
Introduction Communicating Finite-States Machines From EMSO2[→,→∗] to CFMs Conclusion

Communicating Finite-State Machines and

Two-Variable Logic

Benedikt Bollig, Marie Fortin, and Paul Gastin

LSV, CNRS & ENS Paris-Saclay, Université Paris-Saclay, France

STACS 2018
Caen, France

February 28 – March 3

Introduction Communicating Finite-States Machines From EMSO2[→,→∗] to CFMs Conclusion

Büchi-Elgot-Trakhtenbrot theorem (’60s)

Monadic Second-Order Logic

0 1

b, c

a

b

Finite automaton

b→ a→ b→ c→ a→ b→ c

Words

induction

MSO[→] = Finite Automata

= EMSO[→] = EMSO2[→]

∃X0 . . . ∃Xn.ϕ with ϕ ∈ FO[→] two first-order variable names

Introduction Communicating Finite-States Machines From EMSO2[→,→∗] to CFMs Conclusion

Büchi-Elgot-Trakhtenbrot theorem (’60s)

∀x. a(x)⇒ ∃y. (x→ y ∧ b(y))

Monadic Second-Order Logic

0 1

b, c

a

b

Finite automaton

b→ a→ b→ c→ a→ b→ c

Words

induction

MSO[→] = Finite Automata

= EMSO[→] = EMSO2[→]

∃X0 . . . ∃Xn.ϕ with ϕ ∈ FO[→] two first-order variable names

Introduction Communicating Finite-States Machines From EMSO2[→,→∗] to CFMs Conclusion

Büchi-Elgot-Trakhtenbrot theorem (’60s)

∀x. a(x)⇒ ∃y. (x→ y ∧ b(y))

Monadic Second-Order Logic

0 1

b, c

a

b

Finite automaton

b→ a→ b→ c→ a→ b→ c

Words

induction

MSO[→] = Finite Automata

= EMSO[→] = EMSO2[→]

∃X0 . . . ∃Xn.ϕ with ϕ ∈ FO[→] two first-order variable names

Introduction Communicating Finite-States Machines From EMSO2[→,→∗] to CFMs Conclusion

Büchi-Elgot-Trakhtenbrot theorem (’60s)

∃X0. ∃X1. ∀x. ∀y.
x→ y ∧X0(x) ∧ a(y)⇒ X1(y)

∧ x→ y ∧X0(x) ∧ b(y)⇒ X0(y)
∧ . . .

Monadic Second-Order Logic

0 1

b, c

a

b

Finite automaton

b→ a→ b→ c→ a→ b→ c

Words

induction

MSO[→] = Finite Automata

= EMSO[→] = EMSO2[→]

∃X0 . . . ∃Xn.ϕ with ϕ ∈ FO[→] two first-order variable names

Introduction Communicating Finite-States Machines From EMSO2[→,→∗] to CFMs Conclusion

Büchi-Elgot-Trakhtenbrot theorem (’60s)

∃X0. ∃X1. ∀x. ∀y.
x→ y ∧X0(x) ∧ a(y)⇒ X1(y)

∧ x→ y ∧X0(x) ∧ b(y)⇒ X0(y)
∧ . . .

Monadic Second-Order Logic

0 1

b, c

a

b

Finite automaton

b→ a→ b→ c→ a→ b→ c

Words

induction

MSO[→] = Finite Automata = EMSO[→]

= EMSO2[→]

∃X0 . . . ∃Xn.ϕ with ϕ ∈ FO[→]

two first-order variable names

Introduction Communicating Finite-States Machines From EMSO2[→,→∗] to CFMs Conclusion

Büchi-Elgot-Trakhtenbrot theorem (’60s)

∃X0. ∃X1. ∀x. ∀y.
x→ y ∧X0(x) ∧ a(y)⇒ X1(y)

∧ x→ y ∧X0(x) ∧ b(y)⇒ X0(y)
∧ . . .

Monadic Second-Order Logic

0 1

b, c

a

b

Finite automaton

b→ a→ b→ c→ a→ b→ c

Words

induction

MSO[→] = Finite Automata = EMSO[→] = EMSO2[→]

∃X0 . . . ∃Xn.ϕ with ϕ ∈ FO[→] two first-order variable names

Introduction Communicating Finite-States Machines From EMSO2[→,→∗] to CFMs Conclusion

. . . and some of its extensions

Over trees:
MSO = Tree Automata = EMSO2 [Thatcher-Wright ’68]

Over Mazurkievitch traces:
MSO = Asynchronous Automata = EMSO2 [Thomas ’90]

Over data words:
EMSO2 = Data Automata (EMSO

[Bojanczyk-David-Muscholl-Schwentick-Segoufin ’06]

. . .

Goal: A Büchi-like theorem for message-passing systems

Introduction Communicating Finite-States Machines From EMSO2[→,→∗] to CFMs Conclusion

. . . and some of its extensions

Over trees:
MSO = Tree Automata = EMSO2 [Thatcher-Wright ’68]

Over Mazurkievitch traces:
MSO = Asynchronous Automata = EMSO2 [Thomas ’90]

Over data words:
EMSO2 = Data Automata (EMSO

[Bojanczyk-David-Muscholl-Schwentick-Segoufin ’06]

. . .

Goal: A Büchi-like theorem for message-passing systems

Introduction Communicating Finite-States Machines From EMSO2[→,→∗] to CFMs Conclusion

. . . and some of its extensions

Over trees:
MSO = Tree Automata = EMSO2 [Thatcher-Wright ’68]

Over Mazurkievitch traces:
MSO = Asynchronous Automata = EMSO2 [Thomas ’90]

Over data words:
EMSO2 = Data Automata (EMSO

[Bojanczyk-David-Muscholl-Schwentick-Segoufin ’06]

. . .

Goal: A Büchi-like theorem for message-passing systems

Introduction Communicating Finite-States Machines From EMSO2[→,→∗] to CFMs Conclusion

. . . and some of its extensions

Over trees:
MSO = Tree Automata = EMSO2 [Thatcher-Wright ’68]

Over Mazurkievitch traces:
MSO = Asynchronous Automata = EMSO2 [Thomas ’90]

Over data words:
EMSO2 = Data Automata (EMSO

[Bojanczyk-David-Muscholl-Schwentick-Segoufin ’06]

. . .

Goal: A Büchi-like theorem for message-passing systems

Introduction Communicating Finite-States Machines From EMSO2[→,→∗] to CFMs Conclusion

. . . and some of its extensions

Over trees:
MSO = Tree Automata = EMSO2 [Thatcher-Wright ’68]

Over Mazurkievitch traces:
MSO = Asynchronous Automata = EMSO2 [Thomas ’90]

Over data words:
EMSO2 = Data Automata (EMSO

[Bojanczyk-David-Muscholl-Schwentick-Segoufin ’06]

. . .

Goal: A Büchi-like theorem for message-passing systems

Introduction Communicating Finite-States Machines From EMSO2[→,→∗] to CFMs Conclusion

Communicating finite-state machines (CFMs)
[Brand–Zafiropulo ’83]

I Finite set of processes, e.g. Proc = {p, q, r}
I Unbounded point-to-point FIFO channels
I For each process, one finite labeled transition system over

(Σ × { ! , ? } × Msg × Proc) ∪ Σ

send receive Finite set of
messages

Processes

Finite alphabet

I Global acceptance condition

p q

r 0Ar 1

〈a, !,�, q〉
〈a, ?,�, p〉

〈b〉

〈a, !,�, q〉

0Aq 1

〈a, ?,�, r〉

〈a, ?,�, p〉

〈a, ?,�, r〉

〈a, !,�, p〉

0Ap 1

〈a, !,�, q〉

〈b, !,�, r〉

〈a, ?,�, q〉

Introduction Communicating Finite-States Machines From EMSO2[→,→∗] to CFMs Conclusion

Communicating finite-state machines (CFMs)
[Brand–Zafiropulo ’83]

I Finite set of processes, e.g. Proc = {p, q, r}

I Unbounded point-to-point FIFO channels
I For each process, one finite labeled transition system over

(Σ × { ! , ? } × Msg × Proc) ∪ Σ

send receive Finite set of
messages

Processes

Finite alphabet

I Global acceptance condition

p q

r 0Ar 1

〈a, !,�, q〉
〈a, ?,�, p〉

〈b〉

〈a, !,�, q〉

0Aq 1

〈a, ?,�, r〉

〈a, ?,�, p〉

〈a, ?,�, r〉

〈a, !,�, p〉

0Ap 1

〈a, !,�, q〉

〈b, !,�, r〉

〈a, ?,�, q〉

Introduction Communicating Finite-States Machines From EMSO2[→,→∗] to CFMs Conclusion

Communicating finite-state machines (CFMs)
[Brand–Zafiropulo ’83]

I Finite set of processes, e.g. Proc = {p, q, r}
I Unbounded point-to-point FIFO channels

I For each process, one finite labeled transition system over

(Σ × { ! , ? } × Msg × Proc) ∪ Σ

send receive Finite set of
messages

Processes

Finite alphabet

I Global acceptance condition

p q

r 0Ar 1

〈a, !,�, q〉
〈a, ?,�, p〉

〈b〉

〈a, !,�, q〉

0Aq 1

〈a, ?,�, r〉

〈a, ?,�, p〉

〈a, ?,�, r〉

〈a, !,�, p〉

0Ap 1

〈a, !,�, q〉

〈b, !,�, r〉

〈a, ?,�, q〉

Introduction Communicating Finite-States Machines From EMSO2[→,→∗] to CFMs Conclusion

Communicating finite-state machines (CFMs)
[Brand–Zafiropulo ’83]

I Finite set of processes, e.g. Proc = {p, q, r}
I Unbounded point-to-point FIFO channels

I For each process, one finite labeled transition system over

(Σ × { ! , ? } × Msg × Proc) ∪ Σ

send receive Finite set of
messages

Processes

Finite alphabet

I Global acceptance condition

p q

r

0Ar 1

〈a, !,�, q〉
〈a, ?,�, p〉

〈b〉

〈a, !,�, q〉

0Aq 1

〈a, ?,�, r〉

〈a, ?,�, p〉

〈a, ?,�, r〉

〈a, !,�, p〉

0Ap 1

〈a, !,�, q〉

〈b, !,�, r〉

〈a, ?,�, q〉

Introduction Communicating Finite-States Machines From EMSO2[→,→∗] to CFMs Conclusion

Communicating finite-state machines (CFMs)
[Brand–Zafiropulo ’83]

I Finite set of processes, e.g. Proc = {p, q, r}
I Unbounded point-to-point FIFO channels
I For each process, one finite labeled transition system over

(Σ × { ! , ? } × Msg × Proc) ∪ Σ

send receive Finite set of
messages

Processes

Finite alphabet

I Global acceptance condition

p q

r

0Ar 1

〈a, !,�, q〉
〈a, ?,�, p〉

〈b〉

〈a, !,�, q〉

0Aq 1

〈a, ?,�, r〉

〈a, ?,�, p〉

〈a, ?,�, r〉

〈a, !,�, p〉

0Ap 1

〈a, !,�, q〉

〈b, !,�, r〉

〈a, ?,�, q〉

Introduction Communicating Finite-States Machines From EMSO2[→,→∗] to CFMs Conclusion

Communicating finite-state machines (CFMs)
[Brand–Zafiropulo ’83]

I Finite set of processes, e.g. Proc = {p, q, r}
I Unbounded point-to-point FIFO channels
I For each process, one finite labeled transition system over

(Σ × { ! , ? } × Msg × Proc) ∪ Σ

send receive Finite set of
messages

Processes

Finite alphabet

I Global acceptance condition

p q

r 0Ar 1

〈a, !,�, q〉
〈a, ?,�, p〉

〈b〉

〈a, !,�, q〉

0Aq 1

〈a, ?,�, r〉

〈a, ?,�, p〉

〈a, ?,�, r〉

〈a, !,�, p〉

0Ap 1

〈a, !,�, q〉

〈b, !,�, r〉

〈a, ?,�, q〉

Introduction Communicating Finite-States Machines From EMSO2[→,→∗] to CFMs Conclusion

Communicating finite-state machines (CFMs)
[Brand–Zafiropulo ’83]

I Finite set of processes, e.g. Proc = {p, q, r}
I Unbounded point-to-point FIFO channels
I For each process, one finite labeled transition system over

(Σ × { ! , ? } × Msg × Proc) ∪ Σ

send receive Finite set of
messages

Processes

Finite alphabet

I Global acceptance condition

p q

r 0Ar 1

〈a, !,�, q〉
〈a, ?,�, p〉

〈b〉

〈a, !,�, q〉

0Aq 1

〈a, ?,�, r〉

〈a, ?,�, p〉

〈a, ?,�, r〉

〈a, !,�, p〉

0Ap 1

〈a, !,�, q〉

〈b, !,�, r〉

〈a, ?,�, q〉

Introduction Communicating Finite-States Machines From EMSO2[→,→∗] to CFMs Conclusion

Communicating finite-state machines (CFMs)
[Brand–Zafiropulo ’83]

I Finite set of processes, e.g. Proc = {p, q, r}
I Unbounded point-to-point FIFO channels
I For each process, one finite labeled transition system over

(Σ × { ! , ? } × Msg × Proc) ∪ Σ

send receive Finite set of
messages

Processes

Finite alphabet

I Global acceptance condition

p q

r 0Ar 1

〈a, !,�, q〉
〈a, ?,�, p〉

〈b〉

〈a, !,�, q〉

0Aq 1

〈a, ?,�, r〉

〈a, ?,�, p〉

〈a, ?,�, r〉

〈a, !,�, p〉

0Ap 1

〈a, !,�, q〉

〈b, !,�, r〉

〈a, ?,�, q〉

Introduction Communicating Finite-States Machines From EMSO2[→,→∗] to CFMs Conclusion

Communicating finite-state machines (CFMs)
[Brand–Zafiropulo ’83]

I Finite set of processes, e.g. Proc = {p, q, r}
I Unbounded point-to-point FIFO channels
I For each process, one finite labeled transition system over

(Σ × { ! , ? } × Msg × Proc) ∪ Σ

send receive Finite set of
messages

Processes

Finite alphabet

I Global acceptance condition

p q

r 0Ar 1

〈a, !,�, q〉
〈a, ?,�, p〉

〈b〉

〈a, !,�, q〉

0Aq 1

〈a, ?,�, r〉

〈a, ?,�, p〉

〈a, ?,�, r〉

〈a, !,�, p〉

0Ap 1

〈a, !,�, q〉

〈b, !,�, r〉

〈a, ?,�, q〉

Introduction Communicating Finite-States Machines From EMSO2[→,→∗] to CFMs Conclusion

Language of a CFM

CFMs recognize languages of Message Sequence Charts:

p a a b a a a a

∈ L(Ap)

q a a a a a a a a a

∈ L(Aq)

r a a b b a a

∈ L(Ar)

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

� �

�

�

�

I FIFO

I acyclic

Introduction Communicating Finite-States Machines From EMSO2[→,→∗] to CFMs Conclusion

Language of a CFM

CFMs recognize languages of Message Sequence Charts:

p a a b a a a a

∈ L(Ap)

q a a a a a a a a a

∈ L(Aq)

r a a b b a a

∈ L(Ar)

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

� �

�

�

�

I FIFO

I acyclic

Introduction Communicating Finite-States Machines From EMSO2[→,→∗] to CFMs Conclusion

Language of a CFM

CFMs recognize languages of Message Sequence Charts:

p a a b a a a a ∈ L(Ap)

q a a a a a a a a a

∈ L(Aq)

r a a b b a a

∈ L(Ar)

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

� �

�

�

�

I FIFO

I acyclic

Introduction Communicating Finite-States Machines From EMSO2[→,→∗] to CFMs Conclusion

Language of a CFM

CFMs recognize languages of Message Sequence Charts:

p a a b a a a a ∈ L(Ap)

q a a a a a a a a a ∈ L(Aq)

r a a b b a a

∈ L(Ar)

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

� �

�

�

�

I FIFO

I acyclic

Introduction Communicating Finite-States Machines From EMSO2[→,→∗] to CFMs Conclusion

Language of a CFM

CFMs recognize languages of Message Sequence Charts:

p a a b a a a a ∈ L(Ap)

q a a a a a a a a a ∈ L(Aq)

r a a b b a a ∈ L(Ar)

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

� �

�

�

�

I FIFO

I acyclic

Introduction Communicating Finite-States Machines From EMSO2[→,→∗] to CFMs Conclusion

Monadic Second-Order Logic over MSCs

MSO[→,→∗]
ϕ ::= a(x) | p(x) | x = y | x→ y | x→∗ y

| ∃x. ϕ | ∃X. ϕ | x ∈ X | ϕ ∨ ϕ | ¬ϕ

Introduction Communicating Finite-States Machines From EMSO2[→,→∗] to CFMs Conclusion

Monadic Second-Order Logic over MSCs

MSO[→,→∗]
ϕ ::= a(x) | p(x) | x = y | x→ y | x→∗ y

| ∃x. ϕ | ∃X. ϕ | x ∈ X | ϕ ∨ ϕ | ¬ϕ

Introduction Communicating Finite-States Machines From EMSO2[→,→∗] to CFMs Conclusion

Monadic Second-Order Logic over MSCs

MSO[→,→∗]
ϕ ::= a(x) | p(x) | x = y | x→ y | x→∗ y

| ∃x. ϕ | ∃X. ϕ | x ∈ X | ϕ ∨ ϕ | ¬ϕ

I FO[→,→∗] : no ∃X.

I FO[→] : no x→∗ y
I FO2[→,→∗] : only two variable names

I EMSO[→,→∗] : ∃X1 . . . ∃Xn. ϕ, with ϕ ∈ FO[→,→∗]
I EMSO2[→,→∗] : ∃X1 . . . ∃Xn. ϕ, with ϕ ∈ FO2[→,→∗]
I . . .

Introduction Communicating Finite-States Machines From EMSO2[→,→∗] to CFMs Conclusion

Monadic Second-Order Logic over MSCs

MSO[→,→∗]
ϕ ::= a(x) | p(x) | x = y | x→ y | x→∗ y

| ∃x. ϕ | ∃X. ϕ | x ∈ X | ϕ ∨ ϕ | ¬ϕ

I FO[→,→∗] : no ∃X.
I FO[→] : no x→∗ y

I FO2[→,→∗] : only two variable names

I EMSO[→,→∗] : ∃X1 . . . ∃Xn. ϕ, with ϕ ∈ FO[→,→∗]
I EMSO2[→,→∗] : ∃X1 . . . ∃Xn. ϕ, with ϕ ∈ FO2[→,→∗]
I . . .

Introduction Communicating Finite-States Machines From EMSO2[→,→∗] to CFMs Conclusion

Monadic Second-Order Logic over MSCs

MSO[→,→∗]
ϕ ::= a(x) | p(x) | x = y | x→ y | x→∗ y

| ∃x. ϕ | ∃X. ϕ | x ∈ X | ϕ ∨ ϕ | ¬ϕ

I FO[→,→∗] : no ∃X.
I FO[→] : no x→∗ y
I FO2[→,→∗] : only two variable names

I EMSO[→,→∗] : ∃X1 . . . ∃Xn. ϕ, with ϕ ∈ FO[→,→∗]
I EMSO2[→,→∗] : ∃X1 . . . ∃Xn. ϕ, with ϕ ∈ FO2[→,→∗]
I . . .

Introduction Communicating Finite-States Machines From EMSO2[→,→∗] to CFMs Conclusion

Monadic Second-Order Logic over MSCs

MSO[→,→∗]
ϕ ::= a(x) | p(x) | x = y | x→ y | x→∗ y

| ∃x. ϕ | ∃X. ϕ | x ∈ X | ϕ ∨ ϕ | ¬ϕ

I FO[→,→∗] : no ∃X.
I FO[→] : no x→∗ y
I FO2[→,→∗] : only two variable names

I EMSO[→,→∗] : ∃X1 . . . ∃Xn. ϕ, with ϕ ∈ FO[→,→∗]

I EMSO2[→,→∗] : ∃X1 . . . ∃Xn. ϕ, with ϕ ∈ FO2[→,→∗]
I . . .

Introduction Communicating Finite-States Machines From EMSO2[→,→∗] to CFMs Conclusion

Monadic Second-Order Logic over MSCs

MSO[→,→∗]
ϕ ::= a(x) | p(x) | x = y | x→ y | x→∗ y

| ∃x. ϕ | ∃X. ϕ | x ∈ X | ϕ ∨ ϕ | ¬ϕ

I FO[→,→∗] : no ∃X.
I FO[→] : no x→∗ y
I FO2[→,→∗] : only two variable names

I EMSO[→,→∗] : ∃X1 . . . ∃Xn. ϕ, with ϕ ∈ FO[→,→∗]
I EMSO2[→,→∗] : ∃X1 . . . ∃Xn. ϕ, with ϕ ∈ FO2[→,→∗]

I . . .

Introduction Communicating Finite-States Machines From EMSO2[→,→∗] to CFMs Conclusion

Monadic Second-Order Logic over MSCs

MSO[→,→∗]
ϕ ::= a(x) | p(x) | x = y | x→ y | x→∗ y

| ∃x. ϕ | ∃X. ϕ | x ∈ X | ϕ ∨ ϕ | ¬ϕ

I FO[→,→∗] : no ∃X.
I FO[→] : no x→∗ y
I FO2[→,→∗] : only two variable names

I EMSO[→,→∗] : ∃X1 . . . ∃Xn. ϕ, with ϕ ∈ FO[→,→∗]
I EMSO2[→,→∗] : ∃X1 . . . ∃Xn. ϕ, with ϕ ∈ FO2[→,→∗]
I . . .

Introduction Communicating Finite-States Machines From EMSO2[→,→∗] to CFMs Conclusion

Monadic Second-Order Logic over MSCs

MSO[→,→∗]
ϕ ::= a(x) | p(x) | x = y | x→ y | x→∗ y

| ∃x. ϕ | ∃X. ϕ | x ∈ X | ϕ ∨ ϕ | ¬ϕ

Examples in FO2[→,→∗]:

I x ‖ y ≡ ¬(x→∗ y) ∧ ¬(y →∗ x)

I Mutual exclusion: ¬(∃x. ∃y. c(x) ∧ c(y) ∧ x ‖ y)

Introduction Communicating Finite-States Machines From EMSO2[→,→∗] to CFMs Conclusion

Monadic Second-Order Logic over MSCs

MSO[→,→∗]
ϕ ::= a(x) | p(x) | x = y | x→ y | x→∗ y

| ∃x. ϕ | ∃X. ϕ | x ∈ X | ϕ ∨ ϕ | ¬ϕ

Examples in FO2[→,→∗]:
I x ‖ y ≡ ¬(x→∗ y) ∧ ¬(y →∗ x)

I Mutual exclusion: ¬(∃x. ∃y. c(x) ∧ c(y) ∧ x ‖ y)

Introduction Communicating Finite-States Machines From EMSO2[→,→∗] to CFMs Conclusion

Monadic Second-Order Logic over MSCs

MSO[→,→∗]
ϕ ::= a(x) | p(x) | x = y | x→ y | x→∗ y

| ∃x. ϕ | ∃X. ϕ | x ∈ X | ϕ ∨ ϕ | ¬ϕ

Examples in FO2[→,→∗]:
I x ‖ y ≡ ¬(x→∗ y) ∧ ¬(y →∗ x)

I Mutual exclusion: ¬(∃x. ∃y. c(x) ∧ c(y) ∧ x ‖ y)

Introduction Communicating Finite-States Machines From EMSO2[→,→∗] to CFMs Conclusion

Monadic Second-Order Logic over MSCs

x

y

x

y

x

y

a a c a a a a a

a a a a a a a a a a

a b b a a c a a

p

q

r

M |= ∀x. c(x) =⇒ ∃y. q(y) ∧ x→∗ y

M 6|= ¬(∃x. ∃y. c(x) ∧ c(y) ∧ x ‖ y)

Introduction Communicating Finite-States Machines From EMSO2[→,→∗] to CFMs Conclusion

Monadic Second-Order Logic over MSCs

x

y

x

y

x

y

a a c a a a a a

a a a a a a a a a a

a b b a a c a a

p

q

r

M |= ∀x. c(x) =⇒ ∃y. q(y) ∧ x→∗ y

M 6|= ¬(∃x. ∃y. c(x) ∧ c(y) ∧ x ‖ y)

Introduction Communicating Finite-States Machines From EMSO2[→,→∗] to CFMs Conclusion

Monadic Second-Order Logic over MSCs

x

y

x

y

x

y

a a c a a a a a

a a a a a a a a a a

a b b a a c a a

p

q

r

M |= ∀x. c(x) =⇒ ∃y. q(y) ∧ x→∗ y

M 6|= ¬(∃x. ∃y. c(x) ∧ c(y) ∧ x ‖ y)

Introduction Communicating Finite-States Machines From EMSO2[→,→∗] to CFMs Conclusion

Monadic Second-Order Logic over MSCs

x

y

x

y

x

y

a a c a a a a a

a a a a a a a a a a

a b b a a c a a

p

q

r

M |= ∀x. c(x) =⇒ ∃y. q(y) ∧ x→∗ y

M 6|= ¬(∃x. ∃y. c(x) ∧ c(y) ∧ x ‖ y)

Introduction Communicating Finite-States Machines From EMSO2[→,→∗] to CFMs Conclusion

Monadic Second-Order Logic over MSCs

x

y

x

y

x

y

a a c a a a a a

a a a a a a a a a a

a b b a a c a a

p

q

r

M |= ∀x. c(x) =⇒ ∃y. q(y) ∧ x→∗ y

M 6|= ¬(∃x. ∃y. c(x) ∧ c(y) ∧ x ‖ y)

Introduction Communicating Finite-States Machines From EMSO2[→,→∗] to CFMs Conclusion

Monadic Second-Order Logic over MSCs

x

y

x

y

x

y

a a c a a a a a

a a a a a a a a a a

a b b a a c a a

p

q

r

M |= ∀x. c(x) =⇒ ∃y. q(y) ∧ x→∗ y

M 6|= ¬(∃x. ∃y. c(x) ∧ c(y) ∧ x ‖ y)

Introduction Communicating Finite-States Machines From EMSO2[→,→∗] to CFMs Conclusion

Monadic Second-Order Logic over MSCs

x

y

x

y

x

y

a a c a a a a a

a a a a a a a a a a

a b b a a c a a

p

q

r

M |= ∀x. c(x) =⇒ ∃y. q(y) ∧ x→∗ y

M 6|= ¬(∃x. ∃y. c(x) ∧ c(y) ∧ x ‖ y)

Introduction Communicating Finite-States Machines From EMSO2[→,→∗] to CFMs Conclusion

“Büchi Theorems” for CFMs

Theorem (Mukund et al. ’05, Genest-Kuske-Muscholl ’06)

When channels are bounded, CFM = MSO[→].

Theorem (Bollig-Leucker ’06)

CFM = EMSO[→] (MSO[→].

In the unbounded case, CFMs are not complementable!
→ No inductive translation logic CFMs.

Theorem

CFM = EMSO2[→,→∗].

Introduction Communicating Finite-States Machines From EMSO2[→,→∗] to CFMs Conclusion

“Büchi Theorems” for CFMs

Theorem (Mukund et al. ’05, Genest-Kuske-Muscholl ’06)

When channels are bounded, CFM = MSO[→].

Theorem (Bollig-Leucker ’06)

CFM = EMSO[→] (MSO[→].

In the unbounded case, CFMs are not complementable!
→ No inductive translation logic CFMs.

Theorem

CFM = EMSO2[→,→∗].

Introduction Communicating Finite-States Machines From EMSO2[→,→∗] to CFMs Conclusion

“Büchi Theorems” for CFMs

Theorem (Mukund et al. ’05, Genest-Kuske-Muscholl ’06)

When channels are bounded, CFM = MSO[→].

Theorem (Bollig-Leucker ’06)

CFM = EMSO[→] (MSO[→].

In the unbounded case, CFMs are not complementable!
→ No inductive translation logic CFMs.

Theorem

CFM = EMSO2[→,→∗].

Introduction Communicating Finite-States Machines From EMSO2[→,→∗] to CFMs Conclusion

“Büchi Theorems” for CFMs

Theorem (Mukund et al. ’05, Genest-Kuske-Muscholl ’06)

When channels are bounded, CFM = MSO[→].

Theorem (Bollig-Leucker ’06)

CFM = EMSO[→] (MSO[→].

In the unbounded case, CFMs are not complementable!
→ No inductive translation logic CFMs.

Theorem

CFM = EMSO2[→,→∗].

Introduction Communicating Finite-States Machines From EMSO2[→,→∗] to CFMs Conclusion

“Büchi Theorems” for CFMs

Theorem (Mukund et al. ’05, Genest-Kuske-Muscholl ’06)

When channels are bounded, CFM = MSO[→].

Theorem (Bollig-Leucker ’06)

CFM = EMSO[→] (MSO[→].

In the unbounded case, CFMs are not complementable!
→ No inductive translation logic CFMs.

Theorem

CFM = EMSO2[→,→∗].

Introduction Communicating Finite-States Machines From EMSO2[→,→∗] to CFMs Conclusion

Scott normal form (’65)

Scott normal form:
Any EMSO2[→,→∗] formula is equivalent to a formula

∃X1. . . .∃Xm. ∀x.∀y.ψ(x, y) ∧
n∧

i=1

∀x.∃y.ψi(x, y)

where ψ(x, y) and each ψi(x, y) is quantifier-free.

Introduction Communicating Finite-States Machines From EMSO2[→,→∗] to CFMs Conclusion

From Scott normal form to CFMs

∃X1. . . .∃Xm. ∀x.∀y.ψ(x, y) ∧
n∧

i=1

∀x.∃y.ψi(x, y)

I Guess a valuation for each Xi.

I Compute the type of each event.

The type of x characterizes the set
of quantifier-free formulas ϕ with
one free variable such that ∃y.ϕ(x)
holds, or such that ∀y.ϕ(x) holds.

I Restrict to types verifying ∀y.ψ(x, y) and all ∃y.ψi(x, y).

Introduction Communicating Finite-States Machines From EMSO2[→,→∗] to CFMs Conclusion

From Scott normal form to CFMs

∃X1. . . .∃Xm. ∀x.∀y.ψ(x, y) ∧
n∧

i=1

∀x.∃y.ψi(x, y)

I Guess a valuation for each Xi.

I Compute the type of each event.

The type of x characterizes the set
of quantifier-free formulas ϕ with
one free variable such that ∃y.ϕ(x)
holds, or such that ∀y.ϕ(x) holds.

I Restrict to types verifying ∀y.ψ(x, y) and all ∃y.ψi(x, y).

Introduction Communicating Finite-States Machines From EMSO2[→,→∗] to CFMs Conclusion

From Scott normal form to CFMs

∃X1. . . .∃Xm. ∀x.∀y.ψ(x, y) ∧
n∧

i=1

∀x.∃y.ψi(x, y)

I Guess a valuation for each Xi.

I Compute the type of each event.

The type of x characterizes the set
of quantifier-free formulas ϕ with
one free variable such that ∃y.ϕ(x)
holds, or such that ∀y.ϕ(x) holds.

I Restrict to types verifying ∀y.ψ(x, y) and all ∃y.ψi(x, y).

Introduction Communicating Finite-States Machines From EMSO2[→,→∗] to CFMs Conclusion

From Scott normal form to CFMs

∃X1. . . .∃Xm. ∀x.∀y.ψ(x, y) ∧
n∧

i=1

∀x.∃y.ψi(x, y)

I Guess a valuation for each Xi.

I Compute the type of each event.

The type of x characterizes the set
of quantifier-free formulas ϕ with
one free variable such that ∃y.ϕ(x)
holds, or such that ∀y.ϕ(x) holds.

I Restrict to types verifying ∀y.ψ(x, y) and all ∃y.ψi(x, y).

Introduction Communicating Finite-States Machines From EMSO2[→,→∗] to CFMs Conclusion

From Scott normal form to CFMs

∃X1. . . .∃Xm. ∀x.∀y.ψ(x, y) ∧
n∧

i=1

∀x.∃y.ψi(x, y)

I Guess a valuation for each Xi.

I Compute the type of each event.

The type of x characterizes the set
of quantifier-free formulas ϕ with
one free variable such that ∃y.ϕ(x)
holds, or such that ∀y.ϕ(x) holds.

I Restrict to types verifying ∀y.ψ(x, y) and all ∃y.ψi(x, y).

Introduction Communicating Finite-States Machines From EMSO2[→,→∗] to CFMs Conclusion

From Scott normal form to CFMs

∃X1. . . .∃Xm. ∀x.∀y.ψ(x, y) ∧
n∧

i=1

∀x.∃y.ψi(x, y)

I Guess a valuation for each Xi.

I Compute the type of each event.

The type of x characterizes the set
of quantifier-free formulas ϕ with
one free variable such that ∃y.ϕ(x)
holds, or such that ∀y.ϕ(x) holds.

I Restrict to types verifying ∀y.ψ(x, y) and all ∃y.ψi(x, y).

Introduction Communicating Finite-States Machines From EMSO2[→,→∗] to CFMs Conclusion

Type of an event

Type of event x: set of all possible tuples (./, p, a) such that
for some event y:

I x ./ y

I x is on process p, and labeled a.

./ is one of all possible relative positions between two events:

I x = y

I x→ y

I y → x

I x y, where =→+ \→
I y x

I x ‖ y, i.e., x 6→∗ y and y 6→∗ x

Introduction Communicating Finite-States Machines From EMSO2[→,→∗] to CFMs Conclusion

Type of an event

Type of event x: set of all possible tuples (./, p, a) such that
for some event y:

I x ./ y

I x is on process p, and labeled a.

./ is one of all possible relative positions between two events:

I x = y

I x→ y

I y → x

I x y, where =→+ \→
I y x

I x ‖ y, i.e., x 6→∗ y and y 6→∗ x

Introduction Communicating Finite-States Machines From EMSO2[→,→∗] to CFMs Conclusion

Type of an event

Type of event x: set of all possible tuples (./, p, a) such that
for some event y:

I x ./ y

I x is on process p, and labeled a.

./ is one of all possible relative positions between two events:

I x = y

I x→ y

I y → x

I x y, where =→+ \→
I y x

I x ‖ y, i.e., x 6→∗ y and y 6→∗ x

Introduction Communicating Finite-States Machines From EMSO2[→,→∗] to CFMs Conclusion

Type of an event

Type of event x: set of all possible tuples (./, p, a) such that
for some event y:

I x ./ y

I x is on process p, and labeled a.

./ is one of all possible relative positions between two events:

I x = y

I x→ y

I y → x

I x y, where =→+ \→
I y x

I x ‖ y, i.e., x 6→∗ y and y 6→∗ x

Introduction Communicating Finite-States Machines From EMSO2[→,→∗] to CFMs Conclusion

Type of an event

Type of event x: set of all possible tuples (./, p, a) such that
for some event y:

I x ./ y

I x is on process p, and labeled a.

./ is one of all possible relative positions between two events:

I x = y

I x→ y

I y → x

I x y, where =→+ \→

I y x

I x ‖ y, i.e., x 6→∗ y and y 6→∗ x

Introduction Communicating Finite-States Machines From EMSO2[→,→∗] to CFMs Conclusion

Type of an event

Type of event x: set of all possible tuples (./, p, a) such that
for some event y:

I x ./ y

I x is on process p, and labeled a.

./ is one of all possible relative positions between two events:

I x = y

I x→ y

I y → x

I x y, where =→+ \→
I y x

I x ‖ y, i.e., x 6→∗ y and y 6→∗ x

Introduction Communicating Finite-States Machines From EMSO2[→,→∗] to CFMs Conclusion

Type of an event

Type of event x: set of all possible tuples (./, p, a) such that
for some event y:

I x ./ y

I x is on process p, and labeled a.

./ is one of all possible relative positions between two events:

I x = y

I x→ y

I y → x

I x y, where =→+ \→
I y x

I x ‖ y, i.e., x 6→∗ y and y 6→∗ x

Introduction Communicating Finite-States Machines From EMSO2[→,→∗] to CFMs Conclusion

Type of an event

x = y : (p, a) x→ y : (p, a) y → x : (p, a), (r, b)

y x : (p, a), (p, c), (q, a), (r, b) x y : (p, a), (q, a), (r, a), (r, c)

x ‖ y : (q, a), (r, a), (r, c)

x
a a c a a a a a a a a a a

a a a a a a a a a a a a a a

b b b c a c a a a a a c

p

q

r

|= ∃y. ¬(x→∗ y) ∧ ¬p(y) ∧ c(y)

Introduction Communicating Finite-States Machines From EMSO2[→,→∗] to CFMs Conclusion

Type of an event

x = y : (p, a)

x→ y : (p, a) y → x : (p, a), (r, b)

y x : (p, a), (p, c), (q, a), (r, b) x y : (p, a), (q, a), (r, a), (r, c)

x ‖ y : (q, a), (r, a), (r, c)

x
a a c a a a a a a a a a a

a a a a a a a a a a a a a a

b b b c a c a a a a a c

p

q

r

|= ∃y. ¬(x→∗ y) ∧ ¬p(y) ∧ c(y)

Introduction Communicating Finite-States Machines From EMSO2[→,→∗] to CFMs Conclusion

Type of an event

x = y : (p, a) x→ y : (p, a)

y → x : (p, a), (r, b)

y x : (p, a), (p, c), (q, a), (r, b) x y : (p, a), (q, a), (r, a), (r, c)

x ‖ y : (q, a), (r, a), (r, c)

x
a a c a a a a a a a a a a

a a a a a a a a a a a a a a

b b b c a c a a a a a c

p

q

r

|= ∃y. ¬(x→∗ y) ∧ ¬p(y) ∧ c(y)

Introduction Communicating Finite-States Machines From EMSO2[→,→∗] to CFMs Conclusion

Type of an event

x = y : (p, a) x→ y : (p, a) y → x : (p, a), (r, b)

y x : (p, a), (p, c), (q, a), (r, b) x y : (p, a), (q, a), (r, a), (r, c)

x ‖ y : (q, a), (r, a), (r, c)

x
a a c a a a a a a a a a a

a a a a a a a a a a a a a a

b b b c a c a a a a a c

p

q

r

|= ∃y. ¬(x→∗ y) ∧ ¬p(y) ∧ c(y)

Introduction Communicating Finite-States Machines From EMSO2[→,→∗] to CFMs Conclusion

Type of an event

x = y : (p, a) x→ y : (p, a) y → x : (p, a), (r, b)

y x : (p, a), (p, c), (q, a), (r, b)

x y : (p, a), (q, a), (r, a), (r, c)

x ‖ y : (q, a), (r, a), (r, c)

x
a a c a a a a a a a a a a

a a a a a a a a a a a a a a

b b b c a c a a a a a c

p

q

r

|= ∃y. ¬(x→∗ y) ∧ ¬p(y) ∧ c(y)

Introduction Communicating Finite-States Machines From EMSO2[→,→∗] to CFMs Conclusion

Type of an event

x = y : (p, a) x→ y : (p, a) y → x : (p, a), (r, b)

y x : (p, a), (p, c), (q, a), (r, b) x y : (p, a), (q, a), (r, a), (r, c)

x ‖ y : (q, a), (r, a), (r, c)

x
a a c a a a a a a a a a a

a a a a a a a a a a a a a a

b b b c a c a a a a a c

p

q

r

|= ∃y. ¬(x→∗ y) ∧ ¬p(y) ∧ c(y)

Introduction Communicating Finite-States Machines From EMSO2[→,→∗] to CFMs Conclusion

Type of an event

x = y : (p, a) x→ y : (p, a) y → x : (p, a), (r, b)

y x : (p, a), (p, c), (q, a), (r, b) x y : (p, a), (q, a), (r, a), (r, c)

x ‖ y : (q, a), (r, a), (r, c)

x
a a c a a a a a a a a a a

a a a a a a a a a a a a a a

b b b c a c a a a a a c

p

q

r

|= ∃y. ¬(x→∗ y) ∧ ¬p(y) ∧ c(y)

Introduction Communicating Finite-States Machines From EMSO2[→,→∗] to CFMs Conclusion

Type of an event

x = y : (p, a) x→ y : (p, a) y → x : (p, a), (r, b)

y x : (p, a), (p, c), (q, a), (r, b) x y : (p, a), (q, a), (r, a), (r, c)

x ‖ y : (q, a), (r, a), (r, c)

x
a a c a a a a a a a a a a

a a a a a a a a a a a a a a

b b b c a c a a a a a c

p

q

r

|= ∃y. ¬(x→∗ y) ∧ ¬p(y) ∧ c(y)

Introduction Communicating Finite-States Machines From EMSO2[→,→∗] to CFMs Conclusion

Labels of parallel events

Automaton that determines the set of events on process p
that are parallel to some c on process r:

latestpqr

nextrqp

nextrp

a a c a a a a a a a a a a

a a a a a a a a a a a a a a

b b b c a c a a a a a c

p

q

r

n n y y y y n n n n y y y

Introduction Communicating Finite-States Machines From EMSO2[→,→∗] to CFMs Conclusion

Labels of parallel events

Automaton that determines the set of events on process p
that are parallel to some c on process r:

latestpqr

nextrqp

nextrp

a a c a a a a a a a a a a

a a a a a a a a a a a a a a

b b b c a c a a a a a c

p

q

r

n n y y y y n n n n y y y

Guess yes/no for each event

Introduction Communicating Finite-States Machines From EMSO2[→,→∗] to CFMs Conclusion

Labels of parallel events

Automaton that determines the set of events on process p
that are parallel to some c on process r:

latestpqr

nextrqp

nextrp

a a c a a a a a a a a a a

a a a a a a a a a a a a a a

b b b c a c a a a a a c

p

q

r

n n y y y y n n n n y y y

One component checks that “no” guesses are correct

→ path containing all “no”’s on p and all c’s on r

Introduction Communicating Finite-States Machines From EMSO2[→,→∗] to CFMs Conclusion

Labels of parallel events

Automaton that determines the set of events on process p
that are parallel to some c on process r:

latestpqr

nextrqp

nextrp

a a c a a a a a a a a a a

a a a a a a a a a a a a a a

b b b c a c a a a a a c

p

q

r

n n y y y y n n n n y y y

One component checks that “no” guesses are correct
→ path containing all “no”’s on p and all c’s on r

Introduction Communicating Finite-States Machines From EMSO2[→,→∗] to CFMs Conclusion

Labels of parallel events

Automaton that determines the set of events on process p
that are parallel to some c on process r:

latestpqr

nextrqp

nextrp

a a c a a a a a a a a a a

a a a a a a a a a a a a a a

b b b c a c a a a a a c

p

q

r

n n y y y y n n n n y y y

One component checks that “yes” guesses are correct:

→ check y ‖ c , and y ‖ c
→ check color of latest events co-reachable via pqr, resp. pr,
and first events reachable via rqp, resp. rp

Introduction Communicating Finite-States Machines From EMSO2[→,→∗] to CFMs Conclusion

Labels of parallel events

Automaton that determines the set of events on process p
that are parallel to some c on process r:

latestpqr

nextrqp

nextrp

a a c a a a a a a a a a a

a a a a a a a a a a a a a a

b b b c a c a a a a a c

p

q

r

n n y y y y n n n n y y y

One component checks that “yes” guesses are correct:

→ check y ‖ c , and y ‖ c
→ check color of latest events co-reachable via pqr, resp. pr,
and first events reachable via rqp, resp. rp

Introduction Communicating Finite-States Machines From EMSO2[→,→∗] to CFMs Conclusion

Labels of parallel events

Automaton that determines the set of events on process p
that are parallel to some c on process r:

latestpqr

nextrqp

nextrp

a a c a a a a a a a a a a

a a a a a a a a a a a a a a

b b b c a c a a a a a c

p

q

r

n n y y y y n n n n y y y

One component checks that “yes” guesses are correct:
→ check y ‖ c , and y ‖ c

→ check color of latest events co-reachable via pqr, resp. pr,
and first events reachable via rqp, resp. rp

Introduction Communicating Finite-States Machines From EMSO2[→,→∗] to CFMs Conclusion

Labels of parallel events

Automaton that determines the set of events on process p
that are parallel to some c on process r:

latestpqr

nextrqp

nextrp

a a c a a a a a a a a a a

a a a a a a a a a a a a a a

b b b c a c a a a a a c

p

q

r

n n y y y y n n n n y y y

One component checks that “yes” guesses are correct:
→ check y ‖ c , and y ‖ c

→ check color of latest events co-reachable via pqr, resp. pr,
and first events reachable via rqp, resp. rp

Introduction Communicating Finite-States Machines From EMSO2[→,→∗] to CFMs Conclusion

Labels of parallel events

Automaton that determines the set of events on process p
that are parallel to some c on process r:

latestpqr

nextrqp

nextrp

a a c a a a a a a a a a a

a a a a a a a a a a a a a a

b b b c a c a a a a a c

p

q

r

n n y y y y n n n n y y y

One component checks that “yes” guesses are correct:
→ check y ‖ c , and y ‖ c
→ check color of latest events co-reachable via pqr, resp. pr,
and first events reachable via rqp, resp. rp

Introduction Communicating Finite-States Machines From EMSO2[→,→∗] to CFMs Conclusion

Labels of parallel events

Automaton that determines the set of events on process p
that are parallel to some c on process r:

latestpqr

nextrqp

nextrp

a a c a a a a a a a a a a

a a a a a a a a a a a a a a

b b b c a c a a a a a c

p

q

r

n n y y y y n n n n y y y

One component checks that “yes” guesses are correct:
→ check y ‖ c , and y ‖ c
→ check color of latest events co-reachable via pqr, resp. pr,
and first events reachable via rqp, resp. rp

Introduction Communicating Finite-States Machines From EMSO2[→,→∗] to CFMs Conclusion

Labels of parallel events

Automaton that determines the set of events on process p
that are parallel to some c on process r:

latestpqr

nextrqp

nextrp

a a c a a a a a a a a a a

a a a a a a a a a a a a a a

b b b c a c a a a a a c

p

q

r

n n y y y y n n n n y y y

One component checks that “yes” guesses are correct:
→ check y ‖ c , and y ‖ c
→ check color of latest events co-reachable via pqr, resp. pr,
and first events reachable via rqp, resp. rp

Introduction Communicating Finite-States Machines From EMSO2[→,→∗] to CFMs Conclusion

Conclusion

I Generalization of Büchi-Elgot-Trakhtenbrot Theorem:
EMSO2[→,→∗] = CFM.

I Doubly-exponential w.r.t. the input formula (optimal).

Open questions:

I FO[→,→∗] ⊆ CFM ?
FO[→∗] ⊆ CFM ?

I What are the classes of graphs on which EMSO2[→,→∗]
and graph acceptors are expressively equivalent?

Thank you!

Introduction Communicating Finite-States Machines From EMSO2[→,→∗] to CFMs Conclusion

Conclusion

I Generalization of Büchi-Elgot-Trakhtenbrot Theorem:
EMSO2[→,→∗] = CFM.

I Doubly-exponential w.r.t. the input formula (optimal).

Open questions:

I FO[→,→∗] ⊆ CFM ?
FO[→∗] ⊆ CFM ?

I What are the classes of graphs on which EMSO2[→,→∗]
and graph acceptors are expressively equivalent?

Thank you!

Introduction Communicating Finite-States Machines From EMSO2[→,→∗] to CFMs Conclusion

Conclusion

I Generalization of Büchi-Elgot-Trakhtenbrot Theorem:
EMSO2[→,→∗] = CFM.

I Doubly-exponential w.r.t. the input formula (optimal).

Open questions:

I FO[→,→∗] ⊆ CFM ?
FO[→∗] ⊆ CFM ?

I What are the classes of graphs on which EMSO2[→,→∗]
and graph acceptors are expressively equivalent?

Thank you!

Introduction Communicating Finite-States Machines From EMSO2[→,→∗] to CFMs Conclusion

Conclusion

I Generalization of Büchi-Elgot-Trakhtenbrot Theorem:
EMSO2[→,→∗] = CFM.

I Doubly-exponential w.r.t. the input formula (optimal).

Open questions:

I FO[→,→∗] ⊆ CFM ?
FO[→∗] ⊆ CFM ?

I What are the classes of graphs on which EMSO2[→,→∗]
and graph acceptors are expressively equivalent?

Thank you!

Introduction Communicating Finite-States Machines From EMSO2[→,→∗] to CFMs Conclusion

Conclusion

I Generalization of Büchi-Elgot-Trakhtenbrot Theorem:
EMSO2[→,→∗] = CFM.

I Doubly-exponential w.r.t. the input formula (optimal).

Open questions:

I FO[→,→∗] ⊆ CFM ?
FO[→∗] ⊆ CFM ?

I What are the classes of graphs on which EMSO2[→,→∗]
and graph acceptors are expressively equivalent?

Thank you!

Introduction Communicating Finite-States Machines From EMSO2[→,→∗] to CFMs Conclusion

Conclusion

I Generalization of Büchi-Elgot-Trakhtenbrot Theorem:
EMSO2[→,→∗] = CFM.

I Doubly-exponential w.r.t. the input formula (optimal).

Open questions:

I FO[→,→∗] ⊆ CFM ?
FO[→∗] ⊆ CFM ?

I What are the classes of graphs on which EMSO2[→,→∗]
and graph acceptors are expressively equivalent?

Thank you!

Introduction Communicating Finite-States Machines From EMSO2[→,→∗] to CFMs Conclusion

Conclusion

I Generalization of Büchi-Elgot-Trakhtenbrot Theorem:
EMSO2[→,→∗] = CFM.

I Doubly-exponential w.r.t. the input formula (optimal).

Open questions:

I FO[→,→∗] ⊆ CFM ?
FO[→∗] ⊆ CFM ?

I What are the classes of graphs on which EMSO2[→,→∗]
and graph acceptors are expressively equivalent?

Thank you!

	Introduction
	Communicating Finite-States Machines
	CFMs
	MSO
	Büchi Theorems

	From EMSO2 [,] to CFMs
	Scott Normal Form and types
	Types
	Testing parallel events

	Conclusion

