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Network Constructors

 Distributed computing model, formed by resource limited mobile agents

 Agents (or processes) can form/delete connections between them

 on/off case: a connection either exists (active) or not (inactive)

 Initially all connections are inactive

Goal: End up with a desired stable graph

[Michail and Spirakis, PODC ‘14 and Distrib. Comput. ‘16]
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Fundamental Problem

Algorithmic distributed construction of an actual communication topology
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Network Constructors

 Fair scheduler: A scheduler is fair if it always leads to fair executions. 
An infinite execution is fair if for every pair of configurations 𝐶 and 𝐶′
such that 𝐶 → 𝐶′, if 𝐶 occurs infinitely often, then so does 𝐶′

 Output network: nodes that are in output states and edges between 
them that are active

 Stability: The output network cannot change in future steps

The model

𝑄: finite set of node−states
𝑞0 ∈ 𝑄: initial node−state
𝑄𝑜𝑢𝑡 ⊆ 𝑄: set of output node−states
𝛿: 𝑄 × 𝑄 × {0,1} → 𝑄 × 𝑄 × {0,1}: the transition function
In every step, a pair 𝑢𝑣 is selected by the scheduler and 𝑢, 𝑣 interact according to 𝛿
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Network Constructors -
Example
Spanning Star

• 2 states: black and red

• Initially all black

• Constructs a global star

• Protocol: 𝑏, 𝑏, 0 → 𝑏, 𝑟, 1
(𝑟, 𝑟, 1) → (𝑟, 𝑟, 0)
(𝑏, 𝑟, 0) → (𝑏, 𝑟, 1)

• Space: 2 states

• Time: 𝑂(𝑛2log𝑛)

• Optimal w.r.t. both
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Fault Tolerance
 In each step, either two nodes are selected for interaction, or one node 
crashes

 During a crash failure, the node and all its edges (active or inactive) are 
removed from the configuration

 The goal is to find protocols that always re-stabilize to a “correct” graph

Questions

• If one or more faults can affect the formation process, can we always re-
stabilize to a correct graph?

• What is the class of graph languages for which there exist fault-tolerant 
protocols?

• What are the additional minimal assumptions that we need to make in order 
to find fault-tolerant protocols for a bigger class of graph languages?
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Fault Tolerance - Example
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Some Definitions

Constructibility

We say that a protocol Π constructs a graph language 𝐿, if:
1. Every execution of Π on 𝑛 nodes stabilizes to a graph 𝐺 ∈ 𝐿 s.t. 𝑉 𝐺 =

𝑛, and
2. ∀𝐺 ∈ 𝐿 there is an execution of Π on |𝑉(𝐺)| nodes that stabilizes to 𝐺.

Partial Constructibility

We say that a protocol Π partially constructs a graph language 𝐿, if:
1. (1) from Definition 1 holds, and
2. ∃𝐺 ∈ 𝐿 s.t. no execution of Π on |𝑉(𝐺)| nodes stabilizes to 𝐺.
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Some Definitions

Constructible language

A graph language 𝐿 is called constructible (partially constructible) if there is a 
protocol that constructs (partially constructs) it. Similarly, we call 𝐿
constructible under 𝑓 faults, if there is an 𝑓-fault-tolerant protocol that 
constructs 𝐿, where 𝑓 is an upper bound on the maximum number of faults.

Fault-Tolerant Protocol

Let Π be a NET protocol that, in a failure-free setting, constructs a graph 𝐺 ∈ 𝐿. 
Π is called 𝑓-fault-tolerant if for any population size 𝑛 > 𝑓, any execution of Π
constructs a graph 𝐺 ∈ 𝐿, where 𝑉 𝐺 = 𝑛 − 𝑓. We also call Π fault-tolerant 
if the same holds for any number 𝑓 ≤ 𝑛 − 2 of faults.
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Our Results
Constructible languages

Without notifications With notifications

Unbounded faults Bounded faults Unbounded faults

Only Spanning 
Clique 

Non-hereditary
impossibility

Fault-tolerant protocols: Spanning 
Star, Cycle Cover, Spanning Line

Strong 
impossibility even 
with linear waste

A representation 
of any finite graph 

(partial 
constructibility)

Universal Fault-tolerant Constructors 
(with waste)

Any constructible 
graph language 

with linear waste

Universal Fault-tolerant Restart 
(without waste)
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Fault Tolerant Spanning Clique
Transition function:

𝑏, 𝑏, 0 → (𝑏, 𝑟, 0)

𝑏, 𝑟, 0 → 𝑟, 𝑟, 0

𝑟, 𝑟, 0 → (𝑟, 𝑟, 1)

 The above protocol constructs a spanning clique, tolerating any number of 
faults

 Spanning Clique is the only constructible graph language in the unbounded-
faults case
 Even if we allow linear waste
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Non-hereditary Graph 
Languages

 If there exists a graph 𝐺 ∈ 𝐿, such that after removing any node (crash 
fault), the resulting graph 𝐺′ ∉ 𝐿, then there is no protocol that stably 
constructs 𝐿.

 If there was a protocol that changes the configuration in order to “fix” 
the graph, then this would happen indefinitely and the protocol would 
never be stabilizing.

 This means that if a graph language in non-hereditary, it is impossible 
to be constructed under a single fault.

Hereditary Language

A graph language 𝐿 is called Hereditary if for any graph 𝐺 ∈ 𝐿, every induced 
subgraph of 𝐺 also belongs to 𝐿.

13Fault Tolerant Network Constructors Michail, Spirakis, Theofilatos



Our Results
Constructible languages

Without notifications With notifications

Unbounded faults Bounded faults Unbounded faults

Only Spanning 
Clique 

Non-hereditary
impossibility

Fault-tolerant protocols: Spanning 
Star, Cycle Cover, Spanning Line

Strong 
impossibility even 
with linear waste

A representation 
of any finite graph 

(partial 
constructibility)

Universal Fault-tolerant Constructors 
(with waste)

Any constructible 
graph language 

with linear waste

Universal Fault-tolerant Restart 
(without waste)

14Fault Tolerant Network Constructors Michail, Spirakis, Theofilatos



Partial Constructibility
There exists a class of graph languages that is partially constructible in 
the case of bounded number of faults.

 Class of graph languages 𝐿𝐷,𝑓
 𝐷 = ( 𝑘 ,𝐻)

 𝑓 < 𝑘 is the finite upper bound on the number of faults

 A graph 𝐺 = 𝑉, 𝐸 belongs to 𝐿𝐷,𝑓 iff there are 𝑘 partitions 

𝑉1, 𝑉2, … , 𝑉𝑘of 𝑉 s.t. for all 1 ≤ 𝑖, 𝑗 ≤ 𝑘, 𝑉𝑖 − 𝑉𝑗 ≤ 𝑓 + 1

 The graph 𝐷 defines a neighbouring relation between the partitions. 
For every 𝑖, 𝑗 ∈ 𝐻, 𝐸 contains all edges between partitions 𝑉𝑖 and 𝑉𝑗.
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Partial Constructibility

𝐷 = ( 𝑘 , 𝐻) Graph of supernodes 𝐺 = (𝑉, 𝐸)

 We provide a protocol which partitions the population into 𝑘 = 2𝑖 groups.

 It constructs any graph language 𝐿𝐷,𝑓 (as described before), where 𝑘 = 2𝑖.

 The partitioning can be used in order to construct any (constructible) graph language on at 
least 

𝑛

2𝑓
− 𝑓 nodes, where 𝑓 is the number of faults
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Notified Network Constructors
 We now extend the original model with a minimal form of fault 
notifications.

 When a node 𝑢 crashes, all the nodes that maintain an active 
connection with it at that time, are notified (a fault flag becomes 1).

 If no such nodes exist (i.e., 𝑢 is isolated), then an arbitrary node is 
notified.

 In this way, we guarantee that at least one node will “sense” the crash 
failure.
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Notified Network Constructors
 Some otherwise infeasible graph languages are now constructible 
under any number of faults
 Spanning Star

 Cycle Cover

 Spanning Line

Fault Tolerant Cycle-Cover 
Protocol

Fault Tolerant Spanning 
Star Protocol
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Notified Network Constructors

Fault Tolerant Spanning Line Protocol
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Universal Fault-Tolerant 
Constructors
 Is there a generic fault-tolerant constructor capable of constructing a large 
class of graphs?

 The Fault-Tolerant Spanning Line is capable of simulating a given Turing 
Machine of space 𝑂(𝑛 − 𝑘), where 0 ≤ 𝑘 < 𝑛 is the number of faults

 We provide a fault-tolerant protocol that splits the population into two 
groups 𝑈 and 𝐷 of equal size
 𝑈 is a spanning line with a unique leader in one endpoint and can eventually 

simulate a TM
 Each node of 𝐷 is connected with exactly one node of 𝑈, and vice versa

2-Partition
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Universal Fault-Tolerant 
Constructors

This protocol (Partition) is fault-tolerant, but adds a waste of 2𝑓(𝑛), where 
𝑓(𝑛) is an upper bound on the number of faults.

We show that for any graph language 𝐿 that can be decided by a linear 
space TM, there is a protocol that constructs a graph from 𝐿 in 𝐷 with waste 
at most min{

𝑛

2
+ 𝑓 𝑛 , 𝑛}.

2-Partition
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Universal Fault-Tolerant 
Constructors

This idea can be extended in order to increase the memory of the TM, by 
partitioning the population into three groups 𝑈,𝐷 and 𝑀 of equal size.

 We provide a fault-tolerant protocol where
 𝑈 is a spanning line that can eventually simulate a TM

 Each node in D ∪𝑀 is connected with exactly one node of 𝑈

 Each node of 𝑈 is connected to exactly one node in 𝐷 and one node in 𝑀.

3-Partition
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Universal Fault-Tolerant 
Constructors

This protocol is fault-tolerant, but adds a waste of 3𝑓(𝑛), where 𝑓(𝑛) is an 
upper bound on the number of faults.

We show that for any graph language 𝐿 that can be decided by an 𝑂 𝑛2 -
space TM, there is a protocol that constructs a graph from 𝐿 in 𝐷 with waste 

at most min{
2𝑛

3
+ 𝑓 𝑛 , 𝑛}.
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Fault-Tolerant protocols 
without Waste

 We increase the memory of each node to 𝑂(𝑙𝑜𝑔𝑛) bits
 We show that for constant memory, if the nodes can form a function of 𝑛

connections with other nodes, it is impossible to restart the protocol correctly

 Each node stores two components 𝐶1 and 𝐶2
 𝐶1runs the restart protocol (leader, phase, fault-flag)

 𝐶2 runs the given PP or NET protocol

 Whenever the fault-flag of a node is raised, all nodes eventually reinitialize 
their states in 𝐶2

 After any re-initialization, phase is increased by one

 Nodes in different phases do not update their 𝐶2 components 

 We provide a protocol which guarantees that every node which enters to 
a new phase, has re-initialized its state correctly (all adjacent edges become 
inactive)
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Future Work

Are hereditary graph languages constructible if a 
bounded number of faults is allowed?

Can we drop the assumption of waste and coin 
tossing?

Consider other types of faults such as random, 
Byzantine, communication/edge faults

Examination of fault-tolerant protocols for stable 
dynamic networks in models stronger than NETs.

28Fault Tolerant Network Constructors Michail, Spirakis, Theofilatos



Thank You


