
05/01/2017

1

1

Comp 104: Operating Systems

Concepts

Processes

Management

Scheduling & Resource Allocation

2

Today

• OS evolution

• Introduction to processes

• OS structure

3

Evolution of OS

• Largely driven by desire to do something useful when a
program cannot continue (maximise throughput)

• Early systems:
– ‘Job’ loaded from punched cards or tape, output to printer

– Job may include loading compiler, assembler, linker, data etc.

– CPU idle for much of the time

• Batch systems:
– Job passed to human operator

– Operator groups jobs into batches with similar characteristics,
e.g. all programs using same compiler

– More efficient use of resources

4

Multiprogramming

• Load several programs into memory

simultaneously, all sharing single CPU

• When running program cannot continue

(e.g. waiting for I/O), switch to another

• Hence, I/O and computation overlap

05/01/2017

2

5

Multi-Access (Time-Sharing)

• An extension of multiprogramming

• CPU is switched rapidly between
processes to give illusion of uninterrupted
execution in parallel (multitasking)

– users can interact with programs

– users see their own ‘virtual machine’

– resources (printers, disks etc.) are shared, but
this is largely transparent

Question

• The following two statements describe the performance of two programs

(where the computation and input/output could be interleaved):

– A performs a total of 20 seconds of computation and 15 seconds of input/output.
– B performs a total of 30 seconds of computation and 10 seconds of I/O

• Which of the following are true?
I. It will take up to 50 seconds to run A and B sequentially

II. It will take up to 75 seconds to run A and B sequentially

III. Using multiprogramming, the shortest time to execute both is 50 seconds

IV. Using multiprogramming, the shortest time to execute both is 40 seconds

a) I and III

b) l and lV

c) ll and lll

d) ll and lV

e) None of the above

6

Answer: c
•If run sequentially, A needs to finish before B

can begin, therefore II is true.

•With multiprogramming, I/O for one process can

take pave whilst the computation takes place for
another. Therefore III is true

7

Implications

• Need to decide which programs to load from
disk into memory (job scheduling)

• Need to decide which program to execute next
(CPU scheduling)

• Consider disk space as extension of main
memory (virtual memory)

• Memory allocation

• Disk/file allocation

• Protection/security

8

Operating System – An Abstract

View

File Manager

Memory Manager

Device Manager

Processor Manager

User Command Interface

05/01/2017

3

9

Processes

• A program is a representation of an
algorithm in some programming language;
i.e. it is static

• A process refers to the activity performed
by a computer when executing a program;
i.e. it is dynamic

• A process is created when a program or
command is executed

10

Process Characteristics

• Process characteristics:

– Requires space in memory where it resides during
execution

– During its execution it may require other resources
such as data files or I/O

– It passes through several states from its initial
creation to its completion within the computer system
(more details on these states to come in later
lectures)

11

Processes

• A process needs resources, such as CPU time,
memory, files and I/O devices, to accomplish its
task.

• These resources are allocated either when the
program is created, or when it is executing.

• Operating-system processes execute system
code and user-processes execute user code
– All these processes could potentially execute
concurrently

12

Processes

• The Processor Manager is responsible for

overseeing the following activities in

relation to process management:

– Creation and deletion of both system and user

processes

– Scheduling processes

– Provision of mechanisms for synchronisation

and communication of processes

– Deadlock handling for processes

05/01/2017

4

13

O.S. Structure

• Often consists of:

– A central nucleus or kernel
• resides permanently in memory

• performs low-level, frequently needed activity

– A set of processes
• may be system level or user level

– processes interact with kernel via system
calls
• e.g. create process, run program, open file

– kernel and system level processes may
operate in privileged mode

14

Command Interpreter

• Accepts and runs commands specified by user

– Hence provides user’s view of OS

• May be graphical, e.g. Windows

• May be textual, e.g. UNIX shell

– bash, ksh, csh

– Some commands built into shell, others loaded from

separate executable files

– Shell also has sophisticated control structures such

as loops, if-statements and procedures

15

Process States

• Running
– on a uniprocessor machine, only one process can
be executing at any time

– may be interrupted at end of time-slice if no I/O
requests or system calls performed

• Ready
– refers to a process that is able to run, but does not
currently have the CPU

• Waiting(Blocked)
– refers to a process that is unable to continue, even
if granted the CPU

16

State Changes

blocked

terminated

interrupt

dispatch

I/O or event waitI/O or event

completion

admitted

ready running

new

exit

05/01/2017

5

Question

• A running process makes a system call to read data from a file.

Which process state should it enter next?

a) New

b) Ready

c) Running

d) Blocked

e) Terminated

17

Answer: d

Blocked; it may take some time before the file system can read the

file (e.g. on a networked file store), so the process is blocked until

the data is available.

18

Process Descriptors

• For each process, the OS kernel maintainers a
descriptor or Process Control Block (PCB)

• PCB contains info like
– unique process ID

– user ID of process owner

– process state

– position in memory

– accounting stats. (time used etc.)

– resources allocated (open files, devices, etc.)

– register values (process counter, etc)

19

Context Switch

• When a process is interrupted
– all current state information (including program
counter and other registers) is saved into PCB

– PCB is put into a queue
• may have several, e.g. for different devices

– the kernel may do some of its own work
• e.g. handling a system call

– the PCB of a process from the ready queue is
selected, and its context restored

• Whole context switch is an expensive
overhead
– hardware support may help

• e.g. multiple register sets 20

PCBs and Queuing

• The PCB of each process is updated as the
process progresses from the start to the end of
its execution

• Queues use PCBs to track the processes’
progress through the system. The PCBs are
linked to form queues:
– ‘Ready queue’ linking the PCBs for every ‘ready’
process

– ‘New queue’ linking the PCBs for processes just
entering the system

05/01/2017

6

21

PCBs and Queuing

• Processes that are ‘blocked’ are linked together

by ‘reason for waiting’

– PCBs for these processes are linked into several

queues

• e.g. those waiting for I/O on a specific disk drive are linked

together, those waiting for a printer are linked in a different

queue

• All queues need to be effectively managed in an

order that is determined by the process

scheduling policies and algorithms

22

Queuing

blocked

terminated

I/O request

ready running

new

Disk I/O queue

Printer I/O queue

Other I/O queue

admitted

interrupt

dispatch

exit

I/O or event

completion

23

Inter-Process Communication

• Inter-Process Communication (IPC)

mechanisms allow processes to talk to each

other

• IPC useful when processes working together

(cooperating processes)

– synchronisation and/or passing data

• For example in UNIX:

– signals

– pipes

– sockets
24

Signals

• A process can usually be terminated by typing
CTRL-C
– Actually sends a signal to process

– Process responds by aborting

• Signals can be sent from one process to another
– signal() system call

• Signals can be sent from the command line
using kill command
– Format: kill -<signal> <pid>

– e.g. kill -9 12345 sends signal 9 (kill signal) to process
12345

05/01/2017

7

25

Responding to Signals

• A receiving process can respond

to a signal in three ways:

– Perform default action (e.g. abort)

– Ignore the signal

– ‘Catch’ the signal; i.e. execute a

designated procedure

• The ‘kill’ signal (signal 9) cannot

be caught or ignored

– Guaranteed way to stop process

Example kill signals

1 HUP (hang up)

2 INT (interrupt)

3 QUIT (quit)

6 ABRT (abort)

9 KILL (non-catchable, non-
ignorable kill)

14 ALRM (alarm clock)

15 TERM (software

termination signal)

26

Pipes

• The UNIX command ‘wc –l file’ counts the number
of lines in file

• If we just type ‘wc –l’ we don’t get an error

Common wc flags

-l number of lines

-w number of words

-c number of characters

By default, all three
stats are displayed.

Flags state what stats

appearL

• Instead, data is read from standard
input (keyboard by default)
– Similarly for output files and standard
output (screen)

• The pipe symbol ‘|’ attaches the
standard output of one program to
the standard input of another, e.g.
who | wc -l

27

Client-Server Examples

• The following are examples of common servers:

– Web server: accessed by client’s web browser

– Mail server: retrieving and sending emails to clients

– File server: holding documents to be accessed by

clients

– Database server: providing database services to

clients, e.g. customer database, stock databaseL

– etc

