Communicating Finite-States Machines

From EMSO $^2[\rightarrow,\rightarrow^*]$ to CFMs $_{\rm OOOOO}$

Conclusion

Communicating Finite-State Machines and Two-Variable Logic

Benedikt Bollig, Marie Fortin, and Paul Gastin

LSV, CNRS & ENS Paris-Saclay, Université Paris-Saclay, France

STACS 2018 Caen, France February 28 – March 3

From $\mathrm{EMSO}^2[\rightarrow,\rightarrow^*]$ to CFMs $_{\mathrm{OOOOO}}$

Conclusion

Büchi-Elgot-Trakhtenbrot theorem ('60s)

Monadic Second-Order Logic

Finite automaton

 $MSO[\rightarrow] =$ Finite Automata

 $MSO[\rightarrow] =$ Finite Automata

 $\mathsf{MSO}[\rightarrow] = \mathsf{Finite} \mathsf{Automata}$

 $\mathsf{MSO}[\rightarrow] = \mathsf{Finite Automata} = \mathsf{EMSO}[\rightarrow]$ $\exists X_0 \dots \exists X_n . \varphi \text{ with } \varphi \in \mathsf{FO}[\rightarrow]$

 $\mathsf{MSO}[\rightarrow] = \mathsf{Finite} \ \mathsf{Automata} = \mathsf{EMSO}[\rightarrow] = \mathsf{EMSO}^2[\rightarrow]$ $\exists X_0 \dots \exists X_n. \varphi \ \mathsf{with} \ \varphi \in \mathsf{FO}[\rightarrow] \qquad \mathsf{two} \ \mathsf{first-order} \ \mathsf{variable} \ \mathsf{names}$

Communicating Finite-States Machines

From $\mathrm{EMSO}^2[\rightarrow,\rightarrow^*]$ to CFMs 00000

Conclusion

... and some of its extensions

Communicating Finite-States Machines

From $\mathrm{EMSO}^2[\rightarrow,\rightarrow^*]$ to CFMs $_{00000}$

Conclusion

... and some of its extensions

Over trees: MSO = Tree Automata = EMSO² [Thatcher-Wright '68]

Communicating Finite-States Machines

From $\mathrm{EMSO}^2[\rightarrow,\rightarrow^*]$ to CFMs 00000

Conclusion

... and some of its extensions

Over trees: MSO = Tree Automata = EMSO² [Thatcher-Wright '68]

Over Mazurkievitch traces: MSO = Asynchronous Automata = EMSO² [Thomas '90]

Communicating Finite-States Machines

From $\mathrm{EMSO}^2[\rightarrow,\rightarrow^*]$ to CFMs 00000

Conclusion

... and some of its extensions

Over trees: MSO = Tree Automata = EMSO² [Thatcher-Wright '68]

Over Mazurkievitch traces: MSO = Asynchronous Automata = EMSO² [Thomas '90]

Over data words: $EMSO^2 = Data Automata \subsetneq EMSO$ [Bojanczyk-David-Muscholl-Schwentick-Segoufin '06]

Communicating Finite-States Machines

From $\mathrm{EMSO}^2[\rightarrow,\rightarrow^*]$ to CFMs 00000

Conclusion

... and some of its extensions

Over trees: MSO = Tree Automata = EMSO² [Thatcher-Wright '68]

Over Mazurkievitch traces: MSO = Asynchronous Automata = EMSO² [Thomas '90]

Over data words: $EMSO^2 = Data Automata \subsetneq EMSO$ [Bojanczyk-David-Muscholl-Schwentick-Segoufin '06]

. . .

Goal: A Büchi-like theorem for message-passing systems

From EMSO $^2[\rightarrow,\rightarrow^*]$ to CFMs 00000

Conclusion

From EMSO $^{2}[\rightarrow,\rightarrow^{*}]$ to CFMs 00000

Communicating finite-state machines (CFMs) [Brand-Zafiropulo '83]

Finite set of processes, e.g. $Proc = \{p, q, r\}$

From EMSO $^{2}[\rightarrow,\rightarrow^{*}]$ to CFMs 00000

Conclusion

- ▶ Finite set of processes, e.g. $Proc = \{p, q, r\}$
- Unbounded point-to-point FIFO channels

From $\mathrm{EMSO}^2[\rightarrow,\rightarrow^*]$ to CFMs 00000

Conclusion

- ▶ Finite set of processes, e.g. $Proc = \{p, q, r\}$
- Unbounded point-to-point FIFO channels

From EMSO $^{2}[\rightarrow,\rightarrow^{*}]$ to CFMs 00000

Conclusion

- Finite set of processes, e.g. $Proc = \{p, q, r\}$
- Unbounded point-to-point FIFO channels
- > For each process, one finite labeled transition system over

From EMSO $^{2}[\rightarrow,\rightarrow^{*}]$ to CFMs 00000

Conclusion

- Finite set of processes, e.g. $Proc = \{p, q, r\}$
- Unbounded point-to-point FIFO channels
- For each process, one finite labeled transition system over

From EMSO $^{2}[\rightarrow,\rightarrow^{*}]$ to CFMs 00000

Conclusion

- Finite set of processes, e.g. $Proc = \{p, q, r\}$
- Unbounded point-to-point FIFO channels
- For each process, one finite labeled transition system over

From EMSO $^{2}[\rightarrow,\rightarrow^{*}]$ to CFMs 00000

Conclusion

- Finite set of processes, e.g. $Proc = \{p, q, r\}$
- Unbounded point-to-point FIFO channels
- For each process, one finite labeled transition system over

From EMSO $^{2}[\rightarrow,\rightarrow^{*}]$ to CFMs 00000

Conclusion

- Finite set of processes, e.g. $Proc = \{p, q, r\}$
- Unbounded point-to-point FIFO channels
- For each process, one finite labeled transition system over

Communicating Finite-States Machines 0000

From EMSO $^{2}[\rightarrow,\rightarrow^{*}]$ to CFMs 00000

Conclusion

Language of a CFM

CFMs recognize languages of Message Sequence Charts:

FIFO

acyclic

Communicating Finite-States Machines

From $\mathrm{EMSO}^2[\rightarrow,\rightarrow^*]$ to CFMs 00000

Conclusion

Language of a CFM

- ► FIFO
- ► acyclic

From EMSO²[\rightarrow , \rightarrow^*] to CFMs Conclusion

Language of a CFM

- FIFO
- acyclic

Communicating Finite-States Machines 0000

From EMSO $^{2}[\rightarrow,\rightarrow^{*}]$ to CFMs 00000

Conclusion

Language of a CFM

- ► FIFO
- acyclic

Communicating Finite-States Machines

From EMSO $^{2}[\rightarrow,\rightarrow^{*}]$ to CFMs 00000

Conclusion

Language of a CFM

- ► FIFO
- ► acyclic

Communicating Finite-States Machines $\circ \circ \bullet \circ \circ$

From $\mathrm{EMSO}^2[\rightarrow,\rightarrow^*]$ to CFMs $_{\mathrm{OOOOO}}$

Conclusion

Communicating Finite-States Machines $\circ \circ \bullet \circ \circ$

From $\mathrm{EMSO}^2[\rightarrow,\rightarrow^*]$ to CFMs $_{\mathrm{OOOOO}}$

$$MSO[\rightarrow, \rightarrow^*]$$

$$\varphi ::= a(x) \mid p(x) \mid x = y \mid x \rightarrow y \mid x \rightarrow^* y$$

$$\mid \exists x. \varphi \mid \exists X. \varphi \mid x \in X \mid \varphi \lor \varphi \mid \neg \varphi$$

Communicating Finite-States Machines $\circ \circ \bullet \circ \circ$

From $\mathrm{EMSO}^2[\rightarrow,\rightarrow^*]$ to CFMs $_{\mathrm{OOOOO}}$

$$MSO[\rightarrow, \rightarrow^*]$$

$$\varphi ::= a(x) \mid p(x) \mid x = y \mid x \rightarrow y \mid x \rightarrow^* y$$

$$\mid \exists x. \varphi \mid \exists X. \varphi \mid x \in X \mid \varphi \lor \varphi \mid \neg \varphi$$

▶
$$\mathsf{FO}[\rightarrow, \rightarrow^*]$$
 : no $\exists X$.

From $\mathrm{EMSO}^2[\rightarrow,\rightarrow^*]$ to CFMs $_{\mathrm{OOOOO}}$

$$MSO[\rightarrow, \rightarrow^*]$$

$$\varphi ::= a(x) \mid p(x) \mid x = y \mid x \rightarrow y \mid x \rightarrow^* y$$

$$\mid \exists x. \varphi \mid \exists X. \varphi \mid x \in X \mid \varphi \lor \varphi \mid \neg \varphi$$

►
$$FO[\rightarrow, \rightarrow^*]$$
 : no $\exists X$.
► $FO[\rightarrow]$: no $x \rightarrow^* y$

Communicating Finite-States Machines $\circ \circ \bullet \circ \circ$

From $\mathrm{EMSO}^2[\rightarrow,\rightarrow^*]$ to CFMs $_{\mathrm{OOOOO}}$

Monadic Second-Order Logic over MSCs

$$MSO[\rightarrow, \rightarrow^*]$$

$$\varphi ::= a(x) \mid p(x) \mid x = y \mid x \rightarrow y \mid x \rightarrow^* y$$

$$\mid \exists x. \varphi \mid \exists X. \varphi \mid x \in X \mid \varphi \lor \varphi \mid \neg \varphi$$

►
$$\mathsf{FO}[\rightarrow, \rightarrow^*]$$
 : no $\exists X$.

FO[
$$\rightarrow$$
] : no $x \rightarrow^* y$

▶ $FO^2[\rightarrow, \rightarrow^*]$: only two variable names

From $\mathrm{EMSO}^2[\rightarrow,\rightarrow^*]$ to CFMs $_{\mathrm{OOOOO}}$

$$MSO[\rightarrow, \rightarrow^*]$$

$$\varphi ::= a(x) \mid p(x) \mid x = y \mid x \rightarrow y \mid x \rightarrow^* y$$

$$\mid \exists x. \varphi \mid \exists X. \varphi \mid x \in X \mid \varphi \lor \varphi \mid \neg \varphi$$

►
$$\mathsf{FO}[\rightarrow, \rightarrow^*]$$
 : no $\exists X$.

FO[
$$\rightarrow$$
] : no $x \rightarrow^* y$

- $FO^2[\rightarrow, \rightarrow^*]$: only two variable names
- ▶ $\mathsf{EMSO}[\rightarrow, \rightarrow^*]$: $\exists X_1 \dots \exists X_n. \varphi$, with $\varphi \in \mathsf{FO}[\rightarrow, \rightarrow^*]$

From $\mathrm{EMSO}^2[\rightarrow,\rightarrow^*]$ to CFMs $_{\mathrm{OOOOO}}$

$$MSO[\rightarrow, \rightarrow^*]$$

$$\varphi ::= a(x) \mid p(x) \mid x = y \mid x \rightarrow y \mid x \rightarrow^* y$$

$$\mid \exists x. \varphi \mid \exists X. \varphi \mid x \in X \mid \varphi \lor \varphi \mid \neg \varphi$$

►
$$\mathsf{FO}[\rightarrow, \rightarrow^*]$$
 : no $\exists X$.

FO[
$$\rightarrow$$
] : no $x \rightarrow^* y$

- ▶ $FO^2[\rightarrow, \rightarrow^*]$: only two variable names
- $\mathsf{EMSO}[\to,\to^*]$: $\exists X_1 \dots \exists X_n. \varphi$, with $\varphi \in \mathsf{FO}[\to,\to^*]$
- ▶ $\mathsf{EMSO}^2[\to, \to^*]$: $\exists X_1 \dots \exists X_n. \varphi$, with $\varphi \in \mathsf{FO}^2[\to, \to^*]$

From $\mathrm{EMSO}^2[\rightarrow,\rightarrow^*]$ to CFMs $_{\mathrm{OOOOO}}$

Monadic Second-Order Logic over MSCs

$$MSO[\rightarrow, \rightarrow^*]$$

$$\varphi ::= a(x) \mid p(x) \mid x = y \mid x \rightarrow y \mid x \rightarrow^* y$$

$$\mid \exists x. \varphi \mid \exists X. \varphi \mid x \in X \mid \varphi \lor \varphi \mid \neg \varphi$$

►
$$FO[\rightarrow, \rightarrow^*]$$
 : no $\exists X$.

FO[
$$\rightarrow$$
] : no $x \rightarrow^* y$

- ▶ $FO^2[\rightarrow, \rightarrow^*]$: only two variable names
- $\mathsf{EMSO}[\to,\to^*]$: $\exists X_1 \dots \exists X_n. \varphi$, with $\varphi \in \mathsf{FO}[\to,\to^*]$
- $\mathsf{EMSO}^2[\to,\to^*]$: $\exists X_1 \ldots \exists X_n$. φ , with $\varphi \in \mathsf{FO}^2[\to,\to^*]$

▶ ...

Communicating Finite-States Machines $\circ \circ \bullet \circ \circ$

From $\mathrm{EMSO}^2[\rightarrow,\rightarrow^*]$ to CFMs $_{\mathrm{OOOOO}}$

Monadic Second-Order Logic over MSCs

$$MSO[\rightarrow, \rightarrow^*]$$

$$\varphi ::= a(x) \mid p(x) \mid x = y \mid x \rightarrow y \mid x \rightarrow^* y$$

$$\mid \exists x. \varphi \mid \exists X. \varphi \mid x \in X \mid \varphi \lor \varphi \mid \neg \varphi$$

Examples in $FO^2[\rightarrow, \rightarrow^*]$:

Communicating Finite-States Machines $\circ \circ \bullet \circ \circ$

From $\mathrm{EMSO}^2[\rightarrow,\rightarrow^*]$ to CFMs $_{\mathrm{OOOOO}}$

$$MSO[\rightarrow, \rightarrow^*]$$

$$\varphi ::= a(x) \mid p(x) \mid x = y \mid x \rightarrow y \mid x \rightarrow^* y$$

$$\mid \exists x. \varphi \mid \exists X. \varphi \mid x \in X \mid \varphi \lor \varphi \mid \neg \varphi$$

Examples in FO²[
$$\rightarrow$$
, \rightarrow^*]:
• $x \parallel y \equiv \neg(x \rightarrow^* y) \land \neg(y \rightarrow^* x)$
Communicating Finite-States Machines $\circ \circ \bullet \circ \circ$

From $\mathrm{EMSO}^2[\rightarrow,\rightarrow^*]$ to CFMs 00000

Monadic Second-Order Logic over MSCs

$$MSO[\rightarrow, \rightarrow^*]$$

$$\varphi ::= a(x) \mid p(x) \mid x = y \mid x \rightarrow y \mid x \rightarrow^* y$$

$$\mid \exists x. \varphi \mid \exists X. \varphi \mid x \in X \mid \varphi \lor \varphi \mid \neg \varphi$$

Examples in $FO^2[\rightarrow, \rightarrow^*]$:

$$\blacktriangleright x \parallel y \equiv \neg(x \to^* y) \land \neg(y \to^* x)$$

▶ Mutual exclusion: $\neg(\exists x. \exists y. c(x) \land c(y) \land x \parallel y)$

From $\mathrm{EMSO}^2[\rightarrow,\rightarrow^*]$ to CFMs 00000

Conclusion

Monadic Second-Order Logic over MSCs

From $\mathrm{EMSO}^2[\rightarrow,\rightarrow^*]$ to CFMs 00000

Conclusion

Monadic Second-Order Logic over MSCs

 $M\models \forall x. \; c(x) \implies \exists y. \; q(y) \wedge x \rightarrow^* y$

From $\mathrm{EMSO}^2[\rightarrow,\rightarrow^*]$ to CFMs 00000

Conclusion

Monadic Second-Order Logic over MSCs

 $M\models \forall x.\; c(x) \implies \exists y.\; q(y) \wedge x \rightarrow^* y$

Communicating Finite-States Machines

From $\mathrm{EMSO}^2[\rightarrow,\rightarrow^*]$ to CFMs 00000

Conclusion

Monadic Second-Order Logic over MSCs

 $M\models \forall x.\; c(x) \implies \exists y.\; q(y) \wedge x \rightarrow^* y$

From $\mathrm{EMSO}^2[\rightarrow,\rightarrow^*]$ to CFMs 00000

Conclusion

Monadic Second-Order Logic over MSCs

 $M\models \forall x. \; c(x) \implies \exists y. \; q(y) \wedge x \rightarrow^* y$

From EMSO²[\rightarrow , \rightarrow ^{*}] to CFMs 00000

Conclusion

Monadic Second-Order Logic over MSCs

 $M \models \forall x. \ c(x) \implies \exists y. \ q(y) \land x \to^* y$ $M \not\models \neg(\exists x. \ \exists y. \ c(x) \land c(y) \land x \parallel y)$

From $\mathrm{EMSO}^2[\rightarrow,\rightarrow^*]$ to CFMs 00000

Conclusion

Monadic Second-Order Logic over MSCs

 $M \models \forall x. \ c(x) \implies \exists y. \ q(y) \land x \to^* y$ $M \not\models \neg(\exists x. \ \exists y. \ c(x) \land c(y) \land x \parallel y)$

From $\mathrm{EMSO}^2[\rightarrow,\rightarrow^*]$ to CFMs $_{\mathrm{OOOOO}}$

Conclusion

"Büchi Theorems" for CFMs

From $\mathrm{EMSO}^2[\rightarrow,\rightarrow^*]$ to CFMs 00000

"Büchi Theorems" for CFMs

Theorem (Mukund et al. '05, Genest-Kuske-Muscholl '06) When channels are **bounded**, $CFM = MSO[\rightarrow]$.

From $\mathrm{EMSO}^2[\rightarrow,\rightarrow^*]$ to CFMs 00000

"Büchi Theorems" for CFMs

Theorem (Mukund et al. '05, Genest-Kuske-Muscholl '06) When channels are **bounded**, $CFM = MSO[\rightarrow]$.

Theorem (Bollig-Leucker '06) $CFM = EMSO[\rightarrow] \subsetneq MSO[\rightarrow].$

From $\mathrm{EMSO}^2[\rightarrow,\rightarrow^*]$ to CFMs $_{\mathrm{OOOOO}}$

"Büchi Theorems" for CFMs

Theorem (Mukund et al. '05, Genest-Kuske-Muscholl '06) When channels are **bounded**, $CFM = MSO[\rightarrow]$.

Theorem (Bollig-Leucker '06) $CFM = EMSO[\rightarrow] \subsetneq MSO[\rightarrow].$

In the unbounded case, CFMs are not complementable! \rightarrow No inductive translation logic \rightsquigarrow CFMs.

From EMSO $^2[\rightarrow,\rightarrow^*]$ to CFMs $_{\rm OOOOO}$

"Büchi Theorems" for CFMs

Theorem (Mukund et al. '05, Genest-Kuske-Muscholl '06) When channels are **bounded**, $CFM = MSO[\rightarrow]$.

Theorem (Bollig-Leucker '06) $CFM = EMSO[\rightarrow] \subsetneq MSO[\rightarrow].$

In the unbounded case, CFMs are not complementable! \rightarrow No inductive translation logic \rightsquigarrow CFMs.

Theorem

 $\mathsf{CFM} = \mathsf{EMSO}^2[\to, \to^*].$

Communicating Finite-States Machines

From EMSO $^2[\rightarrow,\rightarrow^*]$ to CFMs $_{\odot\odot\odot\odot}$

Conclusion

Scott normal form:

Any $\text{EMSO}^2[\rightarrow,\rightarrow^*]$ formula is equivalent to a formula

$$\exists X_1 \dots \exists X_m. \ \forall x. \forall y. \psi(x, y) \land \bigwedge_{i=1}^n \forall x. \exists y. \psi_i(x, y)$$

where $\psi(x,y)$ and each $\psi_i(x,y)$ is quantifier-free.

Communicating Finite-States Machines

From EMSO $^{2}[\rightarrow,\rightarrow^{*}]$ to CFMs o•000

Conclusion

From Scott normal form to CFMs

$$\exists X_1 \dots \exists X_m. \ \forall x. \forall y. \psi(x, y) \land \bigwedge_{i=1}^n \forall x. \exists y. \psi_i(x, y)$$

From EMSO $^2[\rightarrow,\rightarrow^*]$ to CFMs of $\circ\circ\circ\circ$

Conclusion

From Scott normal form to CFMs

$$\exists X_1 \dots \exists X_m. \ \forall x. \forall y. \psi(x, y) \land \bigwedge_{i=1}^n \forall x. \exists y. \psi_i(x, y)$$

• Guess a valuation for each X_i .

From EMSO $^2[\rightarrow,\rightarrow^*]$ to CFMs $_{\odot \odot \odot \odot}$

From Scott normal form to CFMs

$$\exists X_1 \dots \exists X_m. \ \forall x. \forall y. \psi(x, y) \land \bigwedge_{i=1}^n \forall x. \exists y. \psi_i(x, y)$$

- Guess a valuation for each X_i .
- Compute the type of each event.

From $\mathsf{EMSO}^2[\to,\to^*]$ to CFMs $_{O} \bullet \circ \circ \circ$

From Scott normal form to CFMs

$$\exists X_1 \dots \exists X_m. \ \forall x. \forall y. \psi(x, y) \land \bigwedge_{i=1}^n \forall x. \exists y. \psi_i(x, y)$$

- Guess a valuation for each X_i .
- Compute the type of each event.

The type of x characterizes the set of quantifier-free formulas φ with one free variable such that $\exists y.\varphi(x)$ holds, or such that $\forall y.\varphi(x)$ holds.

From $\mathsf{EMSO}^2[\to,\to^*]$ to CFMs $_{O} \bullet \circ \circ \circ$

From Scott normal form to CFMs

$$\exists X_1 \dots \exists X_m. \ \forall x. \forall y. \psi(x, y) \land \bigwedge_{i=1}^n \forall x. \exists y. \psi_i(x, y)$$

- Guess a valuation for each X_i .
- Compute the type of each event.

The type of x characterizes the set of quantifier-free formulas φ with one free variable such that $\exists y.\varphi(x)$ holds, or such that $\forall y.\varphi(x)$ holds.

▶ Restrict to types verifying $\forall y.\psi(x,y)$ and all $\exists y.\psi_i(x,y)$.

From EMSO $^2[\rightarrow,\rightarrow^*]$ to CFMs $_{\odot \odot \odot \odot}$

From Scott normal form to CFMs

$$\exists X_1 \dots \exists X_m. \ \forall x. \forall y. \psi(x, y) \land \bigwedge_{i=1}^n \forall x. \exists y. \psi_i(x, y)$$

- Guess a valuation for each X_i .
- Compute the type of each event.

The type of x characterizes the set of quantifier-free formulas φ with one free variable such that $\exists y.\varphi(x)$ holds, or such that $\forall y.\varphi(x)$ holds.

• Restrict to types verifying $\forall y.\psi(x,y)$ and all $\exists y.\psi_i(x,y)$.

Communicating Finite-States Machines

From EMSO $^2[\rightarrow,\rightarrow^*]$ to CFMs $_{\odot\odot\odot\odot\odot}$

Conclusion

Type of an event

Type of event x: set of all possible tuples (\bowtie, p, a) such that for some event y:

- $\blacktriangleright x \bowtie y$
- x is on process p, and labeled a.

Communicating Finite-States Machines

From EMSO $^2[\rightarrow,\rightarrow^*]$ to CFMs $_{\odot\odot\odot\odot\odot}$

Conclusion

Type of an event

Type of event x: set of all possible tuples (\bowtie, p, a) such that for some event y:

- $\blacktriangleright x \bowtie y$
- x is on process p, and labeled a.

$$\blacktriangleright x = y$$

Communicating Finite-States Machines

From EMSO $^2[\rightarrow,\rightarrow^*]$ to CFMs $_{\odot\odot\odot\odot\odot}$

Conclusion

Type of an event

Type of event x: set of all possible tuples (\bowtie, p, a) such that for some event y:

- $\blacktriangleright x \bowtie y$
- x is on process p, and labeled a.

 \bowtie is one of all possible relative positions between two events:

$$\blacktriangleright x = y$$

 $\blacktriangleright x \rightarrow y$

Communicating Finite-States Machines

From EMSO $^2[\rightarrow,\rightarrow^*]$ to CFMs $_{\odot\odot\odot\odot\odot}$

Conclusion

Type of an event

Type of event x: set of all possible tuples (\bowtie, p, a) such that for some event y:

- $\blacktriangleright x \bowtie y$
- x is on process p, and labeled a.

$$\blacktriangleright x = y$$

- $\blacktriangleright x \rightarrow y$
- $\blacktriangleright y \to x$

Communicating Finite-States Machines

From EMSO $^2[\rightarrow,\rightarrow^*]$ to CFMs $_{\odot\odot\odot\odot\odot}$

Conclusion

Type of an event

Type of event x: set of all possible tuples (\bowtie, p, a) such that for some event y:

- $\blacktriangleright x \bowtie y$
- x is on process p, and labeled a.

Communicating Finite-States Machines

From EMSO $^2[\rightarrow,\rightarrow^*]$ to CFMs $_{\odot\odot\odot\odot\odot}$

Conclusion

Type of an event

Type of event x: set of all possible tuples (\bowtie, p, a) such that for some event y:

- $\blacktriangleright x \bowtie y$
- x is on process p, and labeled a.

▶
$$x = y$$

▶ $x \rightsquigarrow y$, where $\rightsquigarrow = \rightarrow^+ \setminus \rightarrow$
▶ $x \rightarrow y$
▶ $y \rightsquigarrow x$
▶ $y \rightarrow x$

Communicating Finite-States Machines

From EMSO $^2[\rightarrow,\rightarrow^*]$ to CFMs $_{\odot\odot\odot\odot\odot}$

Conclusion

Type of an event

Type of event x: set of all possible tuples (\bowtie, p, a) such that for some event y:

- $\blacktriangleright x \bowtie y$
- x is on process p, and labeled a.

 \bowtie is one of all possible relative positions between two events:

Communicating Finite-States Machines

From $\mathrm{EMSO}^2[\rightarrow,\rightarrow^*]$ to CFMs $_{\odot\circ\odot\odot\odot}$

Conclusion

Communicating Finite-States Machines

From $\mathrm{EMSO}^2[\rightarrow,\rightarrow^*]$ to CFMs $_{\odot\circ\odot\odot\odot}$

Conclusion

$$x=y \ : \ (p,a)$$

Communicating Finite-States Machines

From EMSO $^2[\rightarrow,\rightarrow^*]$ to CFMs $_{\circ\circ\circ\bullet\circ}$

Conclusion

$$x=y \hspace{.1in}:\hspace{.1in} (p,a)$$

$$x \to y$$
 : (p, a)

Communicating Finite-States Machines

From EMSO $^2[\rightarrow,\rightarrow^*]$ to CFMs $_{\circ\circ\circ\bullet\circ}$

Conclusion

$$\begin{array}{ccc} x=y \hspace{.1 in} : \hspace{.1 in} (p,a) \end{array} \hspace{2cm} x \rightarrow y \hspace{.1 in} : \hspace{.1 in} (p,a) \end{array} \hspace{2cm} y \rightarrow x \hspace{.1 in} : \hspace{.1 in} (p,a), (r,b) \end{array}$$

Communicating Finite-States Machines

From EMSO $^2[\rightarrow,\rightarrow^*]$ to CFMs $_{\circ\circ\circ\bullet\circ}$

Conclusion

$$x = y : (p, a) \qquad x \to y : (p, a) \qquad y \to x : (p, a), (r, b)$$

Communicating Finite-States Machines

From EMSO $^2[\rightarrow,\rightarrow^*]$ to CFMs $_{\circ\circ\circ\bullet\circ}$

Conclusion

Communicating Finite-States Machines

From EMSO $^2[\rightarrow,\rightarrow^*]$ to CFMs $_{\circ\circ\circ\bullet\circ}$

Conclusion

$$\begin{array}{l} x = y : (p, a) \\ y \to x : (p, a), (p, c), (q, a), (r, b) \\ x \to y : (p, a), (q, a), (r, c) \\ \end{array}$$

Communicating Finite-States Machines

From EMSO $^2[\rightarrow,\rightarrow^*]$ to CFMs $_{\odot\odot\odot\odot\odot}$

Conclusion

Type of an event

$$\begin{array}{l} x = y : (p, a) \\ y \to x : (p, a), (p, c), (q, a), (r, b) \\ x \parallel y : (q, a), (r, a), (r, c) \\ \end{array}$$

 $\models \exists y. \ \neg(x \to^* y) \land \neg p(y) \land c(y)$

From $\mathsf{EMSO}^2[\to,\to^*]$ to CFMs $\circ\circ\circ\circ\bullet$

Labels of parallel events

Automaton that determines the set of events on process p that are parallel to some c on process r:

From $\mathsf{EMSO}^2[\to,\to^*]$ to CFMs $\circ\circ\circ\circ\bullet$

Labels of parallel events

Automaton that determines the set of events on process p that are parallel to some c on process r:

Guess yes/no for each event

From $\mathsf{EMSO}^2[\to,\to^*]$ to CFMs $\circ\circ\circ\circ\bullet$

Labels of parallel events

Automaton that determines the set of events on process p that are parallel to some c on process r:

One component checks that "no" guesses are correct

From EMSO $^{2}[\rightarrow,\rightarrow^{*}]$ to CFMs $\circ\circ\circ\circ\bullet$

Labels of parallel events

Automaton that determines the set of events on process p that are parallel to some c on process r:

One component checks that "no" guesses are correct \rightarrow path containing all "no"'s on p and all c's on r

From $\mathsf{EMSO}^2[\to,\to^*]$ to CFMs $\circ\circ\circ\circ\bullet$

Labels of parallel events

Automaton that determines the set of events on process p that are parallel to some c on process r:

One component checks that "yes" guesses are correct:

From $\mathsf{EMSO}^2[\to,\to^*]$ to CFMs $\circ\circ\circ\circ\bullet$

Labels of parallel events

Automaton that determines the set of events on process p that are parallel to some c on process r:

One component checks that "yes" guesses are correct:

From EMSO $^{2}[\rightarrow,\rightarrow^{*}]$ to CFMs $\circ\circ\circ\circ\bullet$

Labels of parallel events

Automaton that determines the set of events on process p that are parallel to some c on process r:

One component checks that "yes" guesses are correct: \rightarrow check **y** \parallel **C**, and **y** \parallel **C**

From EMSO $^{2}[\rightarrow,\rightarrow^{*}]$ to CFMs $\circ\circ\circ\circ\bullet$

Labels of parallel events

Automaton that determines the set of events on process p that are parallel to some c on process r:

One component checks that "yes" guesses are correct: \rightarrow check **y** \parallel **C**, and **y** \parallel **C**

From EMSO $^{2}[\rightarrow,\rightarrow^{*}]$ to CFMs $\circ\circ\circ\circ\bullet$

Labels of parallel events

Automaton that determines the set of events on process p that are parallel to some c on process r:

One component checks that "yes" guesses are correct:

 \rightarrow check **y** \parallel **(c)**, and **y** \parallel **(c)**

 \rightarrow check color of latest events co-reachable via pqr, resp. pr, and first events reachable via rqp, resp. rp

From EMSO $^{2}[\rightarrow,\rightarrow^{*}]$ to CFMs 0000

Labels of parallel events

Automaton that determines the set of events on process p that are parallel to some c on process r:

One component checks that "yes" guesses are correct:

 \rightarrow check **y** \parallel **C**, and **y** \parallel **C**

 \rightarrow check color of latest events co-reachable via pqr, resp. pr, and first events reachable via rqp, resp. rp

From EMSO $^{2}[\rightarrow,\rightarrow^{*}]$ to CFMs $\circ\circ\circ\circ\bullet$

Labels of parallel events

Automaton that determines the set of events on process p that are parallel to some c on process r:

One component checks that "yes" guesses are correct:

 \rightarrow check **y** \parallel **(c)**, and **y** \parallel **(c)**

 \rightarrow check color of latest events co-reachable via pqr, resp. pr, and first events reachable via rqp, resp. rp

Communicating Finite-States Machines

From $\mathrm{EMSO}^2[\rightarrow,\rightarrow^*]$ to CFMs 00000

Conclusion

Conclusion

Communicating Finite-States Machines

From $\mathrm{EMSO}^2[\rightarrow,\rightarrow^*]$ to CFMs $_{\mathrm{OOOOO}}$

Conclusion

Conclusion

► Generalization of Büchi-Elgot-Trakhtenbrot Theorem: EMSO²[→,→*] = CFM.

Communicating Finite-States Machines

From $\mathrm{EMSO}^2[\rightarrow,\rightarrow^*]$ to CFMs $_{\mathrm{OOOOO}}$

Conclusion

Conclusion

- ► Generalization of Büchi-Elgot-Trakhtenbrot Theorem: EMSO²[→,→*] = CFM.
- Doubly-exponential w.r.t. the input formula (optimal).

Communicating Finite-States Machines

From $\mathrm{EMSO}^2[\rightarrow,\rightarrow^*]$ to CFMs 00000

Conclusion

Conclusion

- ► Generalization of Büchi-Elgot-Trakhtenbrot Theorem: EMSO²[→,→*] = CFM.
- Doubly-exponential w.r.t. the input formula (optimal).

Open questions:

Communicating Finite-States Machines

From $\mathrm{EMSO}^2[\rightarrow,\rightarrow^*]$ to CFMs 00000

Conclusion

Conclusion

- ► Generalization of Büchi-Elgot-Trakhtenbrot Theorem: EMSO²[→,→*] = CFM.
- Doubly-exponential w.r.t. the input formula (optimal).

Open questions:

►
$$FO[\rightarrow, \rightarrow^*] \subseteq CFM$$
 ?
 $FO[\rightarrow^*] \subseteq CFM$?

Communicating Finite-States Machines

From $\mathrm{EMSO}^2[\rightarrow,\rightarrow^*]$ to CFMs 00000

Conclusion

Conclusion

- ► Generalization of Büchi-Elgot-Trakhtenbrot Theorem: EMSO²[→,→*] = CFM.
- Doubly-exponential w.r.t. the input formula (optimal).

Open questions:

- ► $FO[\rightarrow, \rightarrow^*] \subseteq CFM$? $FO[\rightarrow^*] \subseteq CFM$?
- What are the classes of graphs on which EMSO²[→,→*] and graph acceptors are expressively equivalent?

Communicating Finite-States Machines

From $\mathrm{EMSO}^2[\rightarrow,\rightarrow^*]$ to CFMs 00000

Conclusion

Conclusion

- ► Generalization of Büchi-Elgot-Trakhtenbrot Theorem: EMSO²[→,→*] = CFM.
- Doubly-exponential w.r.t. the input formula (optimal).

Open questions:

- ► $FO[\rightarrow, \rightarrow^*] \subseteq CFM$? $FO[\rightarrow^*] \subseteq CFM$?
- ► What are the classes of graphs on which EMSO²[→,→*] and graph acceptors are expressively equivalent?

Thank you!