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Goal: A Büchi-like theorem for message-passing systems
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Communicating finite-state machines (CFMs)
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| ∃x. ϕ | ∃X. ϕ | x ∈ X | ϕ ∨ ϕ | ¬ϕ
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Monadic Second-Order Logic over MSCs
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“Büchi Theorems” for CFMs

Theorem (Mukund et al. ’05, Genest-Kuske-Muscholl ’06)

When channels are bounded, CFM = MSO[→].

Theorem (Bollig-Leucker ’06)

CFM = EMSO[→] ( MSO[→].

In the unbounded case, CFMs are not complementable!
→ No inductive translation logic  CFMs.

Theorem

CFM = EMSO2[→,→∗].
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Scott normal form (’65)

Scott normal form:
Any EMSO2[→,→∗] formula is equivalent to a formula

∃X1. . . .∃Xm. ∀x.∀y.ψ(x, y) ∧
n∧

i=1

∀x.∃y.ψi(x, y)

where ψ(x, y) and each ψi(x, y) is quantifier-free.
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From Scott normal form to CFMs

∃X1. . . .∃Xm. ∀x.∀y.ψ(x, y) ∧
n∧

i=1

∀x.∃y.ψi(x, y)

I Guess a valuation for each Xi.

I Compute the type of each event.

The type of x characterizes the set
of quantifier-free formulas ϕ with
one free variable such that ∃y.ϕ(x)
holds, or such that ∀y.ϕ(x) holds.

I Restrict to types verifying ∀y.ψ(x, y) and all ∃y.ψi(x, y).
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Type of an event

Type of event x: set of all possible tuples (./, p, a) such that
for some event y:

I x ./ y

I x is on process p, and labeled a.

./ is one of all possible relative positions between two events:

I x = y

I x→ y

I y → x

I x y, where  =→+ \→
I y  x

I x ‖ y, i.e., x 6→∗ y and y 6→∗ x
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Type of an event

x = y : (p, a) x→ y : (p, a) y → x : (p, a), (r, b)

y  x : (p, a), (p, c), (q, a), (r, b) x y : (p, a), (q, a), (r, a), (r, c)

x ‖ y : (q, a), (r, a), (r, c)

x
a a c a a a a a a a a a a

a a a a a a a a a a a a a a

b b b c a c a a a a a c

p

q

r

|= ∃y. ¬(x→∗ y) ∧ ¬p(y) ∧ c(y)
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Labels of parallel events

Automaton that determines the set of events on process p
that are parallel to some c on process r:

latestpqr

nextrqp

nextrp

a a c a a a a a a a a a a

a a a a a a a a a a a a a a

b b b c a c a a a a a c

p

q

r

n n y y y y n n n n y y y
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Conclusion

I Generalization of Büchi-Elgot-Trakhtenbrot Theorem:
EMSO2[→,→∗] = CFM.

I Doubly-exponential w.r.t. the input formula (optimal).

Open questions:

I FO[→,→∗] ⊆ CFM ?
FO[→∗] ⊆ CFM ?

I What are the classes of graphs on which EMSO2[→,→∗]
and graph acceptors are expressively equivalent?

Thank you!
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