
Fault Tolerant Network Constructors

Othon Michail, Paul G. Spirakis, Michail Theofilatos
Department of Computer Science, University of Liverpool, UK

21st International Symposium on Stabilization, Safety, and Security of Distributed Systems (SSS
2019)

25 October 2019

Contents
 Introduction
Model

 Examples

 The problem

 Some definitions

 Our contribution

 Open questions

2Fault Tolerant Network Constructors Michail, Spirakis, Theofilatos

Network Constructors

 Distributed computing model, formed by resource limited mobile agents

 Agents (or processes) can form/delete connections between them

 on/off case: a connection either exists (active) or not (inactive)

 Initially all connections are inactive

Goal: End up with a desired stable graph

[Michail and Spirakis, PODC ‘14 and Distrib. Comput. ‘16]

3

Fundamental Problem

Algorithmic distributed construction of an actual communication topology

Fault Tolerant Network Constructors Michail, Spirakis, Theofilatos

Network Constructors

 Fair scheduler: A scheduler is fair if it always leads to fair executions.
An infinite execution is fair if for every pair of configurations 𝐶 and 𝐶′
such that 𝐶 → 𝐶′, if 𝐶 occurs infinitely often, then so does 𝐶′

 Output network: nodes that are in output states and edges between
them that are active

 Stability: The output network cannot change in future steps

The model

𝑄: finite set of node−states
𝑞0 ∈ 𝑄: initial node−state
𝑄𝑜𝑢𝑡 ⊆ 𝑄: set of output node−states
𝛿: 𝑄 × 𝑄 × {0,1} → 𝑄 × 𝑄 × {0,1}: the transition function
In every step, a pair 𝑢𝑣 is selected by the scheduler and 𝑢, 𝑣 interact according to 𝛿

4Fault Tolerant Network Constructors Michail, Spirakis, Theofilatos

Network Constructors -
Example
Spanning Star

• 2 states: black and red

• Initially all black

• Constructs a global star

• Protocol: 𝑏, 𝑏, 0 → 𝑏, 𝑟, 1
(𝑟, 𝑟, 1) → (𝑟, 𝑟, 0)
(𝑏, 𝑟, 0) → (𝑏, 𝑟, 1)

• Space: 2 states

• Time: 𝑂(𝑛2log𝑛)

• Optimal w.r.t. both

5Fault Tolerant Network Constructors Michail, Spirakis, Theofilatos

Network Constructors -
Example
Spanning Star

• 2 states: black and red

• Initially all black

• Constructs a global star

• Protocol: 𝑏, 𝑏, 0 → 𝑏, 𝑟, 1
(𝑟, 𝑟, 1) → (𝑟, 𝑟, 0)
(𝑏, 𝑟, 0) → (𝑏, 𝑟, 1)

• Space: 2 states

• Time: 𝑂(𝑛2log𝑛)

• Optimal w.r.t. both

5Fault Tolerant Network Constructors Michail, Spirakis, Theofilatos

Network Constructors -
Example
Spanning Star

• 2 states: black and red

• Initially all black

• Constructs a global star

• Protocol: 𝑏, 𝑏, 0 → 𝑏, 𝑟, 1
(𝑟, 𝑟, 1) → (𝑟, 𝑟, 0)
(𝑏, 𝑟, 0) → (𝑏, 𝑟, 1)

• Space: 2 states

• Time: 𝑂(𝑛2log𝑛)

• Optimal w.r.t. both

5Fault Tolerant Network Constructors Michail, Spirakis, Theofilatos

Fault Tolerance
 In each step, either two nodes are selected for interaction, or one node
crashes

 During a crash failure, the node and all its edges (active or inactive) are
removed from the configuration

 The goal is to find protocols that always re-stabilize to a “correct” graph

Questions

• If one or more faults can affect the formation process, can we always re-
stabilize to a correct graph?

• What is the class of graph languages for which there exist fault-tolerant
protocols?

• What are the additional minimal assumptions that we need to make in order
to find fault-tolerant protocols for a bigger class of graph languages?

6Fault Tolerant Network Constructors Michail, Spirakis, Theofilatos

Fault Tolerance - Example

7Fault Tolerant Network Constructors Michail, Spirakis, Theofilatos

7Fault Tolerant Network Constructors Michail, Spirakis, Theofilatos

Fault Tolerance - Example

7Fault Tolerant Network Constructors Michail, Spirakis, Theofilatos

Fault Tolerance - Example

7Fault Tolerant Network Constructors Michail, Spirakis, Theofilatos

Fault Tolerance - Example

Some Definitions

Constructibility

We say that a protocol Π constructs a graph language 𝐿, if:
1. Every execution of Π on 𝑛 nodes stabilizes to a graph 𝐺 ∈ 𝐿 s.t. 𝑉 𝐺 =

𝑛, and
2. ∀𝐺 ∈ 𝐿 there is an execution of Π on |𝑉(𝐺)| nodes that stabilizes to 𝐺.

Partial Constructibility

We say that a protocol Π partially constructs a graph language 𝐿, if:
1. (1) from Definition 1 holds, and
2. ∃𝐺 ∈ 𝐿 s.t. no execution of Π on |𝑉(𝐺)| nodes stabilizes to 𝐺.

8Fault Tolerant Network Constructors Michail, Spirakis, Theofilatos

Some Definitions

Constructible language

A graph language 𝐿 is called constructible (partially constructible) if there is a
protocol that constructs (partially constructs) it. Similarly, we call 𝐿
constructible under 𝑓 faults, if there is an 𝑓-fault-tolerant protocol that
constructs 𝐿, where 𝑓 is an upper bound on the maximum number of faults.

Fault-Tolerant Protocol

Let Π be a NET protocol that, in a failure-free setting, constructs a graph 𝐺 ∈ 𝐿.
Π is called 𝑓-fault-tolerant if for any population size 𝑛 > 𝑓, any execution of Π
constructs a graph 𝐺 ∈ 𝐿, where 𝑉 𝐺 = 𝑛 − 𝑓. We also call Π fault-tolerant
if the same holds for any number 𝑓 ≤ 𝑛 − 2 of faults.

9Fault Tolerant Network Constructors Michail, Spirakis, Theofilatos

Our Results
Constructible languages

Without notifications With notifications

Unbounded faults Bounded faults Unbounded faults

Only Spanning
Clique

Non-hereditary
impossibility

Fault-tolerant protocols: Spanning
Star, Cycle Cover, Spanning Line

Strong
impossibility even
with linear waste

A representation
of any finite graph

(partial
constructibility)

Universal Fault-tolerant Constructors
(with waste)

Any constructible
graph language

with linear waste

Universal Fault-tolerant Restart
(without waste)

10Fault Tolerant Network Constructors Michail, Spirakis, Theofilatos

Our Results
Constructible languages

Without notifications With notifications

Unbounded faults Bounded faults Unbounded faults

Only Spanning
Clique

Non-hereditary
impossibility

Fault-tolerant protocols: Spanning
Star, Cycle Cover, Spanning Line

Strong
impossibility even
with linear waste

A representation
of any finite graph

(partial
constructibility)

Universal Fault-tolerant Constructors
(with waste)

Any constructible
graph language

with linear waste

Universal Fault-tolerant Restart
(without waste)

10Fault Tolerant Network Constructors Michail, Spirakis, Theofilatos

Fault Tolerant Spanning Clique
Transition function:

𝑏, 𝑏, 0 → (𝑏, 𝑟, 0)

𝑏, 𝑟, 0 → 𝑟, 𝑟, 0

𝑟, 𝑟, 0 → (𝑟, 𝑟, 1)

 The above protocol constructs a spanning clique, tolerating any number of
faults

 Spanning Clique is the only constructible graph language in the unbounded-
faults case
 Even if we allow linear waste

11Fault Tolerant Network Constructors Michail, Spirakis, Theofilatos

Our Results
Constructible languages

Without notifications With notifications

Unbounded faults Bounded faults Unbounded faults

Only Spanning
Clique

Non-hereditary
impossibility

Fault-tolerant protocols: Spanning
Star, Cycle Cover, Spanning Line

Strong
impossibility even
with linear waste

A representation
of any finite graph

(partial
constructibility)

Universal Fault-tolerant Constructors
(with waste)

Any constructible
graph language

with linear waste

Universal Fault-tolerant Restart
(without waste)

12Fault Tolerant Network Constructors Michail, Spirakis, Theofilatos

Non-hereditary Graph
Languages

 If there exists a graph 𝐺 ∈ 𝐿, such that after removing any node (crash
fault), the resulting graph 𝐺′ ∉ 𝐿, then there is no protocol that stably
constructs 𝐿.

 If there was a protocol that changes the configuration in order to “fix”
the graph, then this would happen indefinitely and the protocol would
never be stabilizing.

 This means that if a graph language in non-hereditary, it is impossible
to be constructed under a single fault.

Hereditary Language

A graph language 𝐿 is called Hereditary if for any graph 𝐺 ∈ 𝐿, every induced
subgraph of 𝐺 also belongs to 𝐿.

13Fault Tolerant Network Constructors Michail, Spirakis, Theofilatos

Our Results
Constructible languages

Without notifications With notifications

Unbounded faults Bounded faults Unbounded faults

Only Spanning
Clique

Non-hereditary
impossibility

Fault-tolerant protocols: Spanning
Star, Cycle Cover, Spanning Line

Strong
impossibility even
with linear waste

A representation
of any finite graph

(partial
constructibility)

Universal Fault-tolerant Constructors
(with waste)

Any constructible
graph language

with linear waste

Universal Fault-tolerant Restart
(without waste)

14Fault Tolerant Network Constructors Michail, Spirakis, Theofilatos

Partial Constructibility
There exists a class of graph languages that is partially constructible in
the case of bounded number of faults.

 Class of graph languages 𝐿𝐷,𝑓
 𝐷 = (𝑘 ,𝐻)

 𝑓 < 𝑘 is the finite upper bound on the number of faults

 A graph 𝐺 = 𝑉, 𝐸 belongs to 𝐿𝐷,𝑓 iff there are 𝑘 partitions

𝑉1, 𝑉2, … , 𝑉𝑘of 𝑉 s.t. for all 1 ≤ 𝑖, 𝑗 ≤ 𝑘, 𝑉𝑖 − 𝑉𝑗 ≤ 𝑓 + 1

 The graph 𝐷 defines a neighbouring relation between the partitions.
For every 𝑖, 𝑗 ∈ 𝐻, 𝐸 contains all edges between partitions 𝑉𝑖 and 𝑉𝑗.

15Fault Tolerant Network Constructors Michail, Spirakis, Theofilatos

Partial Constructibility

𝐷 = (𝑘 , 𝐻) Graph of supernodes 𝐺 = (𝑉, 𝐸)

 We provide a protocol which partitions the population into 𝑘 = 2𝑖 groups.

 It constructs any graph language 𝐿𝐷,𝑓 (as described before), where 𝑘 = 2𝑖.

 The partitioning can be used in order to construct any (constructible) graph language on at
least

𝑛

2𝑓
− 𝑓 nodes, where 𝑓 is the number of faults

16Fault Tolerant Network Constructors Michail, Spirakis, Theofilatos

Our Results
Constructible languages

Without notifications With notifications

Unbounded faults Bounded faults Unbounded faults

Only Spanning
Clique

Non-hereditary
impossibility

Fault-tolerant protocols: Spanning
Star, Cycle Cover, Spanning Line

Strong
impossibility even
with linear waste

A representation
of any finite graph

(partial
constructibility)

Universal Fault-tolerant Constructors
(with waste)

Any constructible
graph language

with linear waste

Universal Fault-tolerant Restart
(without waste)

17Fault Tolerant Network Constructors Michail, Spirakis, Theofilatos

Notified Network Constructors
 We now extend the original model with a minimal form of fault
notifications.

 When a node 𝑢 crashes, all the nodes that maintain an active
connection with it at that time, are notified (a fault flag becomes 1).

 If no such nodes exist (i.e., 𝑢 is isolated), then an arbitrary node is
notified.

 In this way, we guarantee that at least one node will “sense” the crash
failure.

18Fault Tolerant Network Constructors Michail, Spirakis, Theofilatos

Notified Network Constructors
 We now extend the original model with a minimal form of fault
notifications.

 When a node 𝑢 crashes, all the nodes that maintain an active
connection with it at that time, are notified (a fault flag becomes 1).

 If no such nodes exist (i.e., 𝑢 is isolated), then an arbitrary node is
notified.

 In this way, we guarantee that at least one node will “sense” the crash
failure.

18Fault Tolerant Network Constructors Michail, Spirakis, Theofilatos

Notified Network Constructors
 We now extend the original model with a minimal form of fault
notifications.

 When a node 𝑢 crashes, all the nodes that maintain an active
connection with it at that time, are notified (a fault flag becomes 1).

 If no such nodes exist (i.e., 𝑢 is isolated), then an arbitrary node is
notified.

 In this way, we guarantee that at least one node will “sense” the crash
failure.

18Fault Tolerant Network Constructors Michail, Spirakis, Theofilatos

Our Results
Constructible languages

Without notifications With notifications

Unbounded faults Bounded faults Unbounded faults

Only Spanning
Clique

Non-hereditary
impossibility

Fault-tolerant protocols: Spanning
Star, Cycle Cover, Spanning Line

Strong
impossibility even
with linear waste

A representation
of any finite graph

(partial
constructibility)

Universal Fault-tolerant Constructors
(with waste)

Any constructible
graph language

with linear waste

Universal Fault-tolerant Restart
(without waste)

19Fault Tolerant Network Constructors Michail, Spirakis, Theofilatos

Notified Network Constructors
 Some otherwise infeasible graph languages are now constructible
under any number of faults
 Spanning Star

 Cycle Cover

 Spanning Line

Fault Tolerant Cycle-Cover
Protocol

Fault Tolerant Spanning
Star Protocol

20Fault Tolerant Network Constructors Michail, Spirakis, Theofilatos

Notified Network Constructors

Fault Tolerant Spanning Line Protocol

21Fault Tolerant Network Constructors Michail, Spirakis, Theofilatos

Universal Fault-Tolerant
Constructors
 Is there a generic fault-tolerant constructor capable of constructing a large
class of graphs?

 The Fault-Tolerant Spanning Line is capable of simulating a given Turing
Machine of space 𝑂(𝑛 − 𝑘), where 0 ≤ 𝑘 < 𝑛 is the number of faults

 We provide a fault-tolerant protocol that splits the population into two
groups 𝑈 and 𝐷 of equal size
 𝑈 is a spanning line with a unique leader in one endpoint and can eventually

simulate a TM
 Each node of 𝐷 is connected with exactly one node of 𝑈, and vice versa

2-Partition

22Fault Tolerant Network Constructors Michail, Spirakis, Theofilatos

Universal Fault-Tolerant
Constructors

This protocol (Partition) is fault-tolerant, but adds a waste of 2𝑓(𝑛), where
𝑓(𝑛) is an upper bound on the number of faults.

We show that for any graph language 𝐿 that can be decided by a linear
space TM, there is a protocol that constructs a graph from 𝐿 in 𝐷 with waste
at most min{

𝑛

2
+ 𝑓 𝑛 , 𝑛}.

2-Partition

23Fault Tolerant Network Constructors Michail, Spirakis, Theofilatos

Universal Fault-Tolerant
Constructors

This idea can be extended in order to increase the memory of the TM, by
partitioning the population into three groups 𝑈,𝐷 and 𝑀 of equal size.

 We provide a fault-tolerant protocol where
 𝑈 is a spanning line that can eventually simulate a TM

 Each node in D ∪𝑀 is connected with exactly one node of 𝑈

 Each node of 𝑈 is connected to exactly one node in 𝐷 and one node in 𝑀.

3-Partition

24Fault Tolerant Network Constructors Michail, Spirakis, Theofilatos

Universal Fault-Tolerant
Constructors

This protocol is fault-tolerant, but adds a waste of 3𝑓(𝑛), where 𝑓(𝑛) is an
upper bound on the number of faults.

We show that for any graph language 𝐿 that can be decided by an 𝑂 𝑛2 -
space TM, there is a protocol that constructs a graph from 𝐿 in 𝐷 with waste

at most min{
2𝑛

3
+ 𝑓 𝑛 , 𝑛}.

3-Partition

25Fault Tolerant Network Constructors Michail, Spirakis, Theofilatos

Our Results
Constructible languages

Without notifications With notifications

Unbounded faults Bounded faults Unbounded faults

Only Spanning
Clique

Non-hereditary
impossibility

Fault-tolerant protocols: Spanning
Star, Cycle Cover, Spanning Line

Strong
impossibility even
with linear waste

A representation
of any finite graph

(partial
constructibility)

Universal Fault-tolerant Constructors
(with waste)

Any constructible
graph language

with linear waste

Universal Fault-tolerant Restart
(without waste)

26Fault Tolerant Network Constructors Michail, Spirakis, Theofilatos

Fault-Tolerant protocols
without Waste

 We increase the memory of each node to 𝑂(𝑙𝑜𝑔𝑛) bits
 We show that for constant memory, if the nodes can form a function of 𝑛

connections with other nodes, it is impossible to restart the protocol correctly

 Each node stores two components 𝐶1 and 𝐶2
 𝐶1runs the restart protocol (leader, phase, fault-flag)

 𝐶2 runs the given PP or NET protocol

 Whenever the fault-flag of a node is raised, all nodes eventually reinitialize
their states in 𝐶2

 After any re-initialization, phase is increased by one

 Nodes in different phases do not update their 𝐶2 components

 We provide a protocol which guarantees that every node which enters to
a new phase, has re-initialized its state correctly (all adjacent edges become
inactive)

27Fault Tolerant Network Constructors Michail, Spirakis, Theofilatos

Future Work

Are hereditary graph languages constructible if a
bounded number of faults is allowed?

Can we drop the assumption of waste and coin
tossing?

Consider other types of faults such as random,
Byzantine, communication/edge faults

Examination of fault-tolerant protocols for stable
dynamic networks in models stronger than NETs.

28Fault Tolerant Network Constructors Michail, Spirakis, Theofilatos

Thank You

