
Comp 104: Operating Systems

Concepts

1

Introduction to Compilers

Today

• Compilers

– Definition

– Structure

2

– Structure

– Passes

– Lexical Analysis

• Symbol table

– Access methods

Compilers

• Definition:

– A compiler is a program which translates a

high-level source program into a lower-level

object program (target)

3

object program (target)

SOURCE

PROG.

ANALYSED

PROG.

OBJECT

PROG.analysis synthesis

History

• Late 1940ies (post-von Neumann)

– Programs were written in machine code
– C7 06 0000 0002 (move the number “2” to location 0000 (hex)

• Highly complex, tedious and prone to error

• Assemblers appeared

4

– Machine instructions given as mnemonics
– MOV X,2 (assuming X has the value 0000 (hex))

• Greatly improved the speed and accuracy of writing code

• But still non-trivial, and non-portable to new processors

• Needed a mathematical notation

– Fortran appeared between 1954-57
– X = 2

• Exploited context free grammars (Chomsky) and finite state

automatata9

Compiler

• Responsible for converting source code into executable code.

• Analyses the code to determine the functionality

• Synthesises executable code for a given processor

• Optimises code to improve performance, or exploit specific processor

instructions

• Assumes various data structures:

5

• Assumes various data structures:

– Tokens
• Variables, language keywords, syntactic constructs etc

– Symbol Table
• Relates user defined entities (variables, methods, classes etc) with their associated

values or internal structures

– Literal Table
• Stores constants, strings, etc. Used to reduce the size of the resulting code

– Syntax/Parse Tree
• The resulting structure formed through the analysis of the code

– Intermediate Code
• Intermediate representation between different phases of the compilation

Phases and other tools

• Interpreters:

– Unlike compilers, code is executed immediately
• Slow execution, used more for scripting or functional languages

• Assemblers:

– Constructs final machine code from processor specific Assembly code
• Often used as last phase of a compilation process to produce binary executable.

• Linkers:

6

• Linkers:

– Collates separately compiled objects into a single file, including shared

library objects or system calls.

• Preprocessors:

– Called prior to the compilation process to perform macro substitutions
• E.g. RATFOR preprocessor, or cpp for C code9

• Profilers:

– Collects statistics about the behaviour of a program and can be used to

improve the performance of the code.

Analysis and Synthesis

• Analysis:

– checks that program constructs are legal and

meaningful

– builds up information about objects declared

• Synthesis:

7

• Synthesis:

– takes analysed program and generates code

necessary for its execution

• Compilation based on language definition,

which comprises:

– syntax

– semantics

Compiler Structure

scanner parser

IR (parse tree)

SYMBOL

TABLE

source program

(character stream) tokens

8

semantic routines

IR (tuples)

code generator

target code

optimiser

IR = Intermediate

Representation

Compiler Organisation

• Each of compiler tasks described previously (in

Compiler Structure) is a phase

• Phases can be organised into a number of

passes

9

passes

– a pass consists of one or more phases acting on

some representation of the complete program

– representations produced between source and target

are Intermediate Representations (IRs)

Single Pass Compilers

• One pass compilers very common because of
their simplicity

• No IRs: all phases of compiler interleaved

• Compilation driven by parser

• Scanner acts as subroutine of parser, returning

10

• Scanner acts as subroutine of parser, returning
a token on each call

• As each phrase recognised by parser, it calls
semantic routines to process declarations,
check for semantic errors and generate code

• Code not as efficient as multi-pass

Multi-Pass Compilers
• Number of passes depends on number of IRs
and on any optimisations

• Multi-pass allows complete separation of
phases
– more modular

– easier to develop

11

– easier to develop

– more portable

• Main forms of IR:
– Abstract Syntax Tree (AST)

– Intermediate Code (IC)
• Postfix

• Tuples

• Virtual Machine Code

The Scanner (Lexical Analyser)

• Converts groups of characters into tokens

(lexemes)

– tokens usually represented as integers

– white space and comments are skipped

• Each token may be accompanied by a value

12

• Each token may be accompanied by a value

– could be a pointer to further information

• As identifiers encountered, entered into a

symbol table

– used to collect info. about declared objects

• Scanners often hand-coded for efficiency, but

may be automatically generated (e.g. Lex)

Example

begin

int a; float b;

a = 1; b = 1.2;

beginsymb
intsymb
iden @

semisymb
floatsymb
iden @

TOKEN VALUE

a

symbol

table
begin

int a;

float b;

13

a = 1; b = 1.2;

a = b + 1;

print (a * 2);

end

iden @

semisymb

iden @

assignsymb
integer 1

semisymb
iden @

assignsymb
float 1.2

a

b

float b;

a = 1;

b = 1.2;

Symbol Table Access

• The symbol table is used by most compiler
phases
– Even used post-compilation (debugging)

• Structure of table and algorithms used can make
difference between a slow and fast compiler

14

difference between a slow and fast compiler

• Methods:
– Sequential lookup

– Binary chop and binary tree

– Hash addressing

– Hash chaining

Sequential Lookup

• Table is just a vector of names

• Search sequentially from beginning

• If name not found, add to end

• Advantages:
– Very simple to implement

15

– Very simple to implement

• Disadvantages:
– Inefficient

– For table with N names, requires N/2 comparisons
on average

– Can slow down a compiler by a factor of 10 or
more

Binary Chop

• Keep names in alphabetical order

• To find name:
– Compare with middle element to determine which
half

– Compare with middle element again to narrow

16

– Compare with middle element again to narrow
down to quarter, etc.

• Advantage:
– Much more efficient than sequential

– log2N-1 comparisons on average

• Disadvantage:
– Adding a new name means shifting up every
name above it

Question

• If the symbol table for a compiler is size 4096, how many

comparisons on average need to be made when performing a

lookup using the binary chop method?

a) 2

b) 11b) 11

c) 12

d) 16

e) 31

17

Answer: b

11 – as there are log2N-1 comparisons on average

Binary Tree

• Each node contains pointer to 2 sub-trees
– Left sub-tree contains all names < current

– Right sub-tree has all names >= current

• Advantages:
– In best case, search time can be as good as binary

18

– In best case, search time can be as good as binary
chop

– Adding a new name is simple and efficient

• Disadvantages:
– Efficiency depends on how balanced the tree is

– Tree can easily become unbalanced

– In worst case, method as bad as sequential lookup!

– May need to do costly re-balancing occasionally

Hash Addressing

• To determine position in table, apply a hash
function, returning a hash key
– Example fn: Sum of character codes modulo N,
where N is table size (prime)

• Advantages:
– Can be highly efficient

19

– Can be highly efficient

– Even similar names can generate totally different
hash keys

• Disadvantages:
– Requires hash function producing good
distribution

– Possibility of collisions

– May require re-hashing mechanism, possibly
multiple times

Hash Chaining

• As before, but link together names having same hash
key

hash(“fred”)

20

fred jim

array of pointers

• Number of comparisons

needed very small

Question

• Concerning compilation, which of the following is NOT a method for

symbol table access?

a) Sequential lookup

b) Direct lookup

c) Binary chop c) Binary chop

d) Hash addressing

e) Hash chaining

21

Answer: b

Direct Lookup

Reserved Words

• Words like ‘for’, ‘while’, ‘if’, etc. are reserved
words

• Could use binary chop on a table of reserved
words first; if not there, search symbol table

22

words first; if not there, search symbol table

• Simpler to pre-hash all reserved words into the
symbol table and use one lookup mechanism

Today

• Parsing

– Parse Tree

– Abstract syntax tree

23

– Abstract syntax tree

Parser (Syntax Analyser)

• Reads tokens and groups them into units

as specified by language grammar

i.e. it recognises syntactic phrases

24

• Parser must produce good errors and be

able to recover from errors

Scanning and Parsing
source file

Scanner

input stream

sum = x1 + x2;

sum

=

x1

+ tokens

Regular expressions

define tokens

25

Parser

parse tree

+

x2

;

sum

=

+

x1 x2

tokens

BNF rules define

grammar elements

Syntax

• Defines the structure of legal statements in

the language

• Usually specified formally using a context-

free grammar (CFG)

• Notation most widely used is Backus-Naur

26

• Notation most widely used is Backus-Naur

Form (BNF), or extended BNF

• A CFG is written as a set of rules

(productions)

Backus Naur Form

• Backus Naur Form (BNF) is a standard notation for

expressing syntax as a set of grammar rules.

– BNF was developed by Noam Chomsky, John Backus, and

Peter Naur.

– First used to describe Algol.

• BNF can describe any context-free grammar.

27

• BNF can describe any context-free grammar.

– Fortunately, computer languages are mostly context-free.

A Context-Free Grammar

A grammar is context-free if all the syntax rules apply

regardless of the symbols before or after (the context).

Example:

(1) sentence => noun-phrase verb-phrase .

(2) noun-phrase => article noun

28

(2) noun-phrase => article noun

(3) article => a | the

(4) noun => boy | girl | cat | dog

(5) verb-phrase => verb noun-phrase

(6) verb => sees | pets | bites

Terminal symbols:

'a' 'the' 'boy' 'girl' 'sees' 'pets' 'bites'

A Context-Free Grammar

a girl sees a boy

a girl sees a girl

a girl sees the dog

the dog pets the girl

A sentence that matches the productions (1) - (6) is valid.

29

the dog pets the girl

a boy bites the dog

a dog pets the boy

...

To eliminate unwanted sentences without imposing

context sensitive grammar, specify semantic rules:

"a boy may not bite a dog"

Backus Naur Form
• Grammar Rules or Productions: define symbols.

Nonterminal Symbols: anything that is defined on the left-side of some

assignment_stmt ::= id = expression ;

The nonterminal symbol being

defined.
The definition (production)

30

Nonterminal Symbols: anything that is defined on the left-side of some

production.

Terminal Symbols: things that are not defined by productions. They can

be literals, symbols, and other lexemes of the language defined by

lexical rules.

Identifiers: id ::= [A-Za-z_]\w*

Delimiters: ;

Operators: = + - * / %

Backus Naur Form (2)
• Different notations (same meaning):

assignment_stmt ::= id = expression + term

<assignment-stmt> => <id> = <expr> + <term>

AssignmentStmt → id = expression + term

::=, =>, → mean "consists of" or "defined as"

• Alternatives (" | "):

31

• Alternatives (" | "):

• Concatenation:

expression => expression + term

| expression - term

| term

number => DIGIT number | DIGIT

Alternative Example

• The following BNF syntax is an example of how

an arithmetic expression might be constructed in

a simple language9

32

• Note the recursive nature of the rules

Syntax for Arithmetic Expr.

<expression> ::= <term> | <addop> <term> |<expression> <addop> <term>

<term> ::= <primary> | <term> <multop> <primary>

<primary> ::= <digit> | <letter> | (<expression>)

<digit> ::= 0 | 1 | 2 |...| 9

<letter> ::= a | b | c |...| y | z

33

<addop> ::= + | -

<multop> ::= * | /

• Are the following expressions legal, according to this syntax?

i) -a

ii) b+c^(3/d)

iii) a*(c-(4+b))

iv) 5(9-e)/d

BNF rules can be recursive

expr => expr + term

| expr - term

| term

term => term * factor

| term / factor

34

| term / factor

| factor

factor => (expr) | ID | NUMBER

where the tokens are:

NUMBER := [0-9]+

ID := [A-Za-z_][A-Za-z_0-9]*

Uses of Recursion

• Repetition

expr => expr + term

=> expr + term + term

=> expr + term + term + term

=>=>=>=> term + ... + term + term

35

=>=>=>=> term + ... + term + term

• Parser can recursively expand expr each time one is found

– Could lead to arbitrary depth analysis

– Greatly simplifies implementation

Example: The Micro Language

• To illustrate BNF parsing, consider an example

imaginary language: the “Micro” language

1) A program is of the form

begin

36

begin

sequence of statements

end

2) Only statements allowed are
• assignment

• read (list of variables)

• write (list of expressions)

Micro

3) Variables are declared implicitly

– their type is integer

4) Each statement ends in a semi-colon

37

4) Each statement ends in a semi-colon

5) Only operators are +, -

– parentheses may be used

Micro CFG

1. <program> ::= begin <stat-list> end

2. <stat-list> ::= <statement> { <statement> }

3. <statement> ::= id := <expr> ;

4. <statement> ::= read (<id-list>) ;

5. <statement> ::= write (<expr-list>) ;

6. <id-list> ::= id { , id }

1) A program is of

the form
begin

statements

end

2) Permissible

statements:

• assignment

• read (list of

variables)

• write (list of

38

6. <id-list> ::= id { , id }

7. <expr-list> ::= <expr> { , <expr> }

8. <expr> ::= <primary> { <addop> <primary> }

9. <primary> ::= (<expr>)

10. <primary> ::= id

11. <primary> ::= intliteral

12. <addop> ::= +

13. <addop> ::= -

• write (list of

expressions)

3) Variables are

declared implicitly

their type is

integer

4)Statements end

in a semi-colon

5) Valid operators

are +, - but can

use parentheses

BNF

• Items such as <program> are non-terminals

– require further expansion

• Items such as begin are terminals

– correspond to language tokens

39

– correspond to language tokens

• Usual to combine productions using | (or)
– e.g. <primary> ::= (<expr>) | id | intliteral

Parsing

• Bottom-up

– Look for patterns in the input which correspond to

phrases in the grammar

– Replace patterns of items by phrases, then combine

these into higher-level phrases, and so on

– Stop when input converted to single <program>

40

– Stop when input converted to single <program>

• Top-down

– Assume input is a <program>

– Search for each of the sub-phrases forming a

<program>, then for each of the sub-sub-phrases, and

so on

– Stop when we reach terminals

• A program is syntactically correct iff it can be derived

from the CFG

Example

Parse: begin A := B + (10 - C); end

<program>

begin <stat-list> end (apply rule 1)

41

begin <stat-list> end (apply rule 1)

begin <statement> end (2)

begin id := <expr> ; end (3)

begin id := <primary> <addop> <primary>; end (8)

begin id := <primary> + <primary> ; end (12)

...

Parse Tree

<program>

begin <stat-list> end

<statement>

id := <expr> ;

� The parser creates a

data structure

representing how the

input is matched to

grammar rules.

Usually as a tree.

42

id := <expr> ;

<primary> <addop> <primary>

id + (<expr>)

<primary> <addop> <primary>

intliteral - id

�Usually as a tree.

� Also called syntax

tree or derivation

tree

Example of Ambiguity

• Grammar Rules:

expr =>=>=>=> expr + expr | expr ∗ expr

| (expr) | NUMBER

• Expression: 2 + 3 * 4

• Two possible parse trees:

expr expr

43

expr

expr expr

expr

+

* expr

expr

expr

+

* expr

expr expr NUMBER

(2)

NUMBER

(3)

NUMBER

(4)

NUMBER

(2)

NUMBER

(3)

NUMBER

(4)

Ambiguity

• Ambiguity can lead to inconsistent

implementations of a language.

– Ambiguity can cause infinite loops in some parsers.

– Specification of a grammar should be unambiguous!

44

• How to resolve ambiguity:

– rewrite grammar rules to remove ambiguity

– add some additional requirement for parser, such as

"always use the left-most match first"

Semantics

• Specify meaning of language constructs

– usually defined informally

• A statement may be syntactically legal but

semantically meaningless

45

semantically meaningless

– “colourless green ideas sleep furiously”

• Semantic errors may be

– static (detected at compile time)

e.g. a := ‘x’ + true;

– dynamic (detected at run time)

e.g. array subscript out of bounds

Semantics

• Also needed to generate appropriate code

e.g. a = b

– in Java and C, this means assign b to a

– in Pascal and Ada, this means compare

46

– in Pascal and Ada, this means compare

equality of a and b

– hence, generate different code in each case

Semantic Routines

1) Semantic analysis

– Completes analysis phase of compilation

– Object descriptors are associated with

identifiers in symbol table

47

identifiers in symbol table

– Static semantic error checking performed

2) Semantic synthesis

– Code generation

Abstract Syntax Tree (AST)

• More compact form of derivation tree

– contains just enough info. to drive later phases

e.g. Y := 3*X + I

:=
to symbol table

48

id +

* id

const 3 id

tag attributeY

I

X

to symbol table

Tree Walking

:= LOAD R1, #3

LOAD R2, X

Y (int) + (int) MULT R1, R2

LOAD R2, I

(int) * I (int) ADD R1, R2

STORE R1, Y

49

STORE R1, Y

3 X (int)

• Advantage of AST is that order of traversal can

be chosen

– code generated in one-pass compiler corresponds to

strictly fixed traversal of tree

(hence, code not as good)

Code Optimisation

• Aim is to improve quality of target code

• Disadvantages

– compiler more difficult to write

50

– compiler more difficult to write

– compilation time may double or triple

– target code often bears little resemblance to
unoptimised code
• greater chance of translation errors

• more difficult to debug programs

Optimisation Techniques

• Constant folding

– can evaluate expressions involving constants

at compile-time

– aim is for the compiler to pre-compute (or

51

– aim is for the compiler to pre-compute (or

remove) as many operations as possible

a := 3*16 - 2;

LOAD 1, #46

STORE 1, a

Techniques

• Global register allocation

– analyse program to determine which

variables are likely to be used most and

allocate these to registers

52

– good use of registers is a very important

feature of efficient code

• aided by architectures that provide an increased

number of registers

Techniques

• Code deletion

– identify and delete unreachable or dead

code

53

boolean debug = false;

...

if (debug) {

... No need to generate

} code for this

Techniques

• Common sub-expression elimination

– avoid generating code for unnecessary

operations by identifying expressions that

are repeated

54

are repeated

a := (b*c/5 + x) - (b*c/5 + y)

– generate code for b*c/5 only once

Techniques

• Code motion out of loops

for (int i=0; i <= n; i++) {

x = a + 5; //loop-invariant code

Screen.println(x*i);

55

Screen.println(x*i);

}

x = a + 5;

for (int i=0; i <= n; i++) {

Screen.println(x*i);

}

Question

• What optimisation technique could be applied in the following

examples?

a = b^2

a = a / 2

a) Constant Foldinga) Constant Folding

b) Code Deletion

c) Common Sub-Expression Elimination

d) Strength Reduction

e) Global Register Allocation

56

Answer: d

Both expressions can be reduced by changing the operator:

a = b ^ 2 can be reduced to a = b * b

a = a / 2 is a right shift operation: a = a >> 1

Classification of Optimisations

• Optimisations can be classified according

to their different characteristics

• Two useful classifications:

57

• Two useful classifications:

– the period of the compilation process during

which an optimisation can be applied

– the area of the program to which the

optimisation applies

Time of Application

• Optimisations can be performed at virtually every stage
of the compilation process
– e.g. constant folding can be performed during parsing

– other optimisations might be applied to target code

• The majority of optimisations are performed either during

58

• The majority of optimisations are performed either during
or just after intermediate code generation, or during
target code generation
– source-level optimisations do not depend upon characteristics of

the target machine and can be performed earlier

– target-level optimisations depend upon the target architecture

• sometimes an optimisation can consist of both

Area of Application

• Optimisations can be applied to different areas
of a program
– Local optimisations: those that are applied to ‘straight-
line’ segments of code, i.e. with no jumps into or out
of the sequence
• easiest optimisations to perform

59

• easiest optimisations to perform

– Global optimisations: those that extend beyond basic
blocks but are confined to an individual procedure
• more difficult to perform

– Inter-procedural optimisations: those that extend
beyond the boundaries of procedures to the entire
program
• most difficult optimisations to perform

