
COMP116 – Work Sheet Seven – Solutions

Associated Module Learning Outcomes

1. Basic understanding of the role of Linear algebra (including eigenvalues and
eigenvectors) in computation problems such as web page ranking.

Matrices and Spectral Techniques

Q1: Basic Matrix Methods

This question concerns general properties that hold when combining two n × n
matrices, P and Q. For each of the following claims, state whether it is always true
(do not give a proof) or is sometimes false. In the latter case give a counterexample
(that is a matrix or matrices satisfying the precondition described but not satisfying
the property asserted).

a. If P and Q are n×nmatrices both of which are non-singular (recall Lecture
notes and course textbook page 383) then:

i. P+Q is always non-singular.

ii. P−Q is always non-singular.

iii. P ·Q is always non-singular.

b. If P is an n× n matrix then:

i. If some row, ri is equal to (the transpose of) some column cj then P
is singular.

ii. If pii = 0 for some 1 ≤ i ≤ n then P is always singular.

iii. If pii 6= 0 for every 1 ≤ i ≤ n then P is always non-singular.

1



Answers

a. i. P + Q may be singular even when both P and Q are non-singular.
Suppose P is any n× n non-singular matrix. Fix Q to be (−1) ·P: Q
is non-singular, however, P+Q is the n× n matrix containing only 0
elements.

ii. Again this does not always hold: a trivial counterexample is to choose
Q = P.

iii. It can be shown that if P and Q are both n× n non-singular matrices
then

detP ·Q = detP · detQ

So that the product of 2 non-singular n × n matrices is itself non-
singular.

b. i. This is not true in general. The easiest counter-example is the n ×
n identity matrix, In, in which the k’th row is the transpose of the
k’th column. The result of multiplying the identity matrix by itself is,
however, the identity matrix, which is, of course, non-singular.

ii. Again this is not true in general, even if all diagonal entries are 0:
consider the 2×-matrix, Q in (iii) of part (a): this has detQ = 4 an
hence is non-singular.

iii. This is also not true in general: choose P to contain only positive
elments. If, however, some row pi is equal to some other row pj (i 6=
j) or is such that pi = αpj (α ∈ R, α 6= 0) then detP = 0, i.e. P is
singular.
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Q2: Computing eigenvalues and eigenvectors

[Suggestion: A good resource for processing large (up to 32× 32) matrices online
may be found at http://www.bluebit.gr/matrix-calculator/. This
will allow matrix-vector (as used in the Power Method) computations and scalar
product: x ·y for n-vectors x, y is just the matrix product xy>, i.e a 1×n-matrix
(x) multiplied by an n× 1-matrix (y>).]

With the exception of ranking problems (e.g. Google’s ordering of pages by rele-
vance to a given query) a number of applications are concerned not with finding all
eigenvalues but specific cases. Very often significant information about a structure
can be found using only the largest eigenvalue.

A classical such result of this form dates from 1967:1 this states that for any
graph G(V,E) the number of colours needed so that the nodes can be assigned
colours in such a way that no two nodes joined by an edge get the same colour,
is at most λ1(G) + 1 where λ1(G) is the largest eigenvalue of the (symmetric)
(0, 1)-matrix of G. This “optimal colouring problem” (which, among other ap-
plications, is important in timetable construction and scheduling problems) is in
general extremely difficult, so being able to estimate a good solution provides a
useful approach.

One technique for computing an eigenvector and dominant eigenvalue is de-
scribed in the course text (pages 402–405) where the following algorithm is used,

Algorithm 1 Building an approximation to a dominant eigenvector.
1: Input A n× n Real-valued matrix;
2: Output: (approximation) to a dominant eigenvector of A
3: k := 0; { Counter for number of iterations}
4: x0 := 1; {Initial “guess”}
5: repeat
6: k := k + 1;
7: xk := A · xk−1;
8: until k > MAX {Preset number of iterations to do}
9: return xk;

When Algorithm 1 is applied to the (0, 1)-matrix, G resulting from an undi-
rected graph, G, it will always manage to find a dominant eigenvector, x. This

1H. S. Wilf, The Eigenvalues of a Graph and Its Chromatic Number, Journal of the London
Mathematical Society, s1-42(1):330–332, 1967
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vector can then be used to approximate the dominant eigenvalue by computing

(Gx) · x
x · x

Here v · w is the scalar (or “dot”) product of 2 n-vectors v · w =
∑n

i=1 viwi.
(discussed in Part 2 of the course; see also course text, pages 69 and 405).

Consider the graph in Figure 1

1 2 3

4 5

6 7 8

Figure 1: 8 node undirected graph

1. Recalling Wilf’s result that the number of colours needed is at most λ1(G)+
1 do you think λ1(G) < 3?

2. Construct the 8 × 8 adjacency matrix for this graph and using the power
method (using MAX = 3 will be sufficiently accurate) find an approxima-
tion to a dominant eigenvector.

3. For the dominant eigenvector identified in (2), find the associated eigenvalue.
Does this confirm or refute your answer to (1)?

4. Let λ8 be the smallest eigenvalue (where “smallest” in this context allows
λ < 0: remember that all symmetric matrices have eigenvalues in R so
the ordering complications from C do not occur). With respect to the node
colouring problem, what information does the value 1 − (λ1/λ8) seem to
provide?

Answers:

1. If it is the case that λ1(G) < 3 then G could be properly coloured with at
most 3 colours. It is, however, not hard to argue that G requires at least 4:
nodes {1, 2, 4} need three colours, as do {2, 4, 5}, if 5 uses the same colour
assigned to 1 (the only option avoiding a fourth colour) then 7 must be the
same as 2. We now have {1, 5} identically coloured and {2, 7} identical
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(and different from {1, 5}). Node 6 cannot be assigned the same colour as 5
(since 1 and 5 are the same); node 6 must also be coloured distinctly from 4
and 7: in total {1, 2, 4, 6} (in this construction) need four distinct colours.

2.

G =



0 1 0 1 0 1 0 0
1 0 1 1 1 0 0 0
0 1 0 0 1 0 0 1
1 1 0 0 1 1 1 0
0 1 1 1 0 0 1 1
1 0 0 1 0 0 1 0
0 0 0 1 1 1 0 1
0 0 1 0 1 0 1 0


The Power Method, starting with (1, 1, 1, 1, 1, 1, 1, 1)> produces

1. k = 1: (3, 4, 3, 5, 5, 3, 4, 3)>

2. k = 2: (12, 16, 12, 19, 19, 12, 16, 12)>

3. k = 3: (47, 62, 47, 75, 75, 47, 62, 47)>

3. The approximation, v = (47, 62, 47, 75, 75, 47, 62, 47)> to a dominant eigen-
vector, results in, Gv = (184, 244, 184, 293, 293, 184, 244, 184)>. The out-
come

(184, 244, 184, 293, 293, 184, 244, 184)·(47, 62, 47, 75, 75, 47, 62, 47) = 108, 798

and that of

(47, 62, 47, 75, 75, 47, 62, 47) · (47, 62, 47, 75, 75, 47, 62, 47) = 27774

so that the dominant eigenvalue is approximation as 108798/277474 ∼ 3.917.
This suggests that at least 4 colours may be needed. Notice that computing
the eigenvalues of G directly gives λ1 ∼ 3.917.

4. The collection of all eigenvalues for G is found to be

(3.917, 1.732, 1.000,−0.320,−1.000,−2.000,−1.732,−1.598)

so that λ8 = −1.732. From this 1 − λ1/λ8 = 1 + 3.917/1.732 ∼ 3.262.
Just as 1 + λ1 gives an upper on the number of colours needed (i.e at most
5), in fact 1 − λ1/λ8 gives a lower bound: at least 4, since the number of
colours needed must be in N.
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Now consider the graph in Figure 2

1 2

3
4 5 6

7 8

Figure 2: 8 node undirected graph

1. Find a dominant eigenvector for this graph using the power method from
Algorithm 1 (again MAX = 3 is sufficient).

2. Find (an approximation to) the dominant eigenvalue for this eigenvector.

3. The on-line resource referred to provides an option to compute all of the
eigenvalues. What property do you notice about the eigenvalues relating to
the adjacency matrix of the graph in Figure 2? Does a similar property hold
for the graph used in Figure 1?

4. Suppose G is a graph whose eigenvalues show similar behaviour to that of
Figure 2 but that G has an odd number of nodes (this is possible). What
specific value must be an eigenvalue in this case? What can be deduced
about the adjacency matrix of such G?

5. Find (for both examples) the result of computing

1

2

n∑
i=1

λ2i

After making allowances for rounding errors in the arithmetic, what relation-
ship do these values seem to have to the graphs themselves?

Answers:
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1. This graph has matrix, G,

G =



0 1 1 1 0 0 0 0
1 0 0 0 1 1 0 0
1 0 0 0 0 0 1 0
1 0 0 0 1 0 1 0
0 1 0 1 0 0 0 1
0 1 0 0 0 0 0 1
0 0 1 1 0 0 0 1
0 0 0 0 1 1 1 0


Using starting guess x0 = (1, 1, 1, 1, 1, 1, 1, 1) the power method finds

k = 1 (3, 3, 2, 3, 3, 2, 3, 3)

k = 2 (8, 8, 6, 9, 9, 6, 8, 8)

k = 3 (23, 23, 16, 25, 25, 16, 23, 23)

2. The dominant eigenvalue is approximated via Gx3 = (64, 64, 46, 71, 71, 46, 64, 64)
and

(64, 64, 46, 71, 71, 46, 64, 64) · (23, 23, 16, 25, 25, 16, 23, 23) = 10910

(23, 23, 16, 25, 25, 16, 23, 23) · (23, 23, 16, 25, 25, 16, 23, 23) = 3878

so that λ1 ∼ 2.813.

3. The collection of eigenvalues is,

(−2.814, 2.814,−1.343,−1.000,−0.529, 1.343, 1.000, 0.529)

In this for every eigenvalue there is a corresponding eigenvalue −λ. The
same property does not hold for the first example graph.

4. For such cases 0 must be an eigenvalue. In this case, since eigenvalues are
those λ describing when of det(G−λI = 0 it must be the case that detG =
0.

5. For the first graph,
1

2

8∑
i=1

λ2i ∼
29.999

2
∼ 15

For the second case

1

2

8∑
i=1

λ2i ∼
22.004

2
∼ 11
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The first example was a graph with 15 links; the second a graph with 11.

In general, computing
∑n

i=1 λ
2
i will result in a value equal to twice the

number of links. [Note: There is, in fact, a much more general property:∑n
i=1 λ

k
i is known to be the number of distinct closed walks of lengh k, i.e.

the number of ways one can start at any node then return to the same node
after k links have been followed.]
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