
05/01/2017

1

1

Comp 104: Operating Systems

Concepts

Process Scheduling

2

Today

• Deadlock

– Wait-for graphs

– Detection and recovery

• Process scheduling

• Scheduling algorithms

– First-come, first-served (FCFS)

– Shortest Job First (SJF)

3

Wait-For Graph

• Precise definition:

• An edge from Pi to Pj implies that process Pi is waiting for
process Pj to release a resource that Pi needs

• An edge Pi → Pj exists in a wait-for graph if and only if the
corresponding resource-allocation graph contains two
edges Pi → Rq and Rq → Pj for some resource Rq

• Deadlock is present if there is a cycle in the wait-for
graph

• Construct the wait-for graph that corresponds to the

following resource allocation graph and say whether or

not there is deadlock:

4

Exercise

P1

P2

R1

P4

R2

P3

R3

05/01/2017

2

5

Corresponding Wait-For Graph

P1

P2
P4

P3

6

Wait-For Graph

• In order to be able to effectively detect deadlock, the
system must maintain the wait-for graph and run an
algorithm to search for cycles, at regular intervals

• Issues:
– How often should the algorithm be invoked?

• Costly to do for every request

• May be better to do at regular intervals, or when CPU utilisation
deteriorates too much

– How many processes will be affected by the occurrence of
deadlock?

• One request may result in many cycles in the graph

7

Detection and Recovery

• Once the detection algorithm has identified a deadlock, a
number of alternative strategies could be employed to
recover from the situation

• Recovery could involve process termination
– All involved

• May be huge loss of computation

– One at a time
• Expensive: requires re-run of detection algorithm after each
termination

• Recovery could involve preemption
– Choice of victim

– Rollback

– Starvation

8

Scheduling

• In any multiprogramming situation, processes must
be scheduled

• The long-term scheduler (job scheduler) decides
which jobs to load into memory
– must try to obtain a good job mix: compute-bound vs. I/O-

bound

• The short-term scheduler (CPU/process scheduler)
selects next job from ready queue
– Determines: which process gets the CPU, when, and for how

long; when processing should be interrupted

– Various different algorithms can be usedA

05/01/2017

3

9

Scheduling

• The scheduling algorithms may be preemptive or non-
preemptive
– Non-preemptive scheduling: once CPU has been allocated to a

process the process keeps it until it is released upon termination
of the process or by switching to the ‘waiting’ state

• The dispatcher module gives control of the CPU to the
process selected by the short-term scheduler
– Invoked during every switch: needs to be fast

• CPU–I/O Burst Cycle: process execution consists of a
cycle of CPU execution and I/O wait

• So what makes a good process scheduling policy?
10

Process Scheduling Policies

• Several (sometimes conflicting) criteria could be considered:

• Maximise throughput: run as many processes as possible in a given
amount of time

• Minimise response time: minimise amount of time it takes from when
a request was submitted until the first response is produced

• Minimise turnaround time: move entire processes in and out of the
system quickly

• Minimise waiting time: minimise amount of time a process spends
waiting in the ready queue

11

Process Scheduling Policies
• Maximise CPU efficiency: keep the CPU constantly busy, e.g. run

CPU-bound, not I/O bound processes

• Ensure fairness: give every process an equal amount of CPU and
I/O time, e.g. by not favouring any one, regardless of its
characteristics

• Examining the above list, we can see that if the system favours one
particular class of processes, then it adversely affects another, or
does not make efficient use of its resources

• The final decision on the policy to use is left to the system designer
who will determine which criteria are most important for the
particular system in question

12

Process Scheduling Algorithms

• The short-term scheduler relies on algorithms that are
based on a specific policy to allocate the CPU

• Process scheduling algorithms that have been widely
used are:

– First-come, first-served (FCFS)

– Shortest job first (SJF)

– Shortest remaining time first (SRTF)

– Priority scheduling

– Round robin (RR)

– Multilevel queues

05/01/2017

4

13

First-Come, First Served
• Simplest of the algorithms to implement and understand

– Uses a First-In-First-Out (FIFO) queue

• Non-preemptive algorithm that deals with jobs according to their
arrival time
– The sooner a process arrives, the sooner it gets the CPU

– Once a process has been allocated the CPU it keeps until released
either by termination or I/O request

• When a new process enters the system its PCB is linked to the end
of the ‘ready’ queue

• Process is removed from the front of the queue when the CPU
becomes available, i.e. after having dealt with all the processes
before it in the queue

14

Example

• Suppose we have three processes arriving in the

following order:

– P1 with CPU burst of 13 milliseconds

– P2 with CPU burst of 5 milliseconds

– P3 with CPU burst of 1 millisecond

• Using the FCFS algorithm we can view the result as a

Gantt chart:

0 13 18 19

P1 P2 P3

15

First-Come, First Served

• Given the CPU burst times of the processes, we know
what their individual wait times will be:
– 0 milliseconds for P1

– 13 milliseconds for P2

– 18 milliseconds for P3

• Thus, the average wait time will be (0 + 13 + 18)/3 = 10.3
milliseconds

• However, note that the average wait time will change if
the processes arrived in the order P2, P3, P1

16

Exercise

• What will the average wait time change to

if the processes arrived in the order P2, P3,

P1?

05/01/2017

5

17

Answer
• P2 with CPU burst of 5 milliseconds

• P3 with CPU burst of 1 millisecond

• P1 with CPU burst of 13 milliseconds

• Represented as the following Gantt chart:

• Thus, the average wait time will be (0 + 5 + 6)/3 = 3.7
milliseconds

0 5 6 19

P1P2 P3

18

First-Come, First Served

• Advantages:
– Very easy policy to implement

• Disadvantages:
– The average wait time using a FCFS policy is
generally not minimal and can vary substantially

– Unacceptable for use in time-sharing systems as
each user requires a share of the CPU at regular
intervals
• Processes cannot be allowed to keep the CPU for an
extended length of time as this dramatically reduces system
performance

19

Shortest Job First
• Non-preemptive algorithm that deals with processes according to

their CPU burst time
– When the CPU becomes available it is assigned the next process that

has the smallest burst time

– If two processes have the same burst time, FCFS is used to determine
which one gets the CPU

• Suppose we have four processes as follows:
– P1 with CPU burst of 5 milliseconds

– P2 with CPU burst of 9 milliseconds

– P3 with CPU burst of 6 milliseconds

– P4 with CPU burst of 3 milliseconds

• Using the SJF algorithm we can schedule the processes as viewed
in the following Gantt chartA..

20

Example

0 14 23

P1 P2P3P4

3 8

• The wait times for each process are as follows:
• 3 milliseconds for P1

• 14 milliseconds for P2

• 8 milliseconds for P3

• 0 milliseconds for P4

• Thus, the average wait time is (3 + 14 + 8 + 0)/4 = 6.25

milliseconds

05/01/2017

6

21

Exercise

• In the previous example, what would the

average wait time be if we had been using

the First Come, First Served algorithm?

22

Answer

0 14 23

P1 P2 P3 P4

5 20

• The Gantt chart above shows the wait times using FCFS

• The average wait time under FCFS is:

(0 + 5 + 14 + 20)/4 = 9.75 milliseconds

• Thus, the Shortest Job First algorithm produces a shorter

average wait time than FCFS

23

Shortest Job First

• Advantages:
– SJF reduces the overall average waiting time

• Thus SJF is provably optimal in that it gives the minimal
average waiting time for a given set of processes

• Disadvantages:
– Can lead to starvation

– Difficult to know the burst time of the next process
requesting the CPU
• May be possible to predict, but not guaranteed

• Unacceptable for use in interactive systems

24

More scheduling methods

• Scheduling algorithms continued

– Shortest remaining time first (SRTF)

– Priority scheduling

– Round robin (RR)

05/01/2017

7

25

Shortest Remaining Time First

• Preemptive version of the SJF algorithm
– CPU is allocated to the job that is closest to being completed

– Can be preempted if there is a newer job in the ready queue that
has a shorter completion time

• Suppose we have four processes arriving one CPU time
cycle apart and in the following order:
– P1 with CPU burst of 6 milliseconds (arrives at time 0)

– P2 with CPU burst of 2 milliseconds (arrives at time 1)

– P3 with CPU burst of 8 milliseconds (arrives at time 2)

– P4 with CPU burst of 4 milliseconds (arrives at time 3)

• Using the SRTF algorithm we can schedule the
processes as viewed in the following Gantt chartA..

26

Example

0 12 20

P2 P1P1

7

• P1 starts at time 0 then P2 arrives at time 1

• As P2 requires less time (2 milliseconds) to complete

than P1 (5 milliseconds), then P1 is preempted and P2 is

scheduled

• The next processes are then treated in this same manner

• Thus, the average wait time is:

((7 - 1) + (1 - 1) + (12 - 2) + (3 - 3))/4 = 4 milliseconds

Note: the above calculation accounts for the arrival time of each

processes in that it is subtracted

1 3

P4 P3

27

Exercise

• Using the same processes, arrival times

and CPU burst times as in the previous

example, what would the average wait

time be if we were using the Shortest Job

First algorithm?

28

Answer

0 12 20

P2 P3P4P1

6 8

• Thus, the average wait time is:

(0 + (6 - 1) + (12 - 2) + (8 - 3))/4 = 20/4 = 5 milliseconds

05/01/2017

8

29

Priority Scheduling
• Algorithm that gives preferential treatment to important

jobs
– Each process is associated with a priority and the one with the

highest priority is granted the CPU

– Equal priority processes are scheduled in FCFS order
• SJF is a special case of the general priority scheduling algorithm

• Priorities can be assigned to processes by a system
administrator (e.g. staff processes have higher priority
than student ones) or determined by the Processor
Manager on characteristics such as:
– Memory requirements

– Peripheral devices required

– Total CPU time

– Amount of time already spent processing

30

Example
• Suppose we have five processes all arriving at time 0 in the

following order and having the following CPU burst times:
– P1 with CPU burst of 9 milliseconds, priority 3

– P2 with CPU burst of 2 milliseconds, priority 4

– P3 with CPU burst of 1 millisecond, priority 1

– P4 with CPU burst of 5 milliseconds, priority 3

– P5 with CPU burst of 6 milliseconds, priority 2

• Assuming that 0 represents the highest priority, using the priority
algorithm we can view the result as the following Gantt chart:

0 16 21 23

P3 P5 P2

1 7

P1 P4

31

Priority Scheduling

• For the previous example, the average waiting time is:

(7 + 21 + 0 + 16 + 1)/5 = 9 milliseconds

• Advantages:
– Simple algorithm

– Important jobs are dealt with quickly

– Can have a preemptive version

• Disadvantages:
– Process starvation can be a problem

• Can be alleviated through the aging technique: gradually increasing
the priority of processes that have been waiting a long time in the
system

32

Round Robin
• Preemptive algorithm that gives a set CPU time to all active

processes
– Similar to FCFS, but allows for preemption by switching between

processes

– Ready queue is treated as a circular queue where CPU goes round the
queue, allocating each process a pre-determined amount of time

• Time is defined by a time quantum: a small unit of time, varying
anywhere between 10 and 100 milliseconds

• Ready queue treated as a First-In-First-Out (FIFO) queue
– new processes joining the queue are added to the back of it

• CPU scheduler selects the process at the front of the queue, sets
the timer to the time quantum and grants the CPU to this process

05/01/2017

9

33

Round Robin
• Two potential outcomes ensue:

1) If the process’ CPU burst time is less than the
specified time quantum it will released the CPU upon
completion
– Scheduler will then proceed to the next process at the front of

the ready queue

2) If the process’ CPU burst time is more than the
specified time quantum, the timer will expire and cause
an interrupt (i.e. the process is preempted) and execute
a context switch
– The interrupted process is added to the end of the ready queue

– Scheduler will then proceed to the next process at the front of
the ready queue

34

Example

• Suppose we have three processes all arriving at time 0
and having CPU burst times as follows:
– P1 with CPU burst of 20 milliseconds

– P2 with CPU burst of 3 milliseconds

– P3 with CPU burst of 3 milliseconds

• Supposing that we use a time quantum of 4 milliseconds,
using the round robin algorithm we can view the result as
the following Gantt chart:

0 10 14 18

P1 P2 P1

4 7

P3 P1 P1 P1

22 26

35

Round Robin

• In the previous example P1 executed for the first four
milliseconds and is then interrupted after the first time
quantum has lapsed, but it requires another 16
milliseconds to complete

• P2 is then granted the CPU, but as it only needs 3
milliseconds to complete, it quits before its time quantum
expires

• The scheduler then moves to the next process in the
queue, P3 , which is then granted the CPU, but that also
quits before its time quantum expires

36

Round Robin

• Now each process has received one time quantum, so
the CPU is returned to process P1 for an additional time
quantum

• As there are no other processes in the queue, P1 is given
further additional time quantum until it completes
– No process is allocated the CPU for more than one time

quantum in a row, unless it is the only runnable process

• The average wait time is ((10 - 4) + 4 + 7)/3 = 5.66
milliseconds

05/01/2017

10

37

Round Robin
• The performance of the round robin algorithm depends

heavily on the size of the time quantum
– If time quantum is too large, RR reduces to the FCFS algorithm

– If time quantum is too small, overhead increases due to amount
of context switching needed

• Advantages:
– Easy to implement as it is not based on characteristics of

processes
• Commonly used in interactive/time-sharing systems due to its
preemptive abilities

– Allocates CPU fairly

• Disadvantages:
– Performance depends on selection of a good time quantum

• Context switching overheads increase if a good time quantum is not
used

38

Multilevel Queue

System processes

Interactive processes

Student processes
Lowest priority

Highest priority

Batch processes

39

Multilevel Queue

• Each queue has its own scheduling algorithm
– e.g. queue of foreground processes using RR and
queue of batch processes using FCFS

• Scheduling must be done between the queues
– Fixed priority scheduling: serve all from one queue
then another
• Possibility of starvation

– Time slice: each queue gets a certain amount of CPU
time which it can schedule amongst its processes
• e.g. 80% to foreground queue, 20% to background queue

40

End of Section

• Operating systems concepts:
– communicating sequential processes;

– mutual exclusion, resource allocation, deadlock;

– process management and scheduling.

• Concurrent programming in Java:
– Java threads;

– The Producer-Consumer problem.

• Next section: Memory Management

05/01/2017

11

41

Comp 104: Operating Systems

Concepts

Memory Management Systems

42

Today

• Memory management

– Number systems and bit manipulation

– Addressing

• Simple memory management systems

– Definition

– Issues

– Selection policies

43

Operating System – An Abstract

View

File Manager

Memory Manager

Device Manager

Processor Manager

User Command Interface

44

Recap - Binary

• Starting from right, each digit is a power of two
– (1,2,4,8,16A)

• 110110 = 2+4+16+32 = 54

• To convert decimal to binary, keep subtracting largest
power of 2
– e.g. 37 (sub. 32, sub. 4, sub 1) = 100101

• n bits can represent 2n numbers
– range 0 to 2n – 1

• Conversely, to represent n numbers, need log2(n) bits

05/01/2017

12

45

Recap - Octal and Hex

• Octal is base 8 (digits 0-7)
– 134 (oct) = (1*64) + (3*8) + (1*4) = 92

• To convert between octal and binary
– think in groups of 3 bits (since 8 = 23)

– 134(oct) = 001 011 100

– 10111010 = 272 (oct)

• Hex is base 16 (A-F = 10-15)
– B3 (hex) = (11*16) + (3*1) = 179

• Conversion to/from binary
– using groups of 4 bits (since 16 = 24)

– B3 (hex) = 1011 0011

– 101111 = 2F (hex)

46

Recap - Bit Manipulation

• Use AND (&) to mask off certain bits
– x = y & 0x7 // put low 3 bits of y into x

• Use left and right shifts as necessary
– x = (y & 0xF0) >> 4 // put bits 4-7 of y into bits 0-3 of x

• Can also test if a bit is set
– if (x & 0x80)A // if bit 7 of x is setA

(‘0x’ states that a number is in hexadecimal)

47

Recap - Bit Manipulation

• Can switch a bit off
– x = x & 0x7F // unset bit 7 of x (assume x is only 8 bits)

• Use OR (|) to set a bit
– x = x | 0x80 // set bit 7 of x

• A right shift is divide by 2; left shift is multiply by 2
– 6 << 1 = 0110 << 1 = 1100 = 12

– 6 >> 1 = 0110 >> 1 = 0011 = 3

48

Memory Management

• A large-scale, multi-user system may be
represented as a set of sequential
processes proceeding in parallel

• To execute, a process must be present in
the computer’s memory

• So, memory has to be shared among
processes in a sensible way

05/01/2017

13

49

Memory
• Memory: a large array of words or bytes, each with its own address

• The value of the program counter (PC) determines which
instructions from memory are fetched by the CPU
– The instructions fetched may cause additional loading/storage access

from/to specific memory addresses

• Programs usually reside on a disk as a binary executable file

• In order for the program to be executed it must be brought into
memory and placed within a process

• When the process is executed it accesses data and instructions
from memory, then upon termination its memory space is declared
available

50

Address Binding – Compile Time

• Programs often generate addresses for instructions or
data, e.g.
START: CALL FUN1

.

.

LOAD NUM

JUMP START

• Suppose assemble above to run at address 1000, then
jump instruction equates to JUMP #1000

• Consider what happens if we move program to another
place in memory

• Obvious disadvantage for multiprogrammed systems

• Fixed address translation like this is referred to as
compile-time binding

51

Load-Time Binding

• Ideally, would like programs to run anywhere in
memory

• May be able to generate position-independent
code (PIC)
– aided by various addressing modes, e.g.

PC-relative: JUMP +5
Register-indexed: LOAD (R1) #3

• If not, binary program file can include a list of
instruction addresses that need to be initialised
by loader

52

Dynamic (Run-Time) Binding

• Used in modern systems

• All programs are compiled to run at address zero

• For program with address space of size N, all
addresses are in range 0 to N-1

• These are logical (virtual) addresses

• Mapping to physical addresses handled at run-
time by CPU’s memory management unit (MMU)

• MMU has relocation register (base register)
holding start address of process
– Contents of registers are added to each virtual address

05/01/2017

14

53

Logical and Physical Addresses

• Addresses generated by the CPU are known as logical (virtual)
addresses
– The set of all logical addresses generated by a program is known as the

logical address space

• The addresses seen by the MMU are known as physical addresses
– The set of all physical addresses corresponding to the logical addresses

is known as the physical address space

• The addresses generated by compile-time binding and load-time
binding result in the logical and the physical addresses being the
same

• Run-time binding results in logical and physical addresses that are
different

54

Simple System Store

Management

• Store is allocated to

programs in contiguous

partitions from one end of

the store to the other

• Each process has a

base, or datum (where it

starts)

• Each process also has a

limit (length)

O.S.

PROG 1

PROG 2

PROG 3

SPARE

datum
limit

55

Problem

• What if one program terminates and we want to

replace it by another?

O.S.

PROG 1

SPARE

PROG 3

SPARE

PROG 4
?

?

New program may not fit any available partition
56

First Possibility

• In a multiprogramming system where we have a

queue of programs waiting, select a program of

right size to fit partition

O.S.

PROG

PROG

QUEUE

1 2 3 4

05/01/2017

15

57

Problems

• Large programs may never get loaded
(permanent blocking or starvation)

• Small gaps are created (fragmentation)

O.S.
QUEUE

1 2 3

FRAGMENTED STORE

BLOCKED PROGRAMS

Question

• In a computer memory, a 100K partition becomes available. In the

ready list is a program image of size 300K, plus three others of sizes

100K, 85K and 15K.

• Assuming that our current priority is to avoid starvation of the 300K

program, which of those in the list should be swapped into the

available partition?

a) The 100K program

b) The 85K program

c) The 15K program

d) Both the 15K and the 85K programs

e) None of the above

58

Answer: e

If we are avoiding the starvation of

the 300K program, then we need

to wait for an adjacent partition to

become available to allow for the

300K program to run

59

Loading Programs

• To avoid starvation, may need to let a large

program hold up queue until enough space

becomes available

• In general, may have to make a choice as to

which partition to use

• Selection policies:

– First fit: Choose first partition of suitable size

– Best fit: Choose smallest partition which is big

enough

– Worst fit: Choose biggest partition

Question

• A new program requires 100K of memory to run. The memory

management approach adopted is a simple partitioning one, and the

operating system has the following list of empty partitions:

60K, 240K, 150K, 600K, 108K, 310K

• Assuming that the 150K partition is chosen, say which of the

following selection strategies is being used:

a) First fit

b) Best fit

c) Worst fit

d) All of the above

e) None of the above

60

Answer: e

First Fit would select 240K

Best Fit would select 108K

Worst Fit would select 600K

A as none of these select the 150K partition,

then some other strategy has been used!

05/01/2017

16

61

Problems with Approach

• Fragmentation may be severe

– 50% rule
• For first-fit, if amount of memory allocated is N,
then the amount unusable owing to fragmentation
is 0.5N

– Overhead to keep track of gap may be bigger
than gap itself

– May have to periodically compact memory
• Requires programs to be dynamically relocatable

• Difficult dealing with large programs

62

Problems (cont’d)

• Shortage of memory
– arising from fragmentation and/or anti-starvation
policy

– may not be able to support enough users

– may have difficulty loading enough programs to
obtain good job mix

• Imposes limitations on program structure
– not suitable for sharing routines and data

– does not reflect high level language structures

– does not handle store expansion well

• Swapping is inefficient

63

Swapping

• Would like to start more programs than can fit into
physical memory

• To enable this, keep some program images on disk

• During scheduling, a process image may be swapped in,
and another swapped out to make room
– also helps to prevent starvation

• For efficiency, may have dedicated swap space on disk

• However, swapping whole processes adds considerably
to time of context switch

Today

• Dynamic Loading & Linking

– Shared Libraries

• Memory organisation models

–Segmentation

• Address structure

• Memory referencing

05/01/2017

17

Dynamic Loading

• Not always necessary to load the entire image

– Image can consist of:

• Main program

• Different routines, classes, etc

• Error routines

– Dynamic Loading allows only parts of the

image to be loaded, as necessary

• When a routine calls another routine, it checks to

see if it has been loadedA

– A if not, the relocatable linking loader is called

• Advantage – unused routines are never loaded,

thus the image is kept smaller

Linking

• Linking is the combination of user code with

system or 3rd party libraries

– Typically done as part of, or after the compilation

process

• Static Linking

– Copies of the libraries are included in the final binary

program image

• Can result in large images due to inclusion of many libraries

(which in turn might link to other librariesA)

• Wasteful both in terms of disc storage and main memory

• Can be managed by dynamic loading, but shared libraries

are still repeated in memory multiple times.

Linking (cont)

• Dynamic Linking

– A stub is included in the image for each library routine

• Indicates how to:

– Locate memory resident library routine (if already loaded),

– Load the library (if not loaded)

• Allows re-entrant code to be shared between

processes

– Supports Library Updates (including versioning)

– Keeps disc image small

– Requires some assistance from the OS

• Lower level memory organisation necessaryA

Memory Organisation

To ameliorate some of the software problems arising

from the linear store, more complex memory models are

used which organise the store hierarchically:

• Segmentation

– subdivision of the address space into logically

separate regions

• Paging

– physical subdivision of the address space for memory

management

05/01/2017

18

Segmentation

NOTES: Each segment has its own partition

Segments need not be contiguous

Stack

segment 3

Symbol
Table

segment 4

System Call

segment 1

Main
Program

segment 2

Subroutine

segment 0

Limit Base

0 1000 7800

1 1000 10800

2 2400 4400

3 1100 1400

4 1400 8800

Segment Table

datum

limit

segment 2

segment 4

segment 0

segment 1

segment 3

1400

2500

4400

6800

7800

8800

10200

10800

11800
Physical Memory

datum

limit

Logical Address Space

Segmented Address Structure

• Each process has a segment table

– contains datum and limit values of segments

• Address of table held in segment table base

register (STBR) (saved during context switch)

0

1

2

3

4

STBR

SEGMENT 4 SEGMENT 3

SEGMENT

TABLE

0 0

s t

Memory Referencing

• For linear store, machine code is

LOAD ADDR

• For segmented store, machine code is

LOAD SEG, ADDR

– Hardware looks up segment base address in

table, then adds in-segment address to

produce absolute address

Question

• A program is split into 3 segments. The segment table contains the

following information:

segment datum limit

0 1700 5500

1 5600 8100

2 8300 9985

• where ‘limit’ is the physical address following the end of the

segment, and instructions take the form opcode segment, offset

• If the program executes

– LOAD 1, 135

• what physical address is accessed?

72

Answer: b

5600 (from segment 1) + 135 (offset)

a) 1835

b) 5735

c) 8435

d) 8235

e) 5635

05/01/2017

19

Advantages of Segmentation

• Memory allocation reflects program structure

begin

int a, b, c; float …; etc.

[1:n] float bigarray;

procedure something …

begin

…

end

MAIN PROGRAM

end

MAIN DATA SEGMENT

BIGARRAY SEGMENT

PROCEDURE SEGMENT

MAIN PROGRAM

SEGMENT

This means...

• It is easier to organise separate compilation of
procedures

• Protection is facilitated
– array bound checking can be done in hardware

– code segments can be protected from being
overwritten

– data segments can be protected from execution

• Segments can be shared between processes

Segment Sharing

• Suppose 2 users compiling different programs

PROCESS A PROCESS B

Seg. table Seg. table

DATA SEG. FOR

PROCESS A

DATA SEG. FOR

PROCESS B

COMPILER

CODE SEG.

Processes have own data segments, but can share compiler code segment if

it is pure (re-entrant), i.e. the code never modifies itself during execution.

-- Economises on memory, and more efficient.

Other Advantages

• Large programs broken into manageable units

– Store allocation more flexible

– Not all of a program need be in store at same time

begin

procedure initialise

{ … }

procedure mainpart

{ … }

procedure finish

{ … }

end

Seg. needed only at start

Seg. needed during

central phase

Seg. needed only at end

Segments can be kept on backing store until needed, then swapped in

-- Allows more programs to be kept in memory

-- Swapping more efficient

05/01/2017

20

Question
• Process A and process B both share the same code segment S.

Which of the following statements is (are) true?

I. An entry for S appears in both segment tables

II. The segment code must be re-entrant

III. The segment code must be recursive

a) I only

b) II only

c) I and II

d) I and III

e) I, II and III

77

Answer: c

I and II – as the segment is shared, both processes need

to index it (i.e. include an entry in their respective segment

tables, and, the code must not be changed by its use (i.e. it

should be re-entrant). Recursion is irrelevant to this issue.

But...

• Swapping can only work effectively if

programs sensibly segmented

• Still have space allocation problems for

awkward-sized segments

– made worse by frequent need to find space

whenever swapping-in occurs

– fragmentation and blocking remain problems

79

Today

• Paging

– Paged memory

– Virtual addressing

• Page replacement

– Principle of Locality

80

Paging

• Paging is the physical division of a program’s (or
segment’s) address space into equal-sized
blocks called pages

• Each page resides within a page frame in the
real memory

• Pages which are consecutive in the address
space (virtual memory) need not occupy
consecutive page frames in real memory

05/01/2017

21

81

Page Mapping

• Translation of virtual addresses (used by program)

into real addresses performed by hardware via a

page table per process

PAGE 0

PAGE 1

PAGE X

PAGE 0

PAGE 1

PAGE X

0

n

VIRTUAL ADDR. SPACE REAL MEMORY

FRAME J

FRAME I

FRAME K

82

Paged Memory

PT Base register

Page Frame Address

Page Table

Page

Virtual address

83

Virtual Addressing

Virtual Page Number In-page address

Virtual Address

Storage Mapping function

1. PTBR addresses Page Table in memory.

2. Virtual page number indexes page table to produce real page

address

3. In-page address indexes real page.

Question

• In a paged memory system, why are page sizes invariably a power

of 2?

a) Because computer memory is usually a multiple of 1K, which is a power of 2.

b) Because pages have to begin at address boundaries that are even.

c) Because virtual address spaces are usually a power of 2 in size

d) Because it simplifies indexing of the page table and the calculation of the page

offset.

e) Because most data types occupy even numbers of bytes.

84

Answer: d

Because it simplifies indexing of the page table and the calculation

of the page offset.

05/01/2017

22

Question

• A computer uses 16-bit addressing. Its page size is 512 bytes. What

is the maximum number of entries that the page table must be

capable of holding?

a) 16

b) 64

c) 128

d) 256

e) 512

85

Answer: c

128; 9 bits are used for addressing the 512 bytes in each page, so

the remaining 7 bits are used to address the pages

86

Paging Example

0 A

1 B

2 C

3 D

4 E

5 F

6 G

7 H

8 I

9 J

10 K

11 L

12 M

13 N

14 O

15 P

0

4 I

J

K

L

8 M

N

O

P

12

16

20 A

B

C

D

24 E

F

G

H

5

6

1

2

0

1

2

3

1 0 1 0

Logical

memory

Physical

memory

Virtual

address

Page

table

Question

• The page table shown below is for a job in a paged virtual storage

system with a page size of 1K:

segment datum
0 4

1 2

2 0

3 1

• A virtual address of [1, 352] would map on to what actual address?

87

Answer: d

2048 (from page 1) + 352 (offset)

a) 354

b) 1376

c) 2352

d) 2400

e) 4448

88

Segmentation & Paging

• Segmentation:

– Logical division of address space

– varying sized units

– units ‘visible’ to program

• Paging:

– Physical division of address space

– fixed-size units

– units bear no relation to program structure

05/01/2017

23

89

Segmentation & Paging

• Either may be used as a basis for a swapping

system

• Store may be both segmented and paged

– more complex mapping function using 2 tables

• Advantages of paging:

– fixed-size units make space allocation simpler

– normal fragmentation eliminated, but still some

internal fragmentation, i.e. space wasted within

frames

90

Example: The Intel Pentium

• Supports segmentation with paging

• CPU generates logical address, which is passed
to segmentation unit

• Segmentation unit produces a linear address,
which is passed to paging unit

• Paging unit generates physical address in main
memory

91

Virtual Memory

• The maximum logical address space per
process may be smaller than physical memory

• Conversely, it may be larger!
– May want to run a 100MB process on a machine with
64MB memory

• Possible with paging
– Not all pages need be in memory

– Unneeded pages can reside on disk

– Memory becomes virtual, i.e. not restricted by
physical memory

92

Problem 1

• What happens if a process references a
page that is not in main store?

– A page fault ensues

• Page fault generates an interrupt because
address references cannot be satisfied
until page swapped in

• O.S. response is normally to fetch page
required (demand paging)

05/01/2017

24

93

Problem 2

• How do we make room for fetched page?
(page replacement problem)

• Would like to swap out pages not immediately
needed
– have to guess!

• A poor guess will quickly lead to a page fault

• Many poor guesses will lead to persistent
swapping (thrashing)

94

Thrashing

Thrashing comes about as result of system overload

– can be delayed by good page replacement policy

Overload

leading to

thrashing
System

throughput

Degree of multiprogramming

Peak loading

95

Page Replacement

• Optimal policy: swap out page that will not be
needed for longest time in the future

• To estimate this, use...

Over any short period of time, a program’s memory

references tend to be spatially localised

Consequence is that program’s memory needs in next time

period are likely to be close to those during last time period

Question
• Which of the following programming constructs tend to contribute to

the phenomenon expressed in the Principle of Locality?

I. Iteration (e.g. FOR and WHILE loops)

II. Selection (e.g. IF-statements)

III. Recursion

a) I only

b) III only

c) I and III only

d) II and III only

e) I and II only

96

Answer: c

I and III only

05/01/2017

25

97

Today

• Virtual Memory

• Page Replacement

–Working set model

–Page replacement policies

98

Working Set Model

• The working set (Denning, 1968) of a process
is defined to be the set of resources (pages)
W(T,s) defined in the time interval [T, T+s]

• By the principle of locality,

• Hence, for each process:
– try to ensure its working set is in memory

– estimate working set by recording set of pages
referenced in preceding time interval

),(),(ssTWsTW −≈

Question

• Consider the following sequence of page references in a paged

memory management system:

page | p | q | r | q | q | q | p | r | r | q |

time 0 1 2 3 4 5 6 7 8 9 10

• What is the working set expressed as W(3,4)?

a) q

b) r

c) qr

d) pq

e) pqr

99

Answer: d

pq

Question

• Consider the following sequence of page references in a paged

memory management system:

page | p | q | r | q | q | q | p | r | r | q |

time 0 1 2 3 4 5 6 7 8 9 10

• What would be the predicted working set expressed as W(10,3)?

a) q

b) r

c) qr

d) pq

e) pqr

100

Answer: c

qr

05/01/2017

26

101

Working Set

• The accuracy of the working set depends
upon its size

– If set too small will not cover entire locality

– If set too large will cover several localities

• Over time the working set of a process will
change as references to data and code
sections move from one locality to another

– Page fault rates will vary with these transitions

102

Related Policies

• Replacement policies for use with
demand paging, based loosely on
working set principles, include

– Least Recently Used (LRU). Replace least-
recently used page

– First-In-First-Out (FIFO). Replace page
longest in memory

– Least Frequently Used (LFU). Replace
page with fewest references in recent time
period

Question 14

• Consider the following sequence of page references in a paged

memory management system:

page | p | q | r | q | q | q | p | r | r | q |

time 0 1 2 3 4 5 6 7 8 9 10

• Page s arrives at time 10. Which of the following policies suggests

we should throw out page p to make room for s?

I. LRU

II. LFU

III. FIFO

103

Answer: e

I, II and III

a) I only

b) III only

c) I and II

d) I and III

e) I, II and III
104

Anticipatory Paging

• Above policies not immune from thrashing

• A policy which more closely follows

working set principles may require

anticipatory paging

– pages in working set are pre-fetched in

anticipation of their need

05/01/2017

27

105

Frame Allocation

• The fixed amount of free memory must be allocated
amongst the various processes
– Need to determine how many frames each process should get

• Each process will need a minimum number of pages
– Dependent upon the architecture

• Allocation schemes
– Equal allocation: each process gets an equal share of frames

– Proportional allocation: allocate frames according to the size of
the process

• Could also implement proportional allocation based on process
priorities

106

Performance Considerations

• Segmentation and paging overcome many
limitations of linear store model, butA

• There is a performance hit
– Each memory reference may require 2-3 store
accesses

• Special hardware may help
– registers to hold base address of current code and
data segments may allow tables to be bypassed

– special memory can aid fast table look-up
(cache memory, associative store)

107

Page Size

• A large page size means a smaller page table

• However, large pages mean more wastage
– On average, 50% of a page per process lost to
internal fragmentation

• Small pages give better resolution
– Can bring in only the code/data that is needed for
working set

• However, small pages increase chances of page
faults

108

Example: Windows XP

• Virtual memory implemented using demand paging

• Also implements clustering
– When page fault occurs, bring in a number of additional pages

following page required

• Each process has a working set minimum
– Guaranteed number of pages in memory (e.g. 50)

• Also has a working set maximum (e.g. 345)
– If page fault occurs and max has been reached, one of the

process's own pages must be swapped out

• If free memory becomes too low, virtual memory
manager removes pages from processes (but not below
minimum)

05/01/2017

28

109

End of Section

• Memory Management

– Linear store model and its problems

– Segmentation and paging

– Virtual memory and page replacement

• The next section of the module will be

Files and I/O

