
05/01/2017

1

1

Comp 104: Operating Systems

Concepts

Concurrent Programming & Threads

2

Today

• Introduction to Concurrent Programming

– Threads

– Java Threads and Realisation

3

Concurrent Programming

• Consider a program that resolves an arithmetic
expression

• The steps in the calculation are performed serially:
instructions are executed one step at a time
– every operation within the expression is evaluated in sequence

following the order dictated by the programmer (and compiler)

• However, it may be possible to evaluate numerous
sub-expressions at the same time in a multiprocessing
system

4

Concurrent Programming

• Consider formula to find one root of a

quadratic:

x = (-b + √(b2 - 4ac)) / 2a

• This can be split into several operations:
Concurrent operations

1. t1 = -b

2. t2 = b*b

3. t3 = 4*a

4. t4 = 2*a

• In Java, parallel execution is achieved with

threads

Serial operations
5. t5 = t3*c

6. t5 = t2 - t5

7. t5 = √t5

8. t5 = t1 + t5

9. x = t5/t4

05/01/2017

2

5

Exercise

• Identify the parallelism in the following:

1) for i = 1 to 10

a[i] = a[i] + 1

2) for i = 1 to 10

a[i] = a[i] + a[i - 1]

Question

• In calculating the formula ut + ½at2 using maximal concurrency,

which of the operations might be computed in parallel?

a) u*t; a/2; t*t

b) u*t; t+½; a*t

c) u+a; t*t

d) u+a; t*t; ½

e) no parallelism is possible for this formula

6

Answer: a

u*t; a/2; and t*t – i.e. only those parts of the formula that have no

dependencies on other parts of the formula can be run

concurrently. Think how the formula could be written in 3-code"

7

Threads

• A thread can be thought of as a lightweight process

• Threads are created within a normal (heavyweight)
process

• Example 1: a Web browser
– one thread for retrieving data from Internet

– another thread displays text and images

• Example 2: a word processor
– one thread for display

– one for reading keystrokes

– one for spell checking

8

Thread Benefits

• Four major categories:

• Responsiveness: In a multithreaded interactive application a program
may be able to continue executing, even if part of it is blocked

– e.g. in a web browser: user waiting for image to download, but can still
interact with another part of the page

• Resource sharing: Threads share memory and resources of the process
they belong to, thus we have several threads all within the same address
space

• Economy: Threads are more economical to create and context switch as
they share the resources of the processes to which they belong

• Utilisation of multiprocessor architectures: In a multiprocessor
architecture, where each thread may be running in parallel on a different
processor, the benefits of multithreading can be increased

05/01/2017

3

9

Thread Types

• Support for threads may be provided either at the user
level, for user threads, or at the kernel level, for kernel
threads

• User level: Threads are supported above the kernel
and implemented at the user level by a thread library

– Library provides support for thread creation, scheduling and
management, with no support from the kernel

– User level threads are fast to create and manage

– But, if kernel is single threaded, one thread performing a
blocking system call will cause the entire process to block,
even if other threads within the process can run

10

Thread Types

• Kernel level: Threads are supported directly by the OS

– Thread creation, scheduling and management done by the
kernel in the kernel space

– Slow to create and manage

– But, since the threads are managed by the kernel, if one
thread performs a blocking system call, the kernel can
schedule another thread within the application to run

– In a multiprocessor system, kernel can schedule threads on
different processors

Java Thread Creation

• When a Java program starts, a single thread

is created

– JVM also has own threads for garbage collection,

screen updates, event handling etc.

• New threads may be created by extending

the Thread class

• Again, threads may be managed directly by

kernel, or implemented at user level by a

library

The Java Thread Class

• public class Thread extends Object

implements Runnable

• A Thread describes a “Run” method

that defines what processing will be

carried out during the Thread’s lifetime.

• Threads may be started within main(),

and run simultaneously, sharing

variables, etc.

05/01/2017

4

A Basic Java Thread Class

class TwoChar extends Thread {

private char[2] Out;

public TwoChar(char First,Second) {

Out[0]=First; Out[1]=Second;

};

public void run() {

System.out.println(Out[0]);

System.out.println(Out[1]);

};

}

and how it might be used

public class ThreadEx {

public static void main(String args[]) {

// Thread declaration

TwoChar LET = new TwoChar(‘A’,’B’);

TwoChar DIG = new TwoChar(‘1’,’2’);

LET.start(); DIG.start();

};

}

Thread Methods I

ThreadName.start()

Causes the Thread, Threadname, to begin
executing (ie calls the run() method in its
specification)

1. There is no limit (other than machine
resource) on the total number of Threads
that may simultaneously run.

2. Concurrently running threads may access
and alter common variables.

3. Because of the potential for undesirable
side-effects from (2), support is offered to
allow this to happen in a “controlled” style.

Thread Methods II

ThreadName.sleep(int millis)

Causes the Thread, Threadname, to sleep
(ie temporalily stop) executing for millis
milliseconds.

Execution resumes from exactly the point
where the thread suspended: ie if X.run()
contains

y++; sleep(5000); z++;

after y++ and suspension z++ is the next
operation performed (the run() method does
not restart)

05/01/2017

5

Problem

• Suppose we have an object (called ‘thing’)
which has the following method:

public void inc() {
count = count + 1;

}

• Count is private to ‘thing’, and is initially zero

• Two threads, T1 and T2, both execute the
following:

thing.inc();

Question!!!

• What value will ‘count’ have afterwards?

Answer

• We don’t know!

• This is called indeterminacy

• If T1 executes assignment before T2, or

vice-versa, then count will have value 2

• Similarly: what will be the output produced

by running ThreadEx the example multi-

thread earlier?

Question

• Which of the following statements about threads is FALSE?

a) A Java program need not necessarily lead to the creation of any threads

b) A thread is sometimes referred to as a lightweight process

c) Threads share code and data access

d) Threads share access to open files

e) Threads are usually more efficient than conventional processes

20

Answer: a

Every Java program starts as a thread! The rest of the statements

are trueV

05/01/2017

6

Java Thread States

• All threads capable of execution are in the
runnable state
– Includes currently executing thread

new

runnable

blocked

deadnew

start()
I/O

sleep()

etc

termination

Java Thread States

• A Java thread can be in one of four possible states:

• New: when an object for the thread is created (i.e. through use of
the ‘new’ statement)

• Runnable: when the thread’s run() method is invoked it moves from
the new state to the runnable state, where it is eligible to be run by
the JVM

• Blocked: when performing I/O the thread becomes blocked, and also
when it invokes specific Thread methods, such as sleep() (or, as a
consequence of invoking suspend(): a method now deprecated)

• Dead: when the thread’s run() method terminates (or when its stop()
method is called – stop() is also deprecated), the thread moves to
the dead state.

Question
• A Java object called ‘helper’ contains

the two methods opposite, where num

is an integer variable that is private to

helper. Its value is initially 100.

• One thread makes the call

– helper.addone();

• At the same time, another thread

makes the call

– helper.subone();

• What value will num have afterwards?

23

Answer: d

either 99 or 101, but not 100 – if the two threads are run

simultaneously, then it depends on the order in which the threads

are executed by the ready queue. However, as “num” is not

protected by a semaphore, its final value could be either value

public void addone() {

num = num + 1;

}

public void subone() {

num = num - 1;

}

a) 100

b) 99

c) 101

d) either 99 or 101, but not 100

e) the value of num is undefined

Comp 104: Operating Systems

Concepts

Synchronisation

05/01/2017

7

Today

• Mutual Exclusion

• Synchronisation methods:

– Semaphores

• Classic synchronisation problems

– The readers-writers (Producer-Consumer)

Problem

– The Dining Philosophers Problem

Problem

• Suppose we have an object (called ‘thing’)
which has the following method:

public void inc() {
count = count + 1;

}

• Count is private to ‘thing’, and is initially zero

• Two threads, T1 and T2, both execute the
following:

thing.inc();

Mutual Exclusion

• Indeterminacy arises because of possible simultaneous access
to a shared resource
– The variable ‘count’ in the example

• Solution is to allow only one thread to access ‘count’ at any one
time; all others must be excluded

• To control access to such a shared resource we declare the
section of code in which the thread/process accesses the
resource to be the critical region/section

• We can then regulate access to the critical region
– When one thread is executing in its critical region, no other

thread/process is allowed to execute in its critical region

– This is known as mutual exclusion

Semaphores

• A semaphore is an integer-valued variable that
is used as a flag to signal when a resource is
free and can be accessed

• Only two operations possible: wait(S) also called
P and signal(S) also called V (from Dutch,
proberen and verhogen – proposed by the late
Dutch computer scientist Edsgar Dijkstra)

wait(S) { signal(S) {
while (S<=0) S++;
; //null }

S--;
}

05/01/2017

8

Semaphores

• wait() and signal() are indivisible
– When one thread/process modifies the semaphore,
no other thread/process can modify that same
semaphore

• They can be used to enforce mutual exclusion
by enclosing critical regions

T1 T2
wait(); wait();
// T1/T2 cannot access CR until they control s

critical region critical region

signal(); signal();

// once complete “lock” on s must be released

Semaphores

• A semaphore that can only take values 0
or 1 is a binary semaphore

– unrestricted ones are counting semaphores

• When a process/task/thread is in its critical
region (controlled by s), no other process
(needing s) can enter theirs

– hence, keep critical regions as small as
possible

• Use of semaphores requires care

Question
• The value of a semaphore s is initially 1. What could happen in the

following situation?

T1 T2

wait(s); signal(s);
critical region critical region

signal(s); wait(s);

a) Deadlock will ensue

b) T1 and T2 can both enter their critical regions simultaneously

c) Neither T1 nor T2 can enter its critical region

d) T1 can never enter its critical region, but T2 can enter its own

e) T1 can enter its critical region, but T2 can never enter its own

31

Answer: b

If T1 executes first, then it acquires the semaphore, which is immediately

released by T2. Both then execute the critical region.

If T2 executes first, it releases a semaphore it does not have, which can

be acquired by T1. Again, both can execute the critical region.

Classic Synchronisation

Problems

• There are a number of famous problems that
characterise the general issue of concurrency
control

• These problems are used to test synchronisation
schemes

• We will look at two such problems that involve
synchronisation issues.

05/01/2017

9

The Producer Consumer

• Synchronisation: The Producer-Consumer

Problem

– Definition

– Java implementation

– Issues

The Producer-Consumer

Problem
• A producer process (eg secretary) and a
consumer process (eg manager) communicate
via a buffer (letter tray)

• Producer cycle:
– produce item (type letter say)

– deposit in buffer (eg put in tray)

• Consumer cycle
– extract item from buffer (eg take letter)

– consume item (eg sign it)

• May have many producers & consumers

35

Problems to solve

• We have to ensure that:

– producer cannot put items in buffer if it is full

– consumer cannot extract items from buffer if it is

empty

– buffer is not accessed by two threads simultaneously

36

Further potential problems

• Deadlock can arise – suppose lock is given to a
process “unthinkingly”:

• If the consumer tries to remove an item from an
empty buffer, it will have to wait for the buffer to
be filled by the producer.

• But the buffer will not be filled as the consumer
has the lock.

• Similarly for the producer.

05/01/2017

10

Solution by Semaphores

class Buffer {
private int NumberIn=0;
private boolean full=(Numberin==20);

private boolean empty=(NumberIn==0)

public synchronized void insert() {
while (full) {
try {

wait();
}
catch (InterruptedException e) {}

}

NumberIn++; full=(NumberIn==20);
empty=false;
notify();

}

// Similarly for remove()

Solution by Semaphores

public synchronized void remove(){
while (empty) {
try {

wait();
}
catch (InterruptedException e) {}

}
NumberIn--; empty=(NumberIn==0);

full=false;
notify();

}
}

wait(), notify(), notifyAll()

• These are methods, like sleep(mils), that
are available to the Thread class.

• The wait() call
– releases the lock

– moves the calling thread to the ‘wait set’

• The notify() call
– moves an arbitrary thread from the wait set back to
the entry set (this provide implementation of signal()).

• Can use notifyAll() to move all waiting
threads back to entry set

synchronized ??

• The insert() and remove() methods are specified
as

public synchronized void

• What does this mean??

• If a method is define as synchronized in Java,
then
AT MOST 1 THREAD CAN ACCESS IT AT
ANY TIME

• Hence, if T1 is executing such a method S, then
T1 effectively “locks out” any other threads that
may invoke S until T1 “releases” it.

05/01/2017

11

Entry and Wait Sets

Object lock

owner
synchronized

call
wait

notify

Entry set

(Runnable)

Wait set

(Blocked)

The Dining Philosophers

• The Producer-Consumer problem models a

synchronization environment in which processes

with distinct roles have to coordinate access to

a shared facility.

• For example: Managers behave differently to

Secretaries; the “shared facility” is the Letter

Tray.

• The Dining Philosophers problem models an

environment in which all processes have

identical roles. Again coordinated access to

shared facilities must be arranged.

42

General Setting
• n “philosophers” spend their time seated round a

table going through a routine of

... – Eat – Think – Eat – Think – Eat – ...

• Philosophers need nothing in order to Think,

BUT

• In order to Eat a philosopher must use TWO

items of cutlery. (eg 2 spoons).

• Only n spoons, however, are provided.

• This means that if a philosopher is hungry BUT

either neighbour is eating then she must wait

until BOTH spoons are available.
43 44

Sartre

Levi-Strauss
de Beauvoir

Camus
Derrida

Bouillabaisse

05/01/2017

12

45

P0

P2

P3

P1

P4
Bouillabaisse

S4

S3

S2

S1

S0

Solution Approach I
• An abstract setting is on the previous slide.

• Each Philosopher has a unique index value –

{0,1,2,3,4}.

• Similarly each Spoon is indexed from {0,1,2,3,4}.

• The Philosopher with index k must be able to

use both the spoons

k and (k-1)mod 5

in order to Eat.

• In summary,

46

Solution Approach II

A. P0 uses S0 and S4.

B. P1 uses S1 and S0.

C. P2 uses S2 and S1.

D. P3 uses S3 and S2.

E. P4 uses S4 and S3.

• Therefore: if

1. (P0 & P1) or (P0&P4) are hungry EITHER P0 can eat

OR at most one of {P1,P4} can.

2. (P1& P0) or (P1&P2) ⇒ P1 or ≤1 of {P0,P2}

3. (P2&P1) or (P2&P3) ⇒ P2 or ≤1 of {P1,P3}

4. (P3&P2) or (P3&P4) ⇒ P3 or ≤1 of {P2,P4}

5. (P4&P3) or (P4&P0) ⇒ P4 or ≤1 of {P0,P3}

47

Solution by Semaphores

• Associate each Spoon with its own semaphore.

• If s[i] is the (binary) semaphore controlling

access to Si, then each philosopher carries out

the same basic sequence of actions –

48

05/01/2017

13

Solution by Semaphores

public void run() {

while (alive) {

spoon[i].get(); spoon[(i-1)%5].get();

try { sleep(eating_time); } catch

....;

spoon[i].put_down(); spoon[(i-

1)%5].put_down();

try { sleep(thinking_time); }

catch; }; }

• The methods get() and put_down()

are synchronized methods in a class

associated with spoon.

• Thus,
49

Spoon Class

class spoon {

private boolean in_use = false;

public synchronized get() {

while (in_use) {

try { wait(); } catch {...};

in_use = true; // prevent any

one else accessing };

public synchronized put_down() {

in_use = false;

notify(); // let anyone

waiting know spoon free

};

50

Some Problems

Qn. What happens if all philosophers manage to

pick the spoon on their left simultaneously?

An. The system will become deadlocked. The

spoon on the right will already be taken and

never released.

• Can this situation be prevented “cleanly”?

• Yes. A number of approaches are possible.

1. Allow only n-1 philosophers to dine at a table

with n places.

2. Asymmetry: even indices try to pick up spoons

using order Right then Left; odd indices use

order Left then Right.
51

& Some More Problems

• With some deadlock free solutions (such as

schemes which require both spoons to be

picked up simultaneously or neither can be

used) there may be a further problem: – some

philosophers may never eat. Suppose in “both

or neither” methods we have:

P0: neither S4 nor S0

P1: neither S0 nor S1

P2: both S1 and S2

P3: neither S2 nor S3

P4: both S3 and S4

52

05/01/2017

14

Starvation

• When P2 is finished eating releases (S1&S2).

• When P4 is finished (S3&S4) are put down.

• P0 can now pickup (S0&S4)

• P3 can now pick up (S2&S3) – and now

P0: both S0 and S4 | P1: neither S0 nor S1

P2: neither S1 nor S2 | P3: both S2 and S3

P4: neither S3 nor S4

• Notice S1 is unused, but if P2 grabs it as soon

as P3 releases S2 then P1 cannot eat.

• In total P1 may starve since either P2 has S2 or

P0 has S0 always results.
53 54

Today

• Deadlock

– Definition

– Resource allocation graphs

– Detecting and dealing with deadlock

55

Deadlock

“When two trains approach each other at a crossing, both
shall come to a full stop and neither shall start up again
until the other has gone.”

-- Kansas law

• A set of processes is deadlocked (in deadly embrace) if
each process in the set is waiting for an event only
another process in the set can cause.

• These events usually relate to resource allocation

56

Resource Allocation

• OS must allocate and share resources sensibly

• Resources may be
– CPUs

– Peripheral devices (printers etc.)

– Memory

– Files

– Data

– Programming objects such as semaphores, object locks etc.

• Usual process/thread sequence is request-use-release
– Often via system calls

05/01/2017

15

57

Creating Deadlock

• In its simplest form, deadlock will occur in the
following situation:
– process A is granted resource X

and then requests resource Y

– process B is granted resource Y
and then requests resource X

– both resources are non-shareable
(e.g. tape drive, printer)

– both resources are non-preemptible
(i.e. cannot be taken away from their owner
processes)

Question
• Consider the following situation regarding two processes (A and B),

and two resources (X and Y):

– Process A is granted resource X and then requests resource Y.

– Process B is granted resource Y and then requests resource X.

• Which of the following is (are) true about the potential for deadlock?

I. Deadlock can be avoided by sharing resource Y between the two processes

II. Deadlock can be avoided by taking resource X away from process A

III. Deadlock can be avoided by process B voluntarily giving up its control of
resource Y

a) I only

b) I and II only

c) I and III only

d) II and III only

e) I, II and III

58

Answer: e

I, II and III – as all three options will

avoid exclusive ownership of the

resources.

59

Resource Allocation Graphs

• Consist of a set of vertices V and a set of

edges E

– V is partitioned into two types:

• Set of processes, P = {P1 , P2 , " , Pn}

• Set of resource types, R = {R1 , R2 , " , Rm}

– e.g. printers

– Include instances of each type

60

Resource Allocation Graphs

– E is a set of directed edges

• Request edge – from process to resource type,

denoted Pi → Rj

– States that process Pi has requested an instance of

resource type Rj and is currently waiting for it

• Assignment edge – from resource instance to

process, denoted Rj → Pi

– States that an instance of a resource type Rj has been

allocated to process Pi

• Request edges are transformed to assignment

edges when request satisfied

05/01/2017

16

61

Example Graph

P1 P2 P3

R1 R3

R2
R4

No cycles, so no deadlock.
62

Example Graph

• The previous diagram depicts the following:

• Processes, resource types, edges
– P = {P1 , P2 , P3}

– R = {R1 , R2 , R3 , R4}

– E = {P1 →R1 , P2 → R3 , R1 → P2 , R2 → P2 , R2 → P1 , R3 → P3 }

• Resource instances:
– One instance of resource type R1

– Two instances of resource type R2

– One instance of resource type R3

– Three instances of resource type R4

63

Example Graph

• Process states:

– Process P1 is holding an instance of resource

type R2 and is waiting for an instance of

resource type R1

– Process P2 is holding an instance of resource

type R1 and R2 and is waiting for an instance

of resource type R3

– Process P3 is holding an instance of resource

type R3

64

Resource Allocation Graphs

• In resource allocation graphs we can show that deadlock
has not occurred if there are no cycles in the graph

• If cycles do exist in the graph, this indicates that
deadlock may be present
– If each resource type consists of exactly one instance, a cycle

indicates that deadlock has occurred

– If each resource type consists of several instances, a cycle does
not necessarily indicate that deadlock has occurred

• Example: On previous graph, suppose P3 now requests
R2V

05/01/2017

17

65

Example Graph (2)

P1 P2 P3

R1 R3

R2
R4

In general, a cycle indicates there may be deadlock.

66

Cycles

• Suppose P3 now requests R2V
– a request edge P3 → R2 is added to the previous graph to show this

• There are now two cycles in the system:

P1 → R1 → P2 → R3 → P3 → R2 →P1

P2 → R3 → P3 → R2 → P2

• From this we can see that P1 , P2 , and P3 are deadlocked

• Now consider the following the resource allocation graphV

67

Another Example

P1 P3

P4

R1

R2

P2

Deadlock?

68

Dealing with Deadlock

• Prevention
– Devise a system in which deadlock cannot possibly
occur

• Avoidance
– Make decisions dynamically as to which resource
requests can be granted

• Detection and recovery
– Allow deadlock to occur, then cure it

• Ignore the problem
– Common approach (e.g. UNIX, JVM)

05/01/2017

18

69

Exercise

• Why might ignoring the problem of

deadlock be a useful approach?

70

Deadlock Prevention

• Techniques
– Force processes to claim all resources in one
operation

• Problem of under-utilisation

– Require processes to claim resources in pre-defined
order

• e.g. tape drive before printer always

– Grant request only if all allocated resources released
first

• e.g. transferring file from tape to disk, then disk to
printer

71

Deadlock Avoidance

• Requires information about which

resources a process plans to use

• When a request made, system analyses

allocation graph to see if it may lead to

deadlock

– If so, process forced to wait

• Problems of reduced throughput and process

starvation

72

Deadlock Avoidance: Safe State

• When a process requests an available resource, system must
decide if immediate allocation leaves it in a safe state

• System is in such a state if for the sequence of processes
<P1, P2,", Pn>, for each Pi, the resources that Pi can still request
can be satisfied by currently available resources plus the resources
held by all the Pj, with j < i.

• Thus:
– If Pi resource requirements are not immediately available, then Pi can

wait until all Pj have finished

– When Pj is finished, Pi can obtain its required resources, execute, return
allocated resources, and terminate

– When Pi terminates, Pi +1 can obtain its required resources,

– V and so on

05/01/2017

19

73

Deadlock Avoidance: Safe State

• If the system is in a safe state there are no

deadlocks

• If the system is in an unsafe state, there is the

possibility of deadlock

– an unsafe state may lead to it

• Deadlock avoidance: ensure that the system will

never enter an unsafe state

– Avoidance algorithms make use of this concept of a

safe state by ensuring that the system always

remains in it

74

Detection and Recovery

• Systems that do not have deadlock prevention

or avoidance mechanisms and do not want to

ignore the problem must provide the following to

deal with deadlock:

– An algorithm to analyse the state of the system to see

if deadlock has occurred

– A recovery scheme

• Method depends upon whether or not there are

multiple instances of each resource typeV

75

Detection and Recovery

• If there are multiple instances of a resource type
detection algorithms can be used that track:
– the number of available resources of each type

– the number of resources of each type allocated to each process

– the current requests of each process

• If all resources have only a single instance, can make
use of a wait-for graph
– Variant of a resource-allocation graph

– Obtained from resource allocation graph by removing nodes of
type resource and collapsing the appropriate edges

