
lan@cueb.edu.cn

Abstract: We present CLProver++, a theorem prover for Coalition Logic a non-normal modal logic for
reasoning about cooperative agency. CLProver++ is based on recent work on an ordered resolution calculus
for Coalition Logic. We provide an overview of this calculus, give some details of the implementation of
CLProver++ and present an evaluation of the performance of CLProver++.

1 Introduction

Coalition Logic CL was introduced by Pauly [5] as a logic
for reasoning about what groups of agents can bring about
by collective action. CL is a propositional modal logic over
a countably infinite set Π of propositional symbols and a
non-empty, finite set Σ ⊂ N of agents with modal oper-
ators of the form [A], where A ⊆ Σ. The formula [A]ϕ,
where A is a set of agents and ϕ is a formula, can be read
as the coalition of agents A can bring about ϕ. Formally,
the semantics of CL formulae is given by Concurrent Game
Models (CGMs), see [3]. The satisfiability problem of CL
is PSPACE-complete [5]. Various decision procedures for
Coalition Logic exist including tableaux and unrefined res-
olution calculi.

In the following we present a new decision procedure for
CL based on ordered resolution, briefly describe its imple-
mentation and present its evaluation.

2 Ordered Resolution for CL

Our ordered resolution calculus does not operate on CL
formulae, but on formulae of Vector Coalition Logic in a
clausal normal form.

Let |Σ| = k. A coalition vector #»c is a k-tuple such that
for every a, 1 ≤ a ≤ k, #»c [a] is either an integer number
not equal to zero or the symbol ∗ and for every a, a′, 1 ≤
a < a′ ≤ k, if #»c [a] < 0 and #»c [a′] < 0 then #»c [a] = #»c [a′].

The set WFFVCL of Vector Coalition Logic (VCL) for-
mulae is inductively defined as follows: (i) if p is a pro-
positional symbol in Π, then p and ¬p are VCL formulae;
(ii) if ϕ is a propositional formula and ψ is a VCL formula,
then (ϕ → ψ) is a VCL formula; (iii) if ϕi, 1 ≤ i ≤ n,
n ∈ N0, are VCL formula, then so are (ϕ1 ∧ . . .∧ϕn), also
written

∧n
i=1 ϕi, and (ϕ1∨ . . .∨ϕn), also written

∨n
i=1 ϕi;

and (iv) if #»c is a coalition vector and ϕ is a VCL formula,
then so is #»c ϕ. The semantics of WFFVCL formulae is
given by Concurrent Game Models extended with choice
functions (CGMCF) that give meaning to coalition vectors.
Intuitively, a coalition vector represents the choices made
by each agent. Each number represents a choice function

that selects an agent’s move (action) depending on the cur-
rent world and, possibly, the moves of other agents.

A coalition problem in DSNFVCL is a tuple (I,U ,N)
such that I is a set of initial clauses, and U is a set of global
clauses, are finite sets of propositional clauses

∨n
j=1 lj , and

N , the set of coalition clauses, consists of VCL formulae
of the form

∧m
i=1 l

′
i → #»c

∨n
j=1 lj where m,n ≥ 0 and

l′i, lj , for all 1 ≤ i ≤ m, 1 ≤ j ≤ n, are literals such that
within every conjunction and every disjunction literals are
pairwise different, and #»c is a coalition vector.

Intuitively, initial clauses are true at one distinguished
world in a CGMCF while global and coalition clauses are
true at every world in a CGMCF, the later imposing a con-
straint

∨n
j=1 lj on the worlds that a coalition can ‘reach’

from a world w by its actions, provided the condition∧m
i=1 l

′
i is satisfied at the world w.

There are two more ingredients to our calculus that we
need to introduce, the notion of the merge of two coalition
vectors and the notion of atom orderings.

Let #»c 1 and #»c 2 be two coalition vectors of length k. The
coalition vector #»c 2 is an instance of #»c 1 and #»c 1 is more
general than #»c 2, written #»c 1 v #»c 2, if #»c 2[i] = #»c 1[i] for
every i, 1 ≤ i ≤ k, with #»c 1[i] 6= ∗. We say that a coalition
vector #»c 3 is a common instance of #»c 1 and #»c 2 if #»c 3 is an
instance of both #»c 1 and #»c 2. A coalition vector #»c 3 is a
merge of #»c 1 and #»c 2, denoted #»c 1↓ #»c 2, if #»c 3 is a common
instance of #»c 1 and #»c 2, and for any common instance #»c 4 of
#»c 1 and #»c 2 we have #»c 3 v #»c 4. If there exists a merge for
two coalition vectors #»c 1 and #»c 2 then we say that #»c 1 and
#»c 2 are mergeable.

An atom ordering is a well-founded and total ordering�
on the set Π. The ordering � is extended to literals such
that for each p ∈ Π, ¬p � p, and for each q ∈ Π such that
q � p then q � ¬p and ¬q � ¬p. A literal l is maximal
with respect to a propositional disjunction C iff for every
literal l′ in C, l′ 6� l.

The ordered resolution calculus RES�CL is then given by
the rules shown in Figure 1.

Theorem 1 Let ϕ be a CL formula. Then there is a coali-
tion problem C in DSNFVCL that is satisfiable if and only

IRES1
C ∨ l ∈ I
D ∨ ¬l ∈ I ∪ U
C ∨D ∈ I

GRES1
C ∨ l ∈ U
D ∨ ¬l ∈ U
C ∨D ∈ U

VRES1
P → #»c 1(C ∨ l) ∈ N
Q → #»c 2(D ∨ ¬l) ∈ N

P ∧Q → #»c 1↓ #»c 2(C ∨D) ∈ N

VRES2
C ∨ l ∈ U

Q → #»c (D ∨ ¬l) ∈ N
Q → #»c (C ∨D) ∈ N

RW
∧n

i=1 li →
#»c false ∈ N∨n

i=1 ¬li ∈ U
where (I,U ,N) is a coalition problem in DSNFCL; P ,
Q are conjunctions of literals; C, D are disjunctions of
literals; l, li are literals; #»c , #»c 1, #»c 2 are coalition vec-
tors; in VRES1, #»c 1 and #»c 2 are mergeable; and in IRES1,
GRES1, VRES1 and VRES2, l is maximal with respect
to C and ¬l is maximal with respect to D.

Figure 1: Resolution Calculus RES�CL

if ϕ is satisfiable. Furthermore, any derivation by RES�CL
from C terminates and ϕ is unsatisfiable if and only if there
is a refutation of C by RES�CL.

3 CLProver++

CLProver++ [2] is a C++ implementation of the resolution
based calculus RES�CL described in Section 2. CLProver++

also implements unit propagation, pure literal elimination,
forward subsumption and backward subsumption. Clauses
in a coalition problem are split into a set Wo of worked-off
clauses and set Us of usable clauses. The main loop of the
prover heuristically selects a clause G from Us , moves it
to Wo and performs all inferences between G and clauses
in Wo. The set New of newly derived clauses is subject
to forward subsumption and the remaining clauses in New
may optionally be used to backward subsume clauses in Us
and Wo. Feature vector indexing [6], a non-perfect index-
ing method, is used to store Us and Wo, and to retrieve a
superset of candidates for subsumption or resolution effi-
ciently.

To evaluate the performance of CLProver++ we have
compared it with CLProver and TATL (September 2014
version). CLProver [4] is a prototype implementation in
SWI-Prolog of the calculus RESCL. It also implements for-
ward subsumption but uses no heuristics to guide the search
for a refutation. TATL [1] is an implementation in OCaml
of the two-phase tableau calculus by Goranko and Shkatov
for ATL [3], that can also be used to decide the satisfiability
of CL formulae.

We have used two classes B1 and B2 of randomly gen-
erated CL formulae for the evaluation that are available

100
99S|3U
8.3D

200
98S|2U
10.3D

300
98S|2U
12.0D

400
98S|2U
12.4D

500
97S|3U
14.2D

600
97S|3U
14.2D

700
96S|4U
15.2D

800
100S|0U
15.6D

900
99S|1U
16.7D

1000
98S|2U
16.6D

1100
99S|1U
16.9D

1200
94S|6U
18.0D

10,000

20,000

30,000

40,000

50,000

60,000

70,000

80,000

90,000

100,000

T
o
ta
l
ti
m
e
in

C
P
U

se
co
n
d
s

CLProver
CLProver
(layered modal translation)
CLProver++
CLProver++
(layered modal translation)
TATL

Figure 2: Performance on B1.

2
99S|1U

4
87S|13U

6
77S|23U

8
52S|48U

10
35S|65U

12
21S|79U

14
16S|84U

16
12S|88U

18
5S|95U

20
3S|97U

22
2S|98U

24
2S|98U

10,000

20,000

30,000

40,000

50,000

60,000

70,000

80,000

90,000

100,000

T
o
ta
l
ti
m
e
in

C
P
U

se
co
n
d
s

CLProver

CLProver++

TATL

Figure 3: Performance on B2.

from the CLProver++ website [2]. B1 consists of twelve
sets Si, 1 ≤ i ≤ 12, of 100 formulae each, with each for-
mula in Si having length 100 × i. B2 consists of 12 sets
Si, 1 ≤ i ≤ 12 of 100 formulae in conjunctive normal form
with i conjuncts of the form (¬)[A1

1](l11∨l12)∧((¬)[A2
1](l21∨

l22)∨ (¬)[A2
2](l23 ∨ l24)) with elements of each conjunct gen-

erated randomly.
Figures 2 and 3 show the total runtime of each of the

provers on each of the sets in B1 and B2, respectively. Ex-
ecution of a prover on a formula was stopped after 1000
CPU seconds. The time to transform a formulae into a co-
alition problem is not included, but is negligible. Overall,
CLProver++ outperforms all other systems by a large mar-
gin.

References

[1] A. David. TATL: Implementation of ATL tableau-
based decision procedure. In Proc. TABLEAUX 2013,
LNCS 8123:97–103. Springer, 2013.

[2] P. Gainer, U. Hustadt, C. Dixon. CLProver++, 2015.
http://cgi.csc.liv.ac.uk/˜ullrich/
CLProver++/.

[3] V. Goranko and D. Shkatov. Tableau-based decision
procedures for logics of strategic ability in multiagent
systems. ACM Trans. Comput. Log., 11(1):1–51, 2009.

[4] C. Nalon, L. Zhang, C. Dixon, and U. Hustadt. A resol-
ution prover for coalition logic. In Proc. SR2014, Elec-
tron. Proc. Theor. Comput. Sci., 146:65–73, 2014.

[5] M. Pauly. Logic for Social Software. PhD thesis, Uni-
versity of Amsterdam, The Netherlands, 2001.

[6] S. Schulz. Simple and efficient clause subsumption
with feature vector indexing. In Automated Reason-
ing and Mathematics: Essays in Memory of William W.
McCune, LNCS 7788:45–67. Springer, 2013.

http://cgi.csc.liv.ac.uk/~ullrich/CLProver++/
http://cgi.csc.liv.ac.uk/~ullrich/CLProver++/

	Introduction
	Ordered Resolution for CL
	++

