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Extended to trees [Thatcher-Wright ’68], Mazurkiewicz traces
[Thomas ’90], . . .
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Büchi-Elgot-Trakhtenbrot theorem (’60s)

∀x. a(x)⇒ ∃y. (x→ y ∧ b(y))

Monadic Second-Order Logic

0 1

b, c
a

b

Finite automaton

b→ a→ b→ c→ a→ b→ c
a→ b→ a→ c→ c→ b

· · ·
Words

Synthesis

MSO[→] = Finite Automata = EMSO[→]

∃X0 . . . ∃Xn.ϕ with ϕ ∈ FO[→]
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The model

I Fixed, finite set of processes

I (Reliable) unbounded point-to-point FIFO channels

I Partial order semantics: Message Sequence Charts (MSC)
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I Specifications based on the partial order, independent
from the choice of a particular interleaving
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Communicating finite-state machines (CFMs)
[Brand–Zafiropulo ’83]
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I One finite-state transition system for each process,
using a finite set of messages

I Global acceptance condition
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Monadic Second-Order logic (MSO) over MSCs

ϕ ::=

a(x) | p(x) label/process of event x

| x→ y process successor

| xC y message relation

| x ≤ y happened-before

| ¬ϕ | ϕ ∨ ϕ | ∃x. ϕ | ∃X. ϕ | x ∈ X

a a c a a a a a

a a a a a a a a a a

a b b a a c a a a

p

q

r

x y

x

yx

y

x
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Mutual exclusion: ¬(∃x. ∃y. c(x) ∧ c(y) ∧ x ‖ y )

¬(x ≤ y) ∧ ¬(y ≤ x)
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Büchi-like theorems for CFMs

When channels are bounded:

Theorem (Henriksen-Mukund-Narayan Kumar-Sohoni-Thiagarajan ’05)

Over universally bounded MSCs, CFM = MSO[C,→,≤].

Theorem (Genest-Kuske-Muscholl ’06)

Over existentially bounded MSCs, CFM = MSO[C,→,≤].
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Translation from FO to CFMs

Goal

FO[C,→,≤]
sentence ϕ

PDLsf

formula ϕ̃

CFM A such that
L(A) = L(ϕ)

I CFMs are not closed under complementation
– no direct induction on ϕ

I Techniques used for previous cases do not apply here

Solution: go through an intermediate language:
“Star-free” Propositional Dynamic Logic (with Loop and Converse)
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A simple modal logic for MSCs: PDL−sf
ϕ, ψ ::=

a | p | ϕ ∨ ϕ | ¬ϕ

| 〈→〉ϕ ϕ
(“Next ϕ”)

| 〈←〉ϕ ϕ
(“Yesterday ϕ”)

| 〈Cp,q〉ϕ | 〈C−1q,r〉ϕ ϕ
p

q

ϕ
p

q

| 〈 ϕ−→〉ψ ϕ ϕ ψ
(“ϕ Until ψ”)

| 〈 ϕ←−〉ψ ψ ϕ ϕ
(“ϕ Since ψ”)

| 〈jumpp,q〉ϕ ϕ
p

q
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Examples

true

true

P = {p, q, r}, Σ = {•,•,◦}

r

q

p
e0 e1 e2 e3 e4 e5 e6 e7

g0

g1

g2

g3

g4

g5

g6

g7

f0 f1 f2 f3 f5f4 f6 f7

“A receive from p to q is immediately followed by a send to r”:

〈C−1p,q〉 true =⇒ 〈→〉 〈Cp,q〉 true

“The latest send from p to r is labeled •”:

(on process r)

〈C−1p,r〉 • ∨ ¬ 〈C−1p,r〉 true ∧ 〈 ¬ 〈C
−1
p,r〉 true←−−−−−−−〉 〈C−1p,r〉 •
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LTL

= PDL−sf

Finite Automata

Over general MSCs,

FO

PDL−sf

CFMs

+ Loop
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Star-free Propositional Dynamic Logic (PDLsf)
[Fisher-Ladner 1979] (PDL)

State formulas

ϕ ::= a | p | ϕ ∨ ϕ | ¬ϕ

| 〈π〉ϕ ϕπ

| Loop(π)
π

Path formulas

π ::=→ | ← | Cp,q | C−1p,q | jumpp,q |
ϕ−→ | ϕ←− | π · π

| {ϕ}?
| π ∪ π | π ∩ π | πc

Notation: 〈α1 · α2 · · ·αk〉ϕ ≡ 〈α1〉 (〈α2〉 · · · (〈αk〉ϕ) · · · )



Introduction CFMs Star-free PDL Equivalence of FO and PDLsf From PDLsf to CFMs Conclusion

Star-free Propositional Dynamic Logic (PDLsf)
[Fisher-Ladner 1979] (PDL)

State formulas

ϕ ::= a | p | ϕ ∨ ϕ | ¬ϕ

| 〈π〉ϕ ϕπ

| Loop(π)
π

Path formulas

π ::=→ | ← | Cp,q | C−1p,q | jumpp,q |
ϕ−→ | ϕ←− | π · π | {ϕ}?

| π ∪ π | π ∩ π | πc

Notation: 〈α1 · α2 · · ·αk〉ϕ ≡ 〈α1〉 (〈α2〉 · · · (〈αk〉ϕ) · · · )



Introduction CFMs Star-free PDL Equivalence of FO and PDLsf From PDLsf to CFMs Conclusion

Star-free Propositional Dynamic Logic (PDLsf)
[Fisher-Ladner 1979] (PDL)

State formulas

ϕ ::= a | p | ϕ ∨ ϕ | ¬ϕ

| 〈π〉ϕ ϕπ

| Loop(π)
π

Path formulas

π ::=→ | ← | Cp,q | C−1p,q | jumpp,q |
ϕ−→ | ϕ←− | π · π | {ϕ}?

| π ∪ π | π ∩ π | πc

Notation: 〈α1 · α2 · · ·αk〉ϕ ≡ 〈α1〉 (〈α2〉 · · · (〈αk〉ϕ) · · · )



Introduction CFMs Star-free PDL Equivalence of FO and PDLsf From PDLsf to CFMs Conclusion

Example

ϕ ¬ϕ

latestpr

latestpqr

P = {p, q, r}, Σ = {•,•,◦}

r

q

p
e0 e1 e2 e3 e4 e5 e6 e7

g0

g1

g2

g3

g4

g5

g6

g7

f0 f1 f2 f3 f5f4 f6 f7

ϕ = “The latest event on process p is labeled •”

Assume e.g. the current event is a read from channel (q, r).

I path formula latestpr =
¬ 〈C−1

p,r〉 true←−−−−−−− ·C−1pr
I path formula latestpqr = C−1q,r ·

¬ 〈C−1
p,q〉 true←−−−−−−− ·C−1p,q

I ϕ = Loop(latestpr · {•}?· true←−− ·latest−1pqr) ∨

Loop(latestpqr · {•}?· true←−− ·latest−1pr )
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Main results

FO[C,→,≤] PDLsf CFMs = EMSO[C,→]
(1) (2)

FO3[C,→,≤]
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From FO to PDLsf

Theorem
Any FO formula Φ(x1, . . . , xn) can be rewritten as

Φ(x1, . . . , xn) ≡
∨∧

π(xi, xj) where π ∈ PDLsf

Proof: by induction.
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Negation

e

〈π−1〉〈π−1〉 〈π−1〉 〈π−1〉

min π max π

min π · +←−

πc ≡

∪ max π · +−→∪ max π · +−→ ∪ min π · +−→ · {¬ 〈π−1〉}?∪ min π · +−→ · {¬ 〈π−1〉}?∪ min π · +−→ · {¬ 〈π−1〉}?

∪
⋃
p,q{¬ 〈π〉 q}? · jumpp,q
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Existential quantification

∃x.
∧
i πi(xi, x)  ?

x

x`

min π`

max π`
xk

min πk
max πk

xi

min πi max πi
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∃x.
∧
i πi(xi, x)  ?

x

x`

min π`

max π`
xk

min πk
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xi

min πi max πi

Does the intersection of the intervals contain an event
satisfying ψ =

∧
i 〈π

−1
i 〉 ?
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Existential quantification
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∧
i πi(xi, x)  ?

x

x`

min π`

max π`
xk

min πk
max πk

xi

min πi max πi

∨
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From PDLsf to CFMs

Theorem
Any event formula ϕ ∈ PDLsf can be translated into a CFM
which determines for each event whether ϕ holds.

Proof: By induction.

I ϕ = •
I ϕ = 〈Cp,r〉ψ
I · · ·
I Only difficult case: ϕ = Loop(π)
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Translation of Loop formulas

We want to determine when Loop(π) hold.

I If e 6|= 〈π−1〉, then e 6|= Loop(π).

I Otherwise, three possible cases:

¬Loop(π)

min π

max π

¬Loop(π)

max π

min π

Loop(π)

min π max π

I We can characterize events where a switch occurs using
formulas Loop(min π̃) or Loop(max π̃).

First step: translation of formulas Loop(max π̃) into CFMs.
Second step: use this to evaluate Loop(π) from left to right.
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CFM for ϕ = Loop(max π)

I Guess for each event whether ϕ holds.
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max π

I Check positive guesses:

I Alternatively assign to ϕ-events colors • or •.
I Check that the source and target color of (max π)-paths

are the same.

I Check negative guesses:

I Guess a 2-coloring of the ¬ϕ-events.
I Check that the source and target color of (max π)-paths

are distinct.
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Open question: Is there a temporal logic (with a finite set of
modalities) expressively complete for FO over MSCs?
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