How undecidable are HyperLTL and HyperCTL*?

Marie Fortin, Louwe Kuijer, Patrick Totzke, Martin Zimmermann
University of Liverpool

Séminaire Automates, IRIF, Paris – December 10, 2021
Specifications that **relate multiple executions** of a system, such as in information-flow security policies.
Specifications that relate multiple executions of a system, such as in information-flow security policies.

e.g. “no secret information should leak to low-level users”
Specifications that relate multiple executions of a system, such as in information-flow security policies.

- Noninterference
- Observational determinism
- Declassification
- ...
HyperLTL and HyperCTL*

HyperLTL = CTL* + path quantifiers
= LTL + trace quantifiers

Linear time
Branching time

LTL

CTL*

3
HyperLTL and HyperCTL*

HyperLTL = CTL* + path quantifiers
HyperCTL = LTL + trace quantifiers

Linear time

Branching time

One execution at a time
HyperLTL and HyperCTL*

HyperLTL = LTL + trace quantifiers

CTL* one execution at a time
HyperLTL and HyperCTL*

HyperLTL

= LTL + trace quantifiers

CTL*

= CTL* + path quantifiers

branching time

linear time

one execution at a time
HyperLTL [Clarkson et al. 2014]

Syntax of HyperLTL

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\varphi ::= \exists \pi. \varphi \mid \forall \pi. \varphi \mid \psi$</td>
<td>LTL formula with trace quantifiers</td>
</tr>
<tr>
<td>$\psi ::= p_\pi \mid \neg \psi \mid \psi \lor \psi \mid \psi \land \psi \mid X \psi \mid \psi U \psi \mid F \psi \mid G \psi$</td>
<td>LTL operators</td>
</tr>
</tbody>
</table>

“Next ψ” “ψ Until ψ” “Eventually ψ” “Globally ψ”
Syntax of HyperLTL

\[\varphi ::= \exists \pi. \varphi \mid \forall \pi. \varphi \mid \psi \]

\[\psi ::= p_\pi \mid \neg \psi \mid \psi \lor \psi \mid \psi \land \psi \mid X \psi \mid U \psi \mid F \psi \mid G \psi \]

“Next \(\psi \)” \hspace{1cm} “\(\psi \) Until \(\psi \)” \hspace{1cm} “Eventually \(\psi \)” \hspace{1cm} “Globally \(\psi \)”
Syntax of HyperLTL

\[
\varphi ::= \exists \pi. \varphi \mid \forall \pi. \varphi \mid \psi
\]

\[
\psi ::= p_\pi \mid \neg \psi \mid \psi \lor \psi \mid \psi \land \psi \mid X \psi \mid \psi U \psi \mid F \psi \mid G \psi
\]

- "\(p \) holds at the current position on trace \(\pi \)"
- "Next \(\psi \)"
- "\(\psi \) Until \(\psi \)"
- "Eventually \(\psi \)"
- "Globally \(\psi \)"
HyperLTL [Clarkson et al. 2014]

Syntax of HyperLTL

$\phi ::= \exists \pi. \phi \mid \forall \pi. \phi \mid \psi$

$\psi ::= p_\pi \mid \neg \psi \mid \psi \lor \psi \mid \psi \land \psi \mid X \psi \mid \psi U \psi \mid F \psi \mid G \psi$

“p holds at the current position on trace π”

“Next ψ” “ψ Until ψ” “Eventually ψ” “Globally ψ”

Example:

$\forall \pi. \forall \pi'. G(in_public_\pi \leftrightarrow in_public_{\pi'})$

$\rightarrow G(out_public_\pi \leftrightarrow out_public_{\pi'})$

“Any two traces with the same public input have the same public output”
HyperLTL [Clarkson et al. 2014]

Syntax of HyperLTL

\[
\varphi ::= \exists \pi. \varphi \mid \forall \pi. \varphi \mid \psi
\]

\[
\psi ::= p_\pi \mid \neg \psi \mid \psi \vee \psi \mid \psi \wedge \psi \mid X \psi \mid \psi U \psi \mid F \psi \mid G \psi
\]

“\(p\) holds at the current position on trace \(\pi\)”

“Next \(\psi\)” “\(\psi\) Until \(\psi\)” “Eventually \(\psi\)” “Globally \(\psi\)”

Example:

\[
\forall \pi. \forall \pi'. G\left(\text{in_public}_\pi \leftrightarrow \text{in_public}_{\pi'}\right) \\
\rightarrow G\left(\text{out_public}_\pi \leftrightarrow \text{out_public}_{\pi'}\right)
\]

“Any two traces with the same public input have the same public output”

Always in prenex normal form: \(Q_1 \pi_1 Q_n \pi_n \ldots \varphi\)

trace quantifiers LTL formula
A transition system \mathcal{T} satisfies a HyperLTL formula φ if $\text{Traces}(\mathcal{T}) \models \varphi$.

Example:

\emptyset \emptyset \emptyset
\emptyset \emptyset \emptyset \emptyset
\emptyset \emptyset \emptyset \emptyset \emptyset

$\mathcal{T} |\models \forall \pi. \exists \pi'. G(a_\pi \leftrightarrow X a_{\pi'})$
HyperLTL [Clarkson et al. 2014]

A transition system \mathcal{T} satisfies a HyperLTL formula φ if $\text{Traces}(\mathcal{T}) \models \varphi$.

Example

$$\mathcal{T} = \begin{array}{c}
\emptyset \\
\{a\} \\
\emptyset \\
\{a\}
\end{array}$$
A transition system \mathcal{T} satisfies a HyperLTL formula φ if $\text{Traces}(\mathcal{T}) \models \varphi$.

Example

$$\mathcal{T} = \begin{array}{c}
\emptyset \\
\{a\} \\
\emptyset \\
\{a\}
\end{array}$$

$$\text{Traces}(\mathcal{T}) = \{ \emptyset \{a\} \emptyset \{a\} \{a\} \{a\} \{a\} \{a\} \ldots, \\
\emptyset \emptyset \{a\} \emptyset \{a\} \{a\} \{a\} \{a\} \ldots, \\
\emptyset \emptyset \emptyset \{a\} \emptyset \{a\} \{a\} \{a\} \ldots, \\
\ldots \}$$
HyperLTL [Clarkson et al. 2014]

A transition system \mathcal{T} satisfies a HyperLTL formula φ if $\text{Traces}(\mathcal{T}) \models \varphi$.

Example

$\mathcal{T} =$

$\text{Traces}(\mathcal{T}) = \{ \emptyset \{a\} \emptyset \{a\} \{a\} \{a\} \{a\} \{a\} \cdots , \emptyset \emptyset \{a\} \emptyset \{a\} \{a\} \{a\} \{a\} \cdots , \emptyset \emptyset \emptyset \{a\} \emptyset \{a\} \{a\} \{a\} \cdots , \cdots \}$

$\mathcal{T} \models \forall \pi. \exists \pi'. \text{G}(a_\pi \leftrightarrow X a_{\pi'})$
HyperCTL* [Clarkson et al. 2014]

Syntax of HyperCTL

\[\phi ::= \exists \pi. \phi \mid \forall \pi. \phi \mid p_\pi \mid \neg \phi \mid \phi \lor \phi \mid X \phi \mid \phi U \phi \mid F \phi \mid G \phi \]

- No prenex normal form
- Branching-time semantics:
 - Evaluation over transition systems/computation trees rather than sets of traces
 - Quantifiers range over paths in the transition system, starting in the latest state
 - Time progresses synchronously in all branches when evaluating temporal operators
- Strict generalization of both HyperLTL and CTL
HyperCTL* [Clarkson et al. 2014]

Syntax of HyperCTL*

\[\varphi ::= \exists \pi. \varphi \mid \forall \pi. \varphi \mid p_\pi \mid \neg \varphi \mid \varphi \lor \varphi \mid X \varphi \mid \varphi \lor \varphi \mid F \varphi \mid G \varphi \]
HyperCTL* [Clarkson et al. 2014]

Syntax of HyperCTL*

\[\phi ::= \exists \pi. \phi \mid \forall \pi. \phi \mid p_\pi \mid \neg \phi \mid \phi \lor \psi \mid X \phi \mid \phi U \psi \mid F \phi \mid G \phi \]

- No prenex normal form
HyperCTL* [Clarkson et al. 2014]

Syntax of HyperCTL*

\[\varphi ::= \exists \pi. \varphi \mid \forall \pi. \varphi \mid p_{\pi} \mid \neg \varphi \mid \varphi \lor \varphi \mid X \varphi \mid \varphi U \varphi \mid F \varphi \mid G \varphi \]

- No prenex normal form
- Branching-time semantics:
 - evaluation over transition systems/computation trees rather than sets of traces
 - quantifiers range over paths in the transition system, starting in the latest state
HyperCTL* [Clarkson et al. 2014]

Syntax of HyperCTL*

\[\varphi ::= \exists \pi. \varphi \mid \forall \pi. \varphi \mid p_\pi \mid \neg \varphi \mid \varphi \lor \varphi \mid X \varphi \mid \varphi U \varphi \mid F \varphi \mid G \varphi \]

- No prenex normal form
- Branching-time semantics:
 - evaluation over transition systems/computation trees rather than sets of traces
 - quantifiers range over paths in the transition system, starting in the latest state
- Time progresses synchronously in all branches when evaluating temporal operators
HyperCTL* [Clarkson et al. 2014]

Syntax of HyperCTL*

\[\varphi ::= \exists \pi.\varphi \mid \forall \pi.\varphi \mid p_\pi \mid \neg \varphi \mid \varphi \lor \varphi \mid X \varphi \mid \varphi U \varphi \mid F \varphi \mid G \varphi \]

- No prenex normal form
- Branching-time semantics:
 - evaluation over transition systems/computation trees rather than sets of traces
 - quantifiers range over paths in the transition system, starting in the latest state
- Time progresses synchronously in all branches when evaluating temporal operators
- Strict generalization of both HyperLTL and CTL*
Example

\[\varphi = \forall \pi. \ G(a_\pi \rightarrow \forall \pi'. G(b_\pi \leftrightarrow b_{\pi'})) \]
Example

\[\varphi = \forall \pi. \ G(a_\pi \rightarrow \forall \pi'. G(b_\pi \leftrightarrow b_{\pi'})) \]

“All paths starting from an \(a \)-labeled state coincide on \(b \)”
HyperLTL and HyperCTL* model-checking problems are decidable . . .

. . . but their satisfiability problems are undecidable.
HyperLTL and HyperCTL* model-checking problems are decidable . . .

... but their satisfiability problems are undecidable.

How undecidable is HyperLTL or HyperCTL* satisfiability?
Levels of Undecidability

Decidable

Undecidable

Recursively enumerable

Co-recursively enumerable

\[
\begin{align*}
\Sigma_0^0 &= \Pi_0^0 \\
\Sigma_1^0 &= \Sigma_2^0 \\
\Pi_1^0 &= \Pi_2^0 \\
\ldots
\end{align*}
\]

\[
\begin{align*}
\Sigma_1^1 &= \Sigma_2^1 \\
\Pi_1^1 &= \Pi_2^1 \\
\ldots
\end{align*}
\]

\[
\begin{align*}
\Sigma_2^2 &= \Sigma_2^2 \\
\Pi_1^2 &= \Pi_2^2 \\
\ldots
\end{align*}
\]

arithmetical hierarchy
analytical hierarchy
Levels of Undecidability

Decidable

\[\Sigma_0^0 = \Pi_0^0 \]

\[\Sigma_1^0 \rightarrow \Sigma_2^0 \]

\[\Pi_1^0 \rightarrow \Pi_2^0 \]

Undecidable

\[\Sigma_0^1 = \Pi_0^1 \]

\[\Sigma_1^1 \rightarrow \Sigma_2^1 \]

\[\Pi_1^1 \rightarrow \Pi_2^1 \]

\[\Sigma_0^2 = \Pi_0^2 \]

\[\Sigma_1^2 \rightarrow \Sigma_2^2 \]

\[\Pi_1^2 \rightarrow \Pi_2^2 \]

Recursively enumerable

Co-recursively enumerable

\[\Sigma_i^j : \text{definable by a formula of the form} \exists^* \forall^* \exists^* \forall^* \cdots \phi \]

i blocks

(j + 1)th order variables

j-th order arithmetic

arithmetical hierarchy

analytical hierarchy
Levels of Undecidability

\[\Sigma_0 = \Pi_0 \]

\[\Sigma_1 = \Sigma_2 \]

\[\Pi_1 = \Pi_2 \]

\[\cdots \]

\[\Sigma^j_0 = \Pi^j_0 \]

\[\Sigma^j_1 = \Sigma^j_2 \]

\[\Pi^j_1 = \Pi^j_2 \]

\[\cdots \]

\[\Sigma^j_i : \text{definable by a formula of the form } \exists^* \forall^* \exists^* \forall^* \cdots \varphi \]

\[\text{arithmetical hierarchy} \]

\[\text{analytical hierarchy} \]

\[\text{third-order arithmetic} \]

\[\text{first-order arithmetic} \]

\[\text{second-order arithmetic} \]
What Was Known

- HyperLTL satisfiability is Σ^0_1-hard. [Finkbeiner, Hahn 2016]
- HyperLTL satisfiability restricted to finite sets of traces is Σ^0_1-complete (complete for the class of recursively enumerable problems). [Finkbeiner, Hahn, Hans 2018], [Mascle, Zimmermann, 2020]
- HyperCTL* satisfiability is Σ^1_1-hard. [Clarkson, Finkbeiner, Koleini, Micinski, Rabe, Sánchez 2014]
- Finite-state HyperCTL* satisfiability is Σ^0_1-complete. [Clarkson, Finkbeiner, Koleini, Micinski, Rabe, Sánchez 2014]
What Was Known

• HyperLTL satisfiability is Σ^0_1-hard.
 [Finkbeiner, Hahn 2016]

• HyperLTL satisfiability restricted to finite sets of traces is Σ^0_1-complete (complete for the class of recursively enumerable problems).
 [Finkbeiner, Hahn, Hans 2018], [Mascle, Zimmermann, 2020]

• HyperCTL* satisfiability is Σ^1_1-hard.
 [Clarkson, Finkbeiner, Koleini, Micinski, Rabe, Sánchez 2014]

• Finite-state HyperCTL* satisfiability is Σ^0_1-complete.
 [Clarkson, Finkbeiner, Koleini, Micinski, Rabe, Sánchez 2014]
What Was Known

- HyperLTL satisfiability is Σ^0_1-hard. [Finkbeiner, Hahn 2016]
- HyperLTL satisfiability restricted to finite sets of traces is Σ^0_1-complete (complete for the class of recursively enumerable problems).

 [Finkbeiner, Hahn, Hans 2018], [Mascle, Zimmermann, 2020]
What Was Known

- HyperLTL satisfiability is Σ^0_1-hard.
 [Finkbeiner, Hahn 2016]

- HyperLTL satisfiability **restricted to finite sets of traces** is Σ^0_1-complete (complete for the class of recursively enumerable problems).

 [Finkbeiner, Hahn, Hans 2018], [Mascle, Zimmermann, 2020]

- HyperCTL* satisfiability is Σ^1_1-hard.

 [Clarkson, Finkbeiner, Koleini, Micinski, Rabe, Sánchez 2014]
• HyperLTL satisfiability is Σ^0_1-hard. [Finkbeiner, Hahn 2016]

• HyperLTL satisfiability restricted to finite sets of traces is Σ^0_1-complete (complete for the class of recursively enumerable problems).
 [Finkbeiner, Hahn, Hans 2018], [Mascle, Zimmermann, 2020]

• HyperCTL* satisfiability is Σ^1_1-hard.
 [Clarkson, Finkbeiner, Koleini, Micinski, Rabe, Sánchez 2014]

• Finite-state HyperCTL* satisfiability is Σ^0_1-complete.
 [Clarkson, Finkbeiner, Koleini, Micinski, Rabe, Sánchez 2014]
Completeness Results

Decidable

Undecidable

\[\Sigma_0^0 = \Pi_0^0 \]

\[\Sigma_1^0 \rightarrow \Sigma_2^0 \]

\[\Pi_1^0 \rightarrow \Pi_2^0 \]

\[\vdots \]

\[\Sigma_0^1 = \Pi_0^1 \]

\[\Sigma_1^1 \rightarrow \Sigma_2^1 \]

\[\Pi_1^1 \rightarrow \Pi_2^1 \]

\[\vdots \]

\[\Sigma_0^2 = \Pi_0^2 \]

\[\Sigma_1^2 \rightarrow \Sigma_2^2 \]

\[\Pi_1^2 \rightarrow \Pi_2^2 \]

\[\vdots \]

Recursively enumerable

Co-recursively enumerable

arithmetical hierarchy

first-order arithmetic

analytical hierarchy

second-order arithmetic

third-order arithmetic
Completeness Results

$\Sigma_0^0 = \Pi_0^0$

Decidable

Undecidable

Recursively enumerable

Co-recursively enumerable

$\Sigma_1^0 \rightarrow \Sigma_2^0$

$\Pi_1^0 \rightarrow \Pi_2^0$

$\Sigma_1^1 \rightarrow \Sigma_2^1$

$\Pi_1^1 \rightarrow \Pi_2^1$

$\Sigma_1^2 \rightarrow \Sigma_2^2$

$\Pi_1^2 \rightarrow \Pi_2^2$

HyperlTL satisfiability

11
Completeness Results

$\Sigma_0 = \Pi_0$

$\Sigma_1 \rightarrow \Sigma_2$

$\Pi_1 \rightarrow \Pi_2$

Decidable

Recursively enumerable

Undecidable

HyperLTL satisfiability

HyperCTL* satisfiability

Co-recursively enumerable

11

Arithmetical hierarchy
- first-order arithmetic

Analytical hierarchy
- second-order arithmetic
- third-order arithmetic
Completeness Results

Decidable

Undecidable

Recursively enumerable

HyperLTL satisfiability

HyperCTL* satisfiability

\[\Sigma^0_0 = \Pi^0_0 \]
\[\Sigma^1_1 = \Sigma^1_1 \]
\[\Sigma^2_2 = \Sigma^2_2 \]

\[\Pi^0_0 \rightarrow \Pi^0_0 \]
\[\Pi^1_1 \rightarrow \Pi^1_1 \]
\[\Pi^2_2 \rightarrow \Pi^2_2 \]

Co-recursively enumerable

Membership at any level of HyperLTL quantifier alternation hierarchy

arithmetical hierarchy

analytical hierarchy

First-order arithmetic

Second-order arithmetic

Third-order arithmetic

Recursive enumerability

Co-recursively enumerable

Decidability

Arithmetical hierarchy

Analytical hierarchy

First-order arithmetic

Second-order arithmetic

Third-order arithmetic
HyperLTL Satisfiability – Membership

Lemma

HyperLTL satisfiability is in Σ_1^1
HyperLTL Satisfiability – Membership

Lemma

HyperLTL satisfiability is in Σ^1_1, i.e., there is a formula

$$\Phi(x) = \exists x_1, \ldots, \exists x_n. \Phi_0(x, x_1, \ldots, x_n)$$

such that

$\psi \in \text{HyperLTL}$ is satisfiable iff $\Phi([\psi])$ holds.

Some intuitions:

- Minimal size of a model: every satisfiable HyperLTL formula has a countable model [Finkbeiner, Zimmermann '17]
- Countable models can be seen as functions from $\mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$ mapping a pair (trace, position) to a label.
- Existential second-order quantification is used to encode the existence of a model.

encoding of ψ as a natural number
HyperLTL Satisfiability – Membership

Lemma

HyperLTL satisfiability is in Σ_1^1, i.e., there is a formula

$$\Phi(x) = \exists x_1, \ldots, \exists x_n. \Phi_0(x, x_1, \ldots, x_n)$$

such that

$$\psi \in \text{HyperLTL} \text{ is satisfiable iff } \Phi(\lceil \psi \rceil) \text{ holds.}$$

Some intuitions:

- **Minimal size of a model:** every satisfiable HyperLTL formula has a countable model [Finkbeiner, Zimmermann '17]
Lemma

HyperLTL satisfiability is in Σ^1_1, i.e., there is a formula

$$\Phi(x) = \exists x_1, \ldots, \exists x_n. \Phi_0(x, x_1, \ldots, x_n)$$

such that

$$\psi \in \text{HyperLTL is satisfiable iff } \Phi(\lceil \psi \rceil) \text{ holds.}$$

Some intuitions:

- **Minimal size of a model:** every satisfiable HyperLTL formula has a countable model \cite{FinkbeinerZimmermann17}

- **Countable models:** can be seen as functions from $\mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$ mapping a pair (trace, position) to a label.
HyperLTL Satisfiability – Membership

Lemma

HyperLTL satisfiability is in Σ_1^1, i.e., there is a formula

$$\Phi(x) = \exists x_1, \ldots, \exists x_n. \Phi_0(x, x_1, \ldots, x_n)$$

such that

$\psi \in \text{HyperLTL}$ is satisfiable iff $\Phi(\lceil \psi \rceil)$ holds.

Some intuitions:

• Minimal size of a model: every satisfiable HyperLTL formula has a countable model [Finkbeiner, Zimmermann ’17]

• Countable models can be seen as functions from $\mathbb{N} \times \mathbb{N} \to \mathbb{N}$ mapping a pair (trace, position) to a label

• Existential second-order quantification is used to encode the existence of a model
Lemma

HyperLTL satisfiability is Σ_1^1-hard.

Proof idea: by reduction from the **recurring tiling problem:**
given a set of tiles, is there a tiling of $\mathbb{N} \times \mathbb{N}$ such that a specific tile occurs infinitely often on the $\mathbb{N} \times 0$ border?
Lemma

HyperLTL satisfiability is Σ^1_1-hard.

Proof idea: by reduction from the recurring tiling problem: given a set of tiles, is there a tiling of $\mathbb{N} \times \mathbb{N}$ such that a specific tile occurs infinitely often on the $\mathbb{N} \times 0$ border?

- Each tile is encoded by an atomic proposition
HyperLTL Satisfiability – Hardness

Lemma

HyperLTL satisfiability is Σ^1_1-hard.

Proof idea: by reduction from the recurring tiling problem: given a set of tiles, is there a tiling of $\mathbb{N} \times \mathbb{N}$ such that a specific tile occurs infinitely often on the $\mathbb{N} \times 0$ border?

- Each tile is encoded by an atomic proposition
- Each row is encoded by a trace
Lemma

HyperLTL satisfiability is Σ_1^1-hard.

Proof idea: by reduction from the recurring tiling problem: given a set of tiles, is there a tiling of $\mathbb{N} \times \mathbb{N}$ such that a specific tile occurs infinitely often on the $\mathbb{N} \times 0$ border?

- Each tile is encoded by an atomic proposition
- Each row is encoded by a trace
- Rows/traces are ordered vertically using a special atomic proposition y true exactly once in each trace: y is true at time i on the trace representing row $\mathbb{N} \times i$
Proof idea (continued):
Define $\varphi \in \text{HyperLTL}$ expressing that:

1. there is exactly one tile at every position in every trace
2. y is true exactly once on each trace
3. for every i, there is a trace with y at position i
4. two traces with the same position for y are identical
5. tiles match horizontally
6. tiles match vertically
7. the specified tile occurs infinitely often on the trace where y is true at 0
Proof idea (continued):
Define $\varphi \in \text{HyperLTL}$ expressing that:

1. there is exactly one tile at every position in every trace
HyperLTL Satisfiability – Hardness

Proof idea (continued):
Define $\varphi \in \text{HyperLTL}$ expressing that:

1. there is exactly one tile at every position in every trace
2. y is true exactly once on each trace

\[\forall \pi. (\neg y_\pi \ U (y_\pi \land X G \neg y_\pi)) \]
Proof idea (continued):
Define $\varphi \in \text{HyperLTL}$ expressing that:

1. there is exactly one tile at every position in every trace
2. y is true exactly once on each trace
3. for every i, there is a trace with y at position i

$$(\exists \pi. y_\pi) \land (\forall \pi. \exists \pi'. F(y_\pi \land Xy_{\pi'}))$$
Proof idea (continued):
Define $\varphi \in \text{HyperLTL}$ expressing that:

1. there is exactly one tile at every position in every trace
2. y is true exactly once on each trace
3. for every i, there is a trace with y at position i
4. two traces with the same position for y are identical

$$\forall \pi, \pi'. F(y_\pi \land y_{\pi'}) \rightarrow G \left(\bigwedge_\tau \tau_\pi \leftrightarrow \tau_{\pi'} \right)$$
Proof idea (continued): Define $\varphi \in \text{HyperLTL}$ expressing that:

1. there is exactly one tile at every position in every trace
2. y is true exactly once on each trace
3. for every i, there is a trace with y at position i
4. two traces with the same position for y are identical
5. tiles match horizontally

\[
\forall \pi. \ G \left(\bigvee_{(\tau,\tau') \in H} \tau_\pi \land X \tau_{\pi'} \right)
\]
HyperLTL Satisfiability – Hardness

Proof idea (continued):
Define $\varphi \in \text{HyperLTL}$ expressing that:

1. there is exactly one tile at every position in every trace
2. y is true exactly once on each trace
3. for every i, there is a trace with y at position i
4. two traces with the same position for y are identical
5. tiles match horizontally
6. tiles match vertically

$$\forall \pi, \pi'. \ F(\neg \pi \land X \neg \pi') \rightarrow G \left(\bigvee_{(\tau, \tau') \in V} \tau_\pi \land \tau_{\pi'} \right)$$
Proof idea (continued):
Define $\varphi \in \text{HyperLTL}$ expressing that:

1. there is exactly one tile at every position in every trace
2. y is true exactly once on each trace
3. for every i, there is a trace with y at position i
4. two traces with the same position for y are identical
5. tiles match horizontally
6. tiles match vertically
7. the specified tile occurs infinitely often on the trace where y is true at 0

$$\exists \pi. (y_\pi \land GF(\tau_0)_\pi)$$
Theorem

HyperLTL satisfiability is Σ^1_1-complete.

Why?

• Every satisfiable HyperLTL formula has a countable model
• Some formulas of HyperCTL* require models of cardinality 2^\aleph_0 (and this bound is optimal)
<table>
<thead>
<tr>
<th>Theorem</th>
<th>HyperLTL satisfiability is Σ^1_1-complete.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theorem</td>
<td>HyperCTL* satisfiability is Σ^2_1-complete.</td>
</tr>
</tbody>
</table>

Theorem
HyperLTL satisfiability is Σ^1_1-complete.

Theorem
HyperCTL* satisfiability is Σ^2_1-complete.
HyperLTL vs. HyperCTL*

Theorem
HyperLTL satisfiability is Σ_1^1-complete.

Theorem
HyperCTL* satisfiability is Σ_1^2-complete.

existential second-order \rightarrow existential third-order arithmetic
HyperLTL vs. HyperCTL*

Theorem
HyperLTL satisfiability is Σ_1^1-complete.

Theorem
HyperCTL* satisfiability is Σ_1^2-complete.

existential second-order \rightarrow existential third-order arithmetic

Why?

- Every satisfiable HyperLTL formula has a countable model
- Some formulas of HyperCTL* require models of cardinality $\mathfrak{c} = |2^\mathbb{N}|$ (and this bound is optimal)
Models of Cardinality at Least \aleph_0

The following can be expressed in HyperCTL*:

- Every state is labeled red or black, and 1 or 0.
- Every black state has a (black) 0- and 1-successor.
- Every black path has a copy in the red part.
 $$\forall \pi. (X_{\text{black}}(\pi) \rightarrow \exists \pi'. X_{\text{red}}(\pi') \land G(0_\pi \leftrightarrow 0_{\pi'}))$$
- Two red paths starting in the same state have the same sequence of labels (red paths are initially disjoint).
 $$\forall \pi. G(\text{red}_\pi \rightarrow \forall \pi'. G(0_\pi \leftrightarrow 0_{\pi'}))$$
Models of Cardinality at Least \mathfrak{c}

The following can be expressed in HyperCTL*:

- Every state is labeled red or black, and 1 or 0
The following can be expressed in HyperCTL*:

- Every state is labeled red or black, and 1 or 0
- Every black state has a (black) 0- and 1-successor
The following can be expressed in HyperCTL*:

- Every state is labeled red or black, and 1 or 0
- Every black state has a (black) 0- and 1-successor
- Every black path has a copy in the red part

\[
\forall \pi. \left(X \text{black}_\pi \rightarrow \exists \pi'. X(\text{red}_{\pi'} \land G(0_\pi \leftrightarrow 0_{\pi'})) \right)
\]
Models of Cardinality at Least \mathfrak{c}

The following can be expressed in HyperCTL^*:

- Every state is labeled red or black, and 1 or 0
- Every black state has a (black) 0- and 1-successor
- Every black path has a copy in the red part
 \[\forall \pi. (X \text{black}_\pi \rightarrow \exists \pi'. X(\text{red}_\pi', \land G(0_\pi \leftrightarrow 0_{\pi'}))) \]
- Two red paths starting in the same state have the same sequence of labels (red paths are initially disjoint)
 \[\forall \pi. G(\text{red}_\pi \rightarrow \forall \pi'. G(0_\pi \leftrightarrow 0_{\pi'})) \]
Models of Cardinality at Least \beth_0

The following can be expressed in HyperCTL*:

- Every state is labeled red or black, and 1 or 0
- Every black state has a (black) 0- and 1-successor
- Every black path has a copy in the red part
 $$\forall \pi. (X\ black_\pi \to \exists \pi'. X(\text{red}_\pi', \wedge G(0_\pi \leftrightarrow 0_{\pi'})))$$
- Two red paths starting in the same state have the same sequence of labels (red paths are initially disjoint)
 $$\forall \pi. G(\text{red}_\pi \to \forall \pi'. G(0_\pi \leftrightarrow 0_{\pi'}))$$
Every satisfiable HyperCTL* formula φ has a model of cardinality at most \mathfrak{c}.
Matching upper bound

Every satisfiable HyperCTL* formula φ has a model of cardinality at most \mathfrak{c}.

- Start with an arbitrary model \mathcal{T} of φ, and Skolem functions witnessing satisfaction.
Every satisfiable HyperCTL* formula φ has a model of cardinality at most \mathfrak{c}.

- Start with an arbitrary model \mathcal{T} of φ, and Skolem functions witnessing satisfaction.
- Saturation procedure:

$$
\mathcal{T}_0 = \{s_0 \rightarrow s_1 \rightarrow \cdots\}
$$

$$
\mathcal{T}_{\alpha+1} = \mathcal{T}_\alpha \cup \bigcup f(\bar{x}) \quad \bar{x} \text{ inputs from } \mathcal{T}_\alpha \\
\phantom{\mathcal{T}_{\alpha+1} = \mathcal{T}_\alpha \cup } \text{ for a skolem function } f
$$

$$
\mathcal{T}_\alpha = \bigcup_{\alpha' < \alpha} \mathcal{T}_{\alpha'} \quad \text{for limit ordinals}
$$
Matching upper bound

Every satisfiable HyperCTL* formula φ has a model of cardinality at most \aleph.

- Start with an arbitrary model T of φ, and Skolem functions witnessing satisfaction.
- Saturation procedure:

$$T_0 = \{ s_0 \rightarrow s_1 \rightarrow \cdots \}$$

$$T_{\alpha + 1} = T_\alpha \cup \bigcup f(\bar{x})$$

\bar{x} inputs from T_α

f a skolem function

$$T_\alpha = \bigcup_{\alpha' < \alpha} T_{\alpha'}$$ for limit ordinals
Every satisfiable HyperCTL* formula \(\varphi \) has a model of cardinality at most \(c \).

- Start with an arbitrary model \(\mathcal{T} \) of \(\varphi \), and Skolem functions witnessing satisfaction.
- Saturation procedure:

\[
\mathcal{T}_0 = \{ s_0 \rightarrow s_1 \rightarrow \cdots \}
\]

\[
\mathcal{T}_{\alpha+1} = \mathcal{T}_\alpha \cup \bigcup \left\{ f(\bar{x}) \mid \bar{x} \text{ inputs from } \mathcal{T}_\alpha, f \text{ a skolem function} \right\}
\]

\[
\mathcal{T}_\alpha = \bigcup_{\alpha' < \alpha} \mathcal{T}_{\alpha'} \quad \text{for limit ordinals}
\]
Matching upper bound

Every satisfiable HyperCTL* formula \(\varphi \) has a model of cardinality at most \(\mathfrak{c} \).

- Start with an arbitrary model \(\mathcal{T} \) of \(\varphi \), and Skolem functions witnessing satisfaction.
- Saturation procedure:

\[
\mathcal{T}_0 = \{ s_0 \rightarrow s_1 \rightarrow \cdots \}
\]

\[
\mathcal{T}_{\alpha+1} = \mathcal{T}_\alpha \cup \bigcup f(\bar{x})
\]

\(\bar{x} \) inputs from \(\mathcal{T}_\alpha \)

\(f \) a skolem function

\[
\mathcal{T}_\alpha = \bigcup_{\alpha' < \alpha} \mathcal{T}_{\alpha'} \quad \text{for limit ordinals}
\]
Matching upper bound

Every satisfiable HyperCTL* formula φ has a model of cardinality at most \mathfrak{c}.

- Start with an arbitrary model \mathcal{T} of φ, and Skolem functions witnessing satisfaction.
- Saturation procedure:

\[\mathcal{T}_0 = \{ s_0 \rightarrow s_1 \rightarrow \cdots \} \]

\[\mathcal{T}_{\alpha+1} = \mathcal{T}_\alpha \cup \bigcup_{\bar{x} \text{ inputs from } \mathcal{T}_\alpha} f(\bar{x}) \]

\[\mathcal{T}_\alpha = \bigcup_{\alpha' < \alpha} \mathcal{T}_{\alpha'} \quad \text{for limit ordinals} \]
Matching upper bound

Every satisfiable HyperCTL* formula φ has a model of cardinality at most c.

- Start with an arbitrary model T of φ, and Skolem functions witnessing satisfaction.
- Saturation procedure:

$$T_0 = \{s_0 \rightarrow s_1 \rightarrow \cdots\}$$

$$T_{\alpha+1} = T_\alpha \cup \bigcup f(\bar{x})$$

\[\bar{x}\text{ inputs from } T_\alpha\]
\[f\text{ a skolem function}\]

$$T_\alpha = \bigcup_{\alpha' < \alpha} T_{\alpha'}$$ for limit ordinals

- Fixpoint at the first uncountable ordinal: $T_{\omega_1} = T_{\omega_1+1}$.

Matching upper bound

Every satisfiable HyperCTL* formula \(\varphi \) has a model of cardinality at most \(c \).

- Start with an arbitrary model \(\mathcal{T} \) of \(\varphi \), and Skolem functions witnessing satisfaction.
- Saturation procedure:
 \[
 \mathcal{T}_0 = \{ s_0 \rightarrow s_1 \rightarrow \cdots \}
 \]
 \[
 \mathcal{T}_{\alpha+1} = \mathcal{T}_\alpha \cup \bigcup f(\bar{x})
 \]
 \(\bar{x} \) inputs from \(\mathcal{T}_\alpha \)
 \(f \) a skolem function
 \[
 \mathcal{T}_\alpha = \bigcup_{\alpha' < \alpha} \mathcal{T}_{\alpha'} \quad \text{for limit ordinals}
 \]
- Fixpoint at the first uncountable ordinal: \(\mathcal{T}_{\omega_1} = \mathcal{T}_{\omega_1+1} \).
- \(\mathcal{T}_{\omega_1} \) contains at most \(c \) vertices, and \(\mathcal{T}_{\omega_1} \models \varphi \).
Size of Minimal Models

Theorem

- Every satisfiable HyperCTL* formula has a model of cardinality at most $\mathfrak{c} = |2^\mathbb{N}|$.
- There is a satisfiable HyperCTL* formula that does not have any model of cardinality less than \mathfrak{c}.
HyperCTL* Satisfiability

Theorem

HyperCTL* satisfiability is Σ^2_1-complete.

$\exists x_1, \ldots, \exists x_n \cdot \Phi_0(x, x_1, \ldots, x_n)$

- third-order variables
- second-order arithmetic
Theorem

HyperCTL* satisfiability is Σ^2_1-complete.

Upper bound

- Every satisfiable HyperCTL* formula has a model of cardinality at most c
 - set of states $= 2^\mathbb{N}$
 - transitions $= \text{subset of } 2^\mathbb{N} \times 2^\mathbb{N}$
 - labeling function $2^\mathbb{N} \rightarrow \mathbb{N}$
HyperCTL* Satisfiability

Theorem

HyperCTL* satisfiability is Σ^2_1-complete.

Upper bound

- Every satisfiable HyperCTL* formula has a model of cardinality at most c
 - set of states $= 2^\mathbb{N}$
 - transitions $= \text{subset of } 2^\mathbb{N} \times 2^\mathbb{N}$
 - labeling function $2^\mathbb{N} \rightarrow \mathbb{N}$
- Use third-order quantifiers to express the existence of a model
HyperCTL* Satisfiability

Theorem

HyperCTL* satisfiability is Σ^2_1-complete.

Lower bound

From an existential third-order arithmetic formula $\Phi(x)$ and n, construct ψ such that $\mathbb{N} \models \Phi(n)$ iff ψ is satisfiable:
Theorem

HyperCTL* satisfiability is Σ^2_1-complete.

Lower bound

From an existential third-order arithmetic formula $\Phi(x)$ and n, construct ψ such that $\mathbb{N} \models \Phi(n)$ iff ψ is satisfiable:

- $n \in \mathbb{N} \rightsquigarrow$ path with 1 in n-th position only;
HyperCTL* Satisfiability

Theorem

HyperCTL* satisfiability is Σ^2_1-complete.

$$\exists x_1, \ldots, \exists x_n. \Phi_0(x, x_1, \ldots, x_n)$$

Lower bound

From an existential third-order arithmetic formula $\Phi(x)$ and n, construct ψ such that $\mathbb{N} \models \Phi(n)$ iff ψ is satisfiable:

- $n \in \mathbb{N} \rightsquigarrow$ path with 1 in n-th position only;
- $A \subseteq \mathbb{N} \rightsquigarrow$ path labeled by characteristic sequence of A;
- First and second-order quantifiers \rightsquigarrow path quantifiers.
HyperCTL* Satisfiability

Theorem

HyperCTL* satisfiability is Σ^2_1-complete.

$$\exists x_1, \ldots, \exists x_n \cdot \Phi_0(x, x_1, \ldots, x_n)$$

Lower bound

From an existential third-order arithmetic formula $\Phi(x)$ and n, construct ψ such that $\mathbb{N} \models \Phi(n)$ iff ψ is satisfiable:

- $n \in \mathbb{N} \rightsquigarrow$ path with 1 in n-th position only;
- $A \subseteq \mathbb{N} \rightsquigarrow$ path labeled by characteristic sequence of A;
- First and second-order quantifiers \rightsquigarrow path quantifiers
- One atomic proposition p_i for each third-order x_i.

Existential third-order quantifiers \rightsquigarrow satisfiability
Conclusion

• HyperLTL satisfiability problem is Σ_1^1-complete, thus highly undecidable.

• HyperCTL* satisfiability problem is Σ_2^1-complete, which is infinitely higher than Σ_1^1 in the hierarchy.

• First (and optimal) bound on the minimal size of models for HyperCTL*:
 - every satisfiable formula has a model with at most c many states
 - there is satisfiable formula that requires c many states.
Conclusion

- HyperLTL satisfiability problem is Σ_1^1-complete, thus highly undecidable
Conclusion

- HyperLTL satisfiability problem is Σ^1_1-complete, thus highly undecidable
- HyperCTL* satisfiability problem is Σ^2_1-complete, which is infinitely higher than Σ^1_1 in the hierarchy
• HyperLTL satisfiability problem is Σ^1_1-complete, thus highly undecidable

• HyperCTL* satisfiability problem is Σ^2_1-complete, which is infinitely higher than Σ^1_1 in the hierarchy

• First (and optimal) bound on the minimal size of models for HyperCTL*:
 • every satisfiable formula has a model with at most c many states
 • there is satisfiable formula that requires c many states
Conclusion

Other results:

• HyperLTL satisfiability is still Σ_1^1-complete when restricted to ultimately periodic traces.

• HyperCTL* satisfiability restricted to countable or finitely branching transition systems is equivalent to the problem of evaluating a second-order arithmetic formula.

• deciding if a HyperLTL formula is equivalent to one with n quantifier alternations is exactly as hard unsatisfiability, i.e. Π_1^1-complete.
Other results:

- HyperLTL satisfiability is still Σ^1_1-complete when restricted to ultimately periodic traces.
Other results:

- HyperLTL satisfiability is still Σ^1_1-complete when restricted to ultimately periodic traces.
- HyperCTL* satisfiability restricted to countable or finitely branching transition systems is equivalent to the problem of evaluating a second-order arithmetic formula.
Other results:

- HyperLTL satisfiability is still Σ^1_1-complete when restricted to ultimately periodic traces.
- HyperCTL* satisfiability restricted to countable or finitely branching transition systems is equivalent to the problem of evaluating a second-order arithmetic formula.
- deciding if a HyperLTL formula is equivalent to one with n quantifier alternations is exactly as hard unsatisfiability, i.e. Π^1_1-complete.