Introduction Communicating Finite-States Machines From EMSO“)[AA —*] to CFMs Conclusion
00000 00000

Communicating Finite-State Machines and
Two-Variable Logic

Benedikt Bollig, Marie Fortin, and Paul Gastin

LSV, CNRS & ENS Paris-Saclay, Université Paris-Saclay, France

STACS 2018
Caen, France
February 28 — March 3

Introduction Communicating Finite-States Machines From EMSO? [, —"] to CFMs Conclusion
00000 00000

Biichi-Elgot-Trakhtenbrot theorem ('60s)

Introduction

Communicating Finite-States Machines
00000

From EMSO? [—, —*] to CFMs
00000

Biichi-Elgot-Trakhtenbrot theorem ('60s)

Conclusion

2 boa—=sbsc—oa—-b—ce -
// \\
,/ Words \\
1 |
1 |
I |
b, c
a
Vz. a(z) = Jy. (x = y Ab(y)) .e
b
Monadic Second-Order Logic

Finite automaton

MSO[—] = Finite Automata

Introduction

Communicating Finite-States Machines
00000

From EMSO? [—, —*] to CFMs
00000

Biichi-Elgot-Trakhtenbrot theorem ('60s)

Conclusion

7 b=sa—-b=sc—sa—b—c -
// \\
,/ Words \\
1 |
1 |
I |
induction b, c
— T
a
Vz. a(z) = Jy. (x = y Ab(y)) .e

b

Monadic Second-Order Logic

Finite automaton

MSO[—] = Finite Automata

Introduction

Communicating Finite-States Machines
00000

From EMSO? [—

, —*] to CFMs
00000

Biichi-Elgot-Trakhtenbrot theorem ('60s)

—

a b—sa—>b—o>c—a—b—>c -~
// \\
,/ Words \\
1 1
1 1
[I
induction b, c
3X,. 3X,. V. V. .
z =y A Xo(z) Aa(y) = X1(y)
A @y A Xo(@) Aby) = Xo(y) .e
A -
b
Monadic Second-Order Logic

MSO[—] = Finite Automata

Finite automaton

Conclusion

Introduction
00000

Communicating Finite-States Machines

Biichi-Elgot-Trakhtenbrot theorem ('60s)

2 b=sa—=b—=c—oa—=b—=c

3X,. 3X;. Va. Vy.
z =y A Xo(z) Aa(y) = X1(y)

ANz —=yAXo(x) Aby) = Xo(y)
VAN

Monadic Second-Order Logic

From EMSO? [—, —*] to CFMs Conclusion
00000
\
\
\
Words \
|
|
|
induction b, c
—
a

Finite automaton

MSO[—| = Finite Automata = EMSO[—]

3X0 ... 31X . with ¢ € FO[—]

Introduction Communicating Finite-States Machines From EMSO“‘[>, —*] to CFMs

Conclusion
Biichi-Elgot-Trakhtenbrot theorem ('60s)
7 boa—=boc—oa—=b—e n
,// Words \\\
induction b, c

3X,. 3X;. Va. Vy. s .

z =y A Xo(z) Aa(y) = X1(y)
A @ =y AXo(e) Aby) = Xoly) .°
A -

Monadic Second-Order Logic Finite automaton

MSO[—] = Finite Automata = EMSO[—] = EMSO?*[—]

3Xo...3X.¢ with ¢ € FO[—] two first-order variable names

Introduction Communicating Finite-States Machines From EMSO? [, —"] to CFMs Conclusion
00000 00000

... and some of its extensions

Introduction Communicating Finite-States Machines From EMSOQL*?. —*] to CFMs Conclusion
00000 00000

... and some of its extensions

Over trees:
MSO = Tree Automata = EMSO? [Thatcher-Wright '68]

Introduction Communicating Finite-States Machines From EMSO“‘[>, —*] to CFMs Conclusion
00000 00000

... and some of its extensions

Over trees:
MSO = Tree Automata = EMSO? [Thatcher-Wright '68]

Over Mazurkievitch traces:
MSO = Asynchronous Automata = EMSO® [Thomas '90]

Introduction Communicating Finite-States Machines From EMSO“‘[>, —*] to CFMs
00000 00000

Conclusion

... and some of its extensions

Over trees:
MSO = Tree Automata = EMSO? [Thatcher-Wright '68]

Over Mazurkievitch traces:
MSO = Asynchronous Automata = EMSO® [Thomas '90]

Over data words:
EMSO? = Data Automata C EMSO
[Bojanczyk-David-Muscholl-Schwentick-Segoufin '06]

Introduction Communicating Finite-States Machines From EMSOJV >, — | to CFMs Conclusion

... and some of its extensions

Over trees:
MSO = Tree Automata = EMSO? [Thatcher-Wright '68]

Over Mazurkievitch traces:
MSO = Asynchronous Automata = EMSO? [Thomas '90]

Over data words:
EMSO? = Data Automata C EMSO
[Bojanczyk-David-Muscholl-Schwentick-Segoufin '06]

Goal: A Biichi-like theorem for message-passing systems

Introduction Communicating Finite-States Machines From EMSO?[—, —*] to CFMs Conclusion
©0000 00000

Communicating finite-state machines (CFMs)
[Brand—Zafiropulo '83]

Introduction Communicating Finite-States Machines From EMSO?[—, —*] to CFMs Conclusion
©0000 00000

Communicating finite-state machines (CFMs)
[Brand—Zafiropulo '83]
» Finite set of processes, e.g. Proc = {p,q,r}

Introduction Communicating Finite-States Machines From EMSO?[—, —*] to CFMs Conclusion
@0000 00000

Communicating finite-state machines (CFMs)
[Brand—Zafiropulo '83]
» Finite set of processes, e.g. Proc = {p,q,r}
» Unbounded point-to-point FIFO channels

Introduction Communicating Finite-States Machines From EMSO?[—, —*] to CFMs Conclusion
@0000 00000

Communicating finite-state machines (CFMs)
[Brand—Zafiropulo '83]
» Finite set of processes, e.g. Proc = {p,q,r}
» Unbounded point-to-point FIFO channels

////\\\\

Introduction Communicating Finite-States Machines From EMSO?[—, —*] to CFMs Conclusion
@0000 00000

Communicating finite-state machines (CFMs)
[Brand—Zafiropulo '83]
» Finite set of processes, e.g. Proc = {p,q,r}
» Unbounded point-to-point FIFO channels
» For each process, one finite labeled transition system over
D x}!, 7} x Msg x Proc)UX

| \ N
send receive Finite set of Processes
Finite alphabet messages

7\

p q

Introduction Communicating Finite-States Machines From EMSO?[—, —*] to CFMs Conclusion
@0000 00000

Communicating finite-state machines (CFMs)
[Brand—Zafiropulo '83]
» Finite set of processes, e.g. Proc = {p,q,r}
» Unbounded point-to-point FIFO channels
» For each process, one finite labeled transition system over
Ex} , 7} x Msg x Proc)UX

| \ N
send receive Finite set of Processes
Finite alphabet messages
(a, 1,54, q) (b)
(a,?,B4, p)
(a,,B4, q)

////\\\\

Introduction Communicating Finite-States Machines From EMSO?[—, —*] to CFMs Conclusion
@0000 00000

Communicating finite-state machines (CFMs)
[Brand—Zafiropulo '83]
» Finite set of processes, e.g. Proc = {p,q,r}
» Unbounded point-to-point FIFO channels
» For each process, one finite labeled transition system over
D x}!, 7} x Msg x Proc)UX

| \ N
send receive Finite set of Processes
Finite alphabet messages

(a, 1,54, q) (b)

(a,?,B4, p)
r A==

(a,,B4, q)

////\\\\ (a,2,52,7)
(a,?,BK,)

P q A

Introduction Communicating Finite-States Machines From EMSO?[—, —*] to CFMs Conclusion
@0000 00000

Communicating finite-state machines (CFMs)
[Brand—Zafiropulo '83]
» Finite set of processes, e.g. Proc = {p,q,r}
» Unbounded point-to-point FIFO channels
» For each process, one finite labeled transition system over

D x}!,?}x Msg x Proc)UX

| \ .
send receive Finite set of Processes
Finite alphabet messages

(a, 1,54, q) (b)

(a,?,B4, p)
r A==

(a,,B4, q)

//// \\\\ (0,7,)
(a,?,BK,)
p g O

(b, 1,24, 1) (a, 7,04, p)

Introduction Communicating Finite-States Machines From EMSO?[—, —*] to CFMs Conclusion
@0000 00000

Communicating finite-state machines (CFMs)
[Brand—Zafiropulo '83]
» Finite set of processes, e.g. Proc = {p,q,r}
» Unbounded point-to-point FIFO channels
» For each process, one finite labeled transition system over

D x}!,?}x Msg x Proc)UX

! \ N
send receive Finite set of Processes
Finite alphabet messages
- (a,!,54, q) (b)
» Global acceptance condition (@75, p)
roo* .0
(a, 1,54, q)
//// \\\\ (0,7,)
(a,?,BK,)
p g =

(b, 1,24, 1) (a, 7,04, p)

Communicating Finite-States Machines
oce

Language of a CFM

CFMs recognize languages of Message Sequence Charts:

T T T
q aﬂaﬂcf CL—)T*}CL—)G*}CL—)T
r a—a—h—ph—a a
> FIFO

» acyclic

Introduction Communicating Finite-States Machines From EF\.V’WSO‘YV >

>*] to CFMs Conclusion
0®000

Language of a CFM

CFMs recognize languages of Message Sequence Charts:

SAIEREe %
q a&»a&»ag CL@—» — ﬂa@—»ag
r S atsp—p—ads a*
» FIFO

» acyclic

Introduction Communicating Finite-States Machines From EMSOJV >, —] to CFMs Conclusion
0@000 00000

Language of a CFM

CFMs recognize languages of Message Sequence Charts:

P azag b U G az—a € L(Ay)

» FIFO

» acyclic

Introduction Communicating Finite-States Machines From EMSOJV >, —] to CFMs Conclusion
0@000 00000

Language of a CFM

CFMs recognize languages of Message Sequence Charts:

q a&)a&»ag (L& *)QB—» Ha&)ag (- L(Aq)

» FIFO

» acyclic

Introduction Communicating Finite-States Machines From EMSOJV >, —] to CFMs Conclusion
0@000 00000

Language of a CFM

CFMs recognize languages of Message Sequence Charts:

r ‘> disp—p—d*= a* € L(A,)

» FIFO

» acyclic

Introduction Communicating Finite-States Machines From EMSO?[—, —*] to CFMs Conclusion
00000 00000

Monadic Second-Order Logic over MSCs

Introduction Communicating Finite-States Machines From EMSO?[—, —*] to CFMs Conclusion
00e00 00000

Monadic Second-Order Logic over MSCs

MSO[—, —7]

o u= a(@)|pl)|z=ylz—oylr-o"y
|3z. ¢ | 3X. p|lz e X [V |-y

Introduction Communicating Finite-States Machines From EMSO?[—, —*] to CFMs Conclusion
00e00 00000

Monadic Second-Order Logic over MSCs

MSO[—, —7]

o u= a(@)|pl)|z=ylz—oylr-o"y
|3z. ¢ | 3X. p|lz e X [V |-y

» FO[—,—*] : no 3X.

Introduction Communicating Finite-States Machines From EMSO?[—, —*] to CFMs Conclusion
00e00 00000

Monadic Second-Order Logic over MSCs

MSO[—, —7]

o u= a(@)|pl)|z=ylz—oylr-o"y
|3z. ¢ | 3X. p|lz e X [V |-y

» FO[—,—*] : no 3X.
» FO[—=]: nox —*y

Introduction Communicating Finite-States Machines From EMSO?[—, —*] to CFMs Conclusion
00e00 00000

Monadic Second-Order Logic over MSCs

MSO[—, —7]

o u= a(@)|pl)|z=ylz—oylr-o"y
| 3z. o | IX. p |z e X [V |y

» FO[—,—*] : no 3X.
» FO[—=]: nox —*y
» FO?*[—, —=*] : only two variable names

Introduction Communicating Finite-States Machines From EMSO?[—, —*] to CFMs Conclusion
00e00 00000

Monadic Second-Order Logic over MSCs

MSO[—, —7]

o u= a(@)|pl)|z=ylz—oylr-o"y
| 3z. o | IX. p |z e X [V |y

v

FO[—,—*] : no 3X.
FO[—=]: noz ="y

v

v

FO?[—, —*] : only two variable names
EMSO[—, —*] : 3X;...3X,. ¢, with ¢ € FO[—, =]

v

Introduction Communicating Finite-States Machines From EMSO“‘[>, —*] to CFMs Conclusion
00e00 00000

Monadic Second-Order Logic over MSCs

MSO[—, —7]

o u= a(@)|pl)|z=ylz—oylr-o"y
|3z. 0| IX. plzeX V| p

v

FO[—,—*] : no 3X.
FO[—=]: noz ="y

v

v

FO?[—, —*] : only two variable names
EMSO[—, —*] : 3X;...3X,. ¢, with ¢ € FO[—, =]
EMSO?[—, —*] : 3X;...3X,. ¢, with ¢ € FO?[—=, =]

v

v

Introduction Communicating Finite-States Machines From EMSO“‘[>, —*] to CFMs Conclusion
00e00 00000

Monadic Second-Order Logic over MSCs

MSO[—, —7]

o u= a(@)|pl)|z=ylz—oylr-o"y
|3z. 0| IX. plzeX V| p

v

FO[—,—*] : no 3X.
FO[—=]: noz ="y

v

v

FO?[—, —*] : only two variable names
EMSO[—, —*] : 3X;...3X,. ¢, with ¢ € FO[—, =]
EMSO?[—, —*] : 3X;...3X,. ¢, with ¢ € FO?[—=, =]

v

v

Introduction Communicating Finite-States Machines From EMSO?[—, —*] to CFMs Conclusion
00e00 00000

Monadic Second-Order Logic over MSCs

MSO[—, —7]

o u= a(@)|pl)|z=ylz—oylr-o"y
|3z. ¢ | 3X. p|lz e X [V |-y

Examples in FO?[—, —*]:

Introduction Communicating Finite-States Machines From EMSO?[—, —*] to CFMs Conclusion
00e00 00000

Monadic Second-Order Logic over MSCs

MSO[—, —7]
o u= a(@)|pl)|z=ylz—oylr-o"y
|3z 0| IX. plz e X oV |-

Examples in FO?[—, —*]:
>rlly = o(z ="y Ay =7 o)

Introduction Communicating Finite-States Machines From EMSO?[—, —*] to CFMs Conclusion
00e00 00000

Monadic Second-Order Logic over MSCs

MSO[—, —7]

o u= a(@)|pl)|z=ylz—oylr-o"y
| 3z. o | IX. p |z e X [V |y

Examples in FO*[—, —*]:
>rlly = @2y Aoy =7)
» Mutual exclusion: =(3z. Jy. c(x) A c(y) Az || y)

From EMSO?[—, —*] to CFMs

Communicating Finite-States Machines
00000

[e]e]e] o}

Monadic Second-Order Logic over MSCs

Introduction

Conclusion

From EMSO?[—, —*] to CFMs Conclusion

Communicating Finite-States Machines
00000

[e]e]e] o}

Monadic Second-Order Logic over MSCs

Introduction

Q—
Qe—
-
E——

M EVz. c(x) = Jy. qly) N ="y

From EMSO?[—, —*] to CFMs Conclusion

Communicating Finite-States Machines
00000

[e]e]e] o}

Monadic Second-Order Logic over MSCs

Introduction

Q—
Qe—
-
E——

M EVz. c(x) = Jy. qly) N ="y

From EMSO?[—, —*] to CFMs Conclusion

Communicating Finite-States Machines
00000

[e]e]e] o}

Monadic Second-Order Logic over MSCs

Introduction

Q—
Qe—
-
L
E——

M EVz. c(x) = Jy. qly) N ="y

From EMSO?[—, —*] to CFMs Conclusion

Communicating Finite-States Machines
00000

[e]e]e] o}

Monadic Second-Order Logic over MSCs

Introduction

— 0 —C— 00— a0 — 04— a04—>a

|| 1]

—a—a a—a—a—a a—-a

AT

b—a a—C—a—a

M EVz. c(x) = Jy. qly) N ="y

From EMSO?[—, —*] to CFMs Conclusion

Communicating Finite-States Machines
00000

[e]e]e] o}

Monadic Second-Order Logic over MSCs

Introduction

CL;’b;’b;’a—)a;’C;’a;’a

M EVz. c(x) = Jy. qly) N ="y
M [=(3z. Jy. c(x) Ae(y) Az || y)

From EMSO?[—, —*] to CFMs Conclusion

Communicating Finite-States Machines
00000

[e]e]e] o}

Monadic Second-Order Logic over MSCs

Introduction

CL;’b;’b;’a—)a;’C‘—’a;’a

M EVz. c(x) = Jy. qly) N ="y
M [=(3z. Jy. c(x) Ae(y) Az || y)

Introduction Communicating Finite-States Machines From EMSO?[—, —*] to CFMs Conclusion
0000e 00000

“Buchi Theorems” for CFMs

Introduction Communicating Finite-States Machines From EMSO?[—, —*] to CFMs Conclusion
[e]e]ee] } 00000

“Buchi Theorems” for CFMs

Theorem (Mukund et al. '05, Genest-Kuske-Muscholl '06)
When channels are bounded, CFM = MSO[—].

Introduction Communicating Finite-States Machines From EMSO?[—, —*] to CFMs Conclusion
[e]e]ee] } 00000

“Buchi Theorems” for CFMs

Theorem (Mukund et al. '05, Genest-Kuske-Muscholl '06)
When channels are bounded, CFM = MSO[—].

Theorem (Bollig-Leucker '06)
CFM = EMSO[—] € MSO|—].

Introduction Communicating Finite-States Machines From EMSO“‘[>, —*] to CFMs Conclusion
[e]e]ee] } 00000

“Buchi Theorems” for CFMs

Theorem (Mukund et al. '05, Genest-Kuske-Muscholl '06)
When channels are bounded, CFM = MSO[—].

Theorem (Bollig-Leucker '06)
CFM = EMSO[—] € MSO|—].

In the unbounded case, CFMs are not complementable!
— No inductive translation logic ~~» CFMs.

Introduction Communicating Finite-States Machines From EF\.V’WSO‘YV >, —] to CFMs Conclusion

0000e 00000

“Buchi Theorems” for CFMs

Theorem (Mukund et al. '05, Genest-Kuske-Muscholl '06)
When channels are bounded, CFM = MSO[—].

Theorem (Bollig-Leucker '06)
CFM = EMSO[—] € MSO|—].

In the unbounded case, CFMs are not complementable!
— No inductive translation logic ~~» CFMs.

Theorem
CFM = EMSO?*[—, —*].

Introduction Communicating Finite-States Machines From EMSOz[—>, —™*] to CFMs Conclusion
00000 @0000

Scott normal form ('65)

Scott normal form:
Any EMSO?[—, —*] formula is equivalent to a formula

3X5.... 33X, Ve Vy(z,y) A /\ V. Jy.i(z,y)

=1

where ¢(z,y) and each ¢;(z,y) is quantifier-free.

Introduction

Communicating Finite-States Machines From EMSO?[—, —*] to CFMs Conclusion
00000 0@000

From Scott normal form to CFMs

3X1. . 3. Ve yap(z,y) A\ Ve Ty, y)

=1

Introduction Communicating Finite-States Machines From EMSOz[—>, —™*] to CFMs Conclusion
00000 0@000

From Scott normal form to CFMs

3X1. . 3. Ve yap(z,y) A\ Ve Ty, y)

=1

» Guess a valuation for each Xj.

Introduction Communicating Finite-States Machines From EMSOz[—>, —™*] to CFMs Conclusion
00000 0@000

From Scott normal form to CFMs

3X1. . 3. Ve yap(z,y) A\ Ve Ty, y)

=1

» Guess a valuation for each Xj.

» Compute the type of each event.

From EMSO?[—, —*] to CFMs
oe

From Scott normal form to CFMs

3Xy. .. 3K, Ve Yy (z,y) A f\ Yo Ty, y)

=1

» Guess a valuation for each X;.
» Compute the type of each event.

The type of x characterizes the set
of quantifier-free formulas ¢ with
one free variable such that Jy.¢(x)
holds, or such that Vy.p(z) holds.

From EMSO?[—, —*] to CFMs
oe

From Scott normal form to CFMs

3Xy. .. 3K, Ve Yy (z,y) A f\ Yo Ty, y)

=1

» Guess a valuation for each X;.

» Compute the type of each event.
The type of x characterizes the set
of quantifier-free formulas ¢ with

one free variable such that Jy.¢(x)
holds, or such that Vy.p(z) holds.

» Restrict to types verifying Vy.1)(z,y) and all Jy.;(x,y).

Introduction Communicating Finite-States Machines From EMSOz[—>, —™*] to CFMs Conclusion
00000

From Scott normal form to CFMs

» Compute the type of each event.

The type of x characterizes the set
of quantifier-free formulas ¢ with
one free variable such that Jy.¢(x)
holds, or such that Vy.p(z) holds.

From EMSO?[—, —*] to CFMs
[Je]

Type of an event

Type of event z: set of all possible tuples (<, p, a) such that
for some event y:

> T DY
» x is on process p, and labeled a.

<1 is one of all possible relative positions between two events:

From EMSO?[—, —*] to CFMs
[Je]

Type of an event

Type of event z: set of all possible tuples (<, p, a) such that
for some event y:

> T DY
» x is on process p, and labeled a.

<1 is one of all possible relative positions between two events:
> =1

From EMSO?[—, —*] to CFMs
[Je]

Type of an event

Type of event z: set of all possible tuples (<, p, a) such that
for some event y:

> T DY
» x is on process p, and labeled a.

<1 is one of all possible relative positions between two events:
> =1

> Tr—Y

From EMSO?[—, —*] to CFMs
[Je]

Type of an event

Type of event z: set of all possible tuples (<, p, a) such that
for some event y:

> XY

» x is on process p, and labeled a.

<1 is one of all possible relative positions between two events:
> =1
>y
>y

From EMSO?[—, —*] to CFMs
[Je]

Type of an event

Type of event z: set of all possible tuples (<, p, a) such that
for some event y:

> XY

» x is on process p, and labeled a.

<1 is one of all possible relative positions between two events:
> r=y >z ~> Yy, where ~» = =T\ —
>y
>y

From EMSO?[—, —*] to CFMs
[Je]

Type of an event

Type of event z: set of all possible tuples (<, p, a) such that
for some event y:

> XY

» x is on process p, and labeled a.

<1 is one of all possible relative positions between two events:
»r=y >z ~> Yy, where ~» = =T\ —
> Tr—Y > YT

> Yy—

From EMSO?[—, —*] to CFMs
[Je]

Type of an event

Type of event z: set of all possible tuples (<, p, a) such that
for some event y:

> XY

» x is on process p, and labeled a.

<1 is one of all possible relative positions between two events:
»r=y >z ~> Yy, where ~» = =T\ —
> Tr—Y > Y~ T
>y » x|y e,z A yandy A

Introduction Communicating Finite-States Machines From EMSO2[—>, —™*] to CFMs Conclusion
00000 00000

Type of an event

——C—>a—>0-—0—0—>0—0—0—> 0 —> 0 —>

Il |

a— 04— a—a a—a—a—a a— a—a—a

| | | J

r h——b h—c a—C—0—0—> 01— 0—>0—>C

Introduction Communicating Finite-States Machines From EMSOz[—>, —™*] to CFMs Conclusion
00000 00000

Type of an event

z=y : (pa)

——C—>a—>0-—0—0—>0—0—0—> 0 —> 0 —>

Il |

a— 04— a—a a—a—a—a a— a—a—a

| | | J

r h——b h—c a—C—0—0—> 01— 0—>0—>C

Introduction Communicating Finite-States Machines From EMSOz[—>, —™*] to CFMs Conclusion
00000 00000

Type of an event

z=y : (pa) =y : (pa)

a—aq—C——a0—20—>0— 00— a0— 06— 06— a0—aq—>
a— 04— a—a a—a—a—a a—a a a—a—a

J

b——b h—c a—C—0—0—> 01— 0—>0—>C

Introduction Communicating Finite-States Machines From EMSO?[—, —*] to CFMs
00000 00000

Type of an event

z=y : (pa) =y : (pa) y—x : (p,a),(r,d)

—0—a0— 04— a4 —>

1‘ |

——C—>a4—>0-—a0— 00—
a— a a—a—a

et
|

—} h—c a—C—0—0—> 01— 0—>0—>C

Conclusion

Introduction Communicating Finite-States Machines From EMSO?[—, —*] to CFMs
00000 00000

Type of an event

z=y : (pa) =y : (pa) y—x : (p,a),(r,d)

y~—~x (pv a)? (p7 C)7 (Q7a)7 (Tr b)

——C————> 0 —> ——a—a—a0— 00— 04—

=i |

a—a—a—a a a a a—a—a

i audBUND |

—_—CC—1—a0—qQ—Fa0—>a4—C

Conclusion

Introduction Communicating Finite-States Machines From EMSOz[—>, —™*] to CFMs
00000 00000

Type of an event

z=y : (pa) =y : (pa) y—x : (p,a),(r,d)
y~z : (p,a),(p,c), (g a),(r,b) z~y & (p,a), (g a),(ra),(rc)
X
L T TN

a—a—a—a a

e el

—aQ a a—a—a

i |

—_—C— 00— 00— Q—Fa0—>a4—C

Conclusion

Introduction Communicating Finite-States Machines From EMSOz[—>, —™*] to CFMs

00000 00000

Type of an event

z=y : (pa) =y : (pa) y—x : (p,a),(r,d)
y~z : (p,a),(p,c), (g a),(r,b) z~y & (p,a), (g a),(ra),(rc)

z ” y (an)v(rﬂa%(r’c)

——C————> 0 —> —S——a—a— 04— 0—> 04—

BRI n |

a—a—a—a a a a a—a—a

Ll |

Q

—_—C— 00— a0— Q—F0—>a—C

Conclusion

Introduction Communicating Finite-States Machines From EMSOz[—>, —™*] to CFMs

00000 00000

Type of an event

z=y : (pa) =y : (pa) y—x : (p,a),(r,b)
y~z : (p,a),(p,c), (g a),(r,b) z~y & (p,a), (g a),(ra),(rc)

z ” y (an)v(r’a%(r’c)

——C————> 0 —> —S——a—a— 04— 0—> 04—

TJ“‘JH |

a—a—a—a a a a a—a—a

Ll |

—C— 00— 00— — A —a—C
E 3y, ~(z =" y) A-p(y) Acy)

Conclusion

Introduction Communicating Finite-States Machines From EMSOz[—>, —™*] to CFMs
00000 [e]e]e]e] }

Labels of parallel events

Automaton that determines the set of events on process p
that are parallel to some ¢ on process r:

Ga—a0—C—0— 00— 00— 00— 00— a0 —a—a—a04—a

|| Ll |

a—a a a—a—a

| |

r b——b b—>c a—CcC—a6—>a—>q—————>q—>0—>C

Introduction Communicating Finite-States Machines From EMSOz[—>, —™*] to CFMs Conclusion
0000®

Labels of parallel events

Automaton that determines the set of events on process p
that are parallel to some ¢ on process r:

mn M @ P O © @ nmn @ O ¢

Ga—a0—C—0— 00— 00— 00— 00— a0 —a—a—a04—a

|| Ll |

a—a0—a—a — 04— a04—a a—a a a—a—a

oA |

b——b b— a@G—CcC—0—0—0——>a—0—C

Guess yes/no for each event

Introduction Communicating Finite-States Machines From EMSOz[—>, —™*] to CFMs Conclusion
0000®

Labels of parallel events

Automaton that determines the set of events on process p
that are parallel to some ¢ on process r:

y P O © @ nmn @ O ¢

— ™ 0— a0 —0— 00— 06— a0 —a0—a0a—a04—a

Ll |

— 04— a04—a a—a a a—a—a

T |

b—>c a—C—0—0—>Q—————> 01— 08— C

n n
a—a
a—a

q TH
T ob—b

—a

One component checks that “no” guesses are correct

From EMSO?[—, —*] to CFMs
L]

Labels of parallel events

Automaton that determines the set of events on process p
that are parallel to some ¢ on process r:

y P O © @ nmn @ O ¢

—C— 00— 00— 06— a0—a0—a—a—a—>a—a

Ll |

n n
a a
q a—a0—a—a a—a—a04—a a—a a a—a—a

zamm) |

—} b—cC a—C—a6—>a—>q@————>q—>0—>C

—

T

One component checks that “no” guesses are correct
— path containing all “no"’s on p and all ¢'s on r

From EMSO?[—, —*] to CFMs
L]

Labels of parallel events

Automaton that determines the set of events on process p
that are parallel to some ¢ on process r:

y P O © @ nmn @ O ¢

— ™ 0— a0 —0— 00— 06— a0 —a0—a0a—a04—a

Ll |

a—a a a—a—a

n n
a—a
a a

—a

q9 a—

|

—

T

One component checks that “yes” guesses are correct:

Introduction Communicating Finite-States Machines From EMSOz[—>, —™*] to CFMs Conclusion
0000®

Labels of parallel events

Automaton that determines the set of events on process p
that are parallel to some ¢ on process r:

mn M @ P O © @ nmn @ O ¢
a—a—C———a—a0—0—>0————0—>0—0—0—>0—>0Q
a—a—a—0—0—0—0Q [a—a G~ a—a—a

i |
r b——b h—c ae@eaﬂi—»a—wzﬂaﬁg

One component checks that “yes” guesses are correct:

Introduction Communicating Finite-States Machines From EMSOz[—>, —™*] to CFMs Conclusion
0000®

Labels of parallel events

Automaton that determines the set of events on process p
that are parallel to some ¢ on process r:

mn M @ P O © @ nmn @ O ¢
a—a—C———a—a0—0—>0————0—>0—0—0—>0—>0Q
a—a—a—0—0—0—0Q [a—a G~ a—a—a

i |
r b——b h—c ae@eaﬂi—»a—wzﬂaﬁg

One component checks that “yes” guesses are correct:

— check 'y || (©, and (y || (©)

Introduction Communicating Finite-States Machines From EMSOz[—>, —™*] to CFMs Conclusion
0000®

Labels of parallel events

Automaton that determines the set of events on process p
that are parallel to some ¢ on process r:

y P O © @ nmn @ O ¢
c

S — 00— 00— 00— a— 04— 06— a—a—a

Ll |

n n
a a
a—a—a a—a—a—a ‘ a—a a a—a—a

T -
r b——b b—c a~>@—>a~>i—»a—>a~»a~g

One component checks that “yes” guesses are correct:

— check 'y || (©, and (y || (©)

—q—>

From EMSO?[—, —*] to CFMs
L]

Labels of parallel events

Automaton that determines the set of events on process p
that are parallel to some ¢ on process r:

y P O © @ nmn @ O ¢
c

— 00— a—0—a0—>a0—>a—> 06— a0—a—a

One component checks that “yes” guesses are correct:

— check 'y || (©, and (y || (©)

— check color of latest events co-reachable via pqr, resp. pr,
and first events reachable via rqp, resp. rp

From EMSO?[—, —*] to CFMs
L]

Labels of parallel events

Automaton that determines the set of events on process p
that are parallel to some ¢ on process r:

n n n Yy y Yy

— - sa—a—a—a—@d—a

n
a
HaaTﬂ(l [a—a a a——a—a

a
J [next,
b—c a—OEa==a—o—————a—0a

One component checks that “yes” guesses are correct:

— check 'y || (©, and (y || (©)

— check color of latest events co-reachable via pqr, resp. pr,
and first events reachable via rqp, resp. rp

y y y
— 4}“*)(1,*}]’,‘)

n
a
— a4 —

Q<7Q =}

T b—b

From EMSO?[—, —*] to CFMs
L]

Labels of parallel events

Automaton that determines the set of events on process p
that are parallel to some ¢ on process r:

nn @ O ¢

—a—a0— 06— a—a

One component checks that “yes” guesses are correct:

— check 'y || (©, and (y || (©)

— check color of latest events co-reachable via pqr, resp. pr,
and first events reachable via rqp, resp. rp

Conclusion

Introduction Communicating Finite-States Machines From EMSOZL*?A —*] to CFMs Conclusion
00000 00000

Conclusion

» Generalization of Blichi-Elgot-Trakhtenbrot Theorem:
EMSO?[—, —*] = CFM.

Introduction Communicating Finite-States Machines From EMSO“)[AA —*] to CFMs Conclusion
00000 00000

Conclusion

» Generalization of Buichi-Elgot-Trakhtenbrot Theorem:
EMSO?[—, —*] = CFM.
» Doubly-exponential w.r.t. the input formula (optimal).

Introduction Communicating Finite-States Machines From EMSO“‘[>, —*] to CFMs Conclusion
00000 00000

Conclusion

» Generalization of Buichi-Elgot-Trakhtenbrot Theorem:
EMSO?[—, —*] = CFM.
» Doubly-exponential w.r.t. the input formula (optimal).

Open questions:

Introduction Communicating Finite-States Machines From EMSOJV >, —] to CFMs Conclusion
00000 00000

Conclusion

» Generalization of Buichi-Elgot-Trakhtenbrot Theorem:
EMSO?[—, —*] = CFM.
» Doubly-exponential w.r.t. the input formula (optimal).

Open questions:
» FO[—, =" CCFM ?
FO[—*] CCFM ?

Conclusion

Conclusion

» Generalization of Biichi-Elgot-Trakhtenbrot Theorem:
EMSO?[—, —*] = CFM.
» Doubly-exponential w.r.t. the input formula (optimal).

Open questions:
» FO[—, =" CCFM ?
FO[—*] CCFM ?
» What are the classes of graphs on which EMSO?*[—, —*]
and graph acceptors are expressively equivalent?

Conclusion

Conclusion

» Generalization of Biichi-Elgot-Trakhtenbrot Theorem:
EMSO?[—, —*] = CFM.
» Doubly-exponential w.r.t. the input formula (optimal).

Open questions:
» FO[—, =" CCFM ?
FO[—*] CCFM ?
» What are the classes of graphs on which EMSO?*[—, —*]
and graph acceptors are expressively equivalent?

Thank you!

	Introduction
	Communicating Finite-States Machines
	CFMs
	MSO
	Büchi Theorems

	From EMSO2 [,] to CFMs
	Scott Normal Form and types
	Types
	Testing parallel events

	Conclusion

