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Over trees:
MSO = Tree Automata = EMSO? [Thatcher-Wright '68]

Over Mazurkievitch traces:
MSO = Asynchronous Automata = EMSO? [Thomas '90]

Over data words:
EMSO? = Data Automata C EMSO
[Bojanczyk-David-Muscholl-Schwentick-Segoufin '06]

Goal: A Biichi-like theorem for message-passing systems
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In the unbounded case, CFMs are not complementable!
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3Xy. .. 3K, Ve Yy (z,y) A f\ Yo Ty, y)

=1

» Guess a valuation for each X;.

» Compute the type of each event.
The type of x characterizes the set
of quantifier-free formulas ¢ with

one free variable such that Jy.¢(x)
holds, or such that Vy.p(z) holds.

» Restrict to types verifying Vy.1)(z,y) and all Jy.;(x,y).
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Labels of parallel events

Automaton that determines the set of events on process p
that are parallel to some ¢ on process r:
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|| Ll |

a—a a a—a—a

| |
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Labels of parallel events

Automaton that determines the set of events on process p
that are parallel to some ¢ on process r:

mn M @ P O © @ nmn @ O ¢

Ga—a0—C—0— 00— 00— 00— 00— a0 —a—a—a04—a

|| Ll |

a—a0—a—a — 04— a04—a a—a a a—a—a

oA |

b——b b— a@G—CcC—0—0—0——>a—0—C

Guess yes/no for each event
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Automaton that determines the set of events on process p
that are parallel to some ¢ on process r:

y P O © @ nmn @ O ¢

— ™ 0— a0 —0— 00— 06— a0 —a0—a0a—a04—a

Ll |

— 04— a04—a a—a a a—a—a

T |

b—>c a—C—0—0—>Q—————> 01— 08— C

n n
a—a
a—a

q TH
T ob—b

—a

One component checks that “no” guesses are correct
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Automaton that determines the set of events on process p
that are parallel to some ¢ on process r:
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One component checks that “no” guesses are correct
— path containing all “no"’s on p and all ¢'s on r



From EMSO?[—, —*] to CFMs
L]

Labels of parallel events

Automaton that determines the set of events on process p
that are parallel to some ¢ on process r:
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One component checks that “yes” guesses are correct:
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One component checks that “yes” guesses are correct:

— check 'y || (©, and (y || (©)
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Labels of parallel events

Automaton that determines the set of events on process p
that are parallel to some ¢ on process r:

y P O © @ nmn @ O ¢
c
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One component checks that “yes” guesses are correct:

— check 'y || (©, and (y || (©)
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Automaton that determines the set of events on process p
that are parallel to some ¢ on process r:

y P O © @ nmn @ O ¢
c

— 00— a—0—a0—>a0—>a—> 06— a0—a—a

One component checks that “yes” guesses are correct:

— check 'y || (©, and (y || (©)

— check color of latest events co-reachable via pqr, resp. pr,
and first events reachable via rqp, resp. rp
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Labels of parallel events

Automaton that determines the set of events on process p
that are parallel to some ¢ on process r:

n n n Yy y Yy
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J [ next,
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One component checks that “yes” guesses are correct:

— check 'y || (©, and (y || (©)

— check color of latest events co-reachable via pqr, resp. pr,
and first events reachable via rqp, resp. rp
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Labels of parallel events

Automaton that determines the set of events on process p
that are parallel to some ¢ on process r:

nn @ O ¢

—a—a0— 06— a—a

One component checks that “yes” guesses are correct:

— check 'y || (©, and (y || (©)

— check color of latest events co-reachable via pqr, resp. pr,
and first events reachable via rqp, resp. rp
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Conclusion

» Generalization of Biichi-Elgot-Trakhtenbrot Theorem:
EMSO?[—, —*] = CFM.
» Doubly-exponential w.r.t. the input formula (optimal).

Open questions:
» FO[—, =" CCFM ?
FO[—*] CCFM ?
» What are the classes of graphs on which EMSO?*[—, —*]
and graph acceptors are expressively equivalent?

Thank you!
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