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Hyperproperties [Clarkson, Schneider 2010]

Specifications that relate multiple executions of a system, such
as in information-flow security policies.

e Noninterference

e Observational determinism

e Declassification
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Linear Temporal Logic (LTL)

LTL

Yi=a| = [ pVY | PAY Xy YUy |Fy |Gy
/ S/ N

a € AP “Next ¥" “t Until 3" “Eventually 7" “Globally %"
(atomic proposition)

Examples
e Safety: G —bad
e Liveness: GFactive
o G(request — X(—request U grant))
“every request is eventually granted, and there can be no other

request in the meantime”

Properties of individual traces N — 2AP

Cannot compare executions
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Syntax of HyperLTL

pu=dmp | Ve | ¢
Ypiu=a. || oVY | YAY [ XY [pUp|[Fy |Gy
7/ | N
“Next ¢" "1 Until 1" “Eventually 1" “Globally 1"
Example:

Vr.Vr'. G(in_public_ <+ in_public_,)
— G(out_public_ <> out_public_,)

“Any two traces with the same public input have the same
public output”

Always in prenex normal form: Qm.Q, 7, . .. ©
—_———

trace quantifiers LTL formula
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Syntax of HyperCTL*
pu=3dre|Vrp|a | pleVe | Xe|pUp|Fe |Gy

e No prenex normal form
e Branching-time semantics:
e evaluation over transition systems/computation trees
rather than sets of traces
e quantifiers range over paths in the transition system,
starting in the latest state
e Time progresses synchronously in all branches when
evaluating temporal operators

e Strict generalization of both HyperLTL and CTL*
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Example
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“All paths starting from an a-labeled state coincide on 0"

a a,b
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HyperLTL and HyperCTL* model-checking problems are
decidable . ..

... but their satisfiability problems are undecidable.

How undecidable is HyperLTL or HyperCTL* satisfiability?
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Y7 definable by a formula of the form FJ*V*J*v* ... ¢
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~
. ibloﬁksd j-th order
(J + 1)th order 3 i metic

variables 10
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What Was Known

e HyperLTL satisfiability is >.{-hard.  [Finkbeiner, Hahn 2016]
e HyperLTL satisfiability restricted to finite sets of
traces is X.{-complete (complete for the class of
recursively enumerable problems).
[Finkbeiner, Hahn, Hans 2018], [Mascle, Zimmermann, 2020]
e HyperCTL* satisfiability is >|-hard.
[Clarkson, Finkbeiner, Koleini, Micinski, Rabe, Sdnchez 2014]
e Finite-state HyperCTL* satisfiability is X%-complete.
[Clarkson, Finkbeiner, Koleini, Micinski, Rabe, Sdnchez 2014]

11
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Lemma

HyperLTL satisfiability is in X1, i.e., there is a formula
such that

Y € HyperLTL is satisfiable iff ®([1)] Q@.

encoding of v as a natural number
Some intuitions:

° every satisfiable HyperLTL
formula has a countable model [Finkbeiner, Zimmermann '17]
e Countable models can be seen as functions from
N x N — N mapping a pair (trace, position) to a label
e Existential second-order quantification is used to encode
the existence of a model 13
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HyperLTL Satisfiability — Hardness

Lemma
HyperLTL satisfiability is 3{-hard.

Proof idea: by reduction from the recurring tiling problem:
given a set of tiles, is there a tiling of N x N such that a
specific tile occurs infinitely often on the N x 0 border?

e Each tile is encoded by an atomic proposition

e Each row is encoded by a trace

e Rows/traces are ordered vertically using a special atomic
proposition y true exactly once in each trace: y is true at
time ¢ on the trace representing row N x ¢

14
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Proof idea (continued):
Define ¢ € HyperLTL expressing that:

1. there is exactly one tile at every position in every trace
2. y is true exactly once on each trace

3. for every i, there is a trace with y at position

(Fr.yr) A (V. 37", Fy. A Xyl))
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Proof idea (continued):
Define ¢ € HyperLTL expressing that:

1. there is exactly one tile at every position in every trace
2. y is true exactly once on each trace
3. for every i, there is a trace with y at position

4. two traces with the same position for y are identical

vV, 7' F(yr Ayw) — G (/\ Te & Tﬂr>

T
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Proof idea (continued):

Define ¢ € HyperLTL expressing that:

1.

there is exactly one tile at every position in every trace

2. y is true exactly once on each trace
3.
4
5

for every i, there is a trace with y at position

. two traces with the same position for y are identical

. tiles match horizontally

vr. G \/ T N X Ty

(r,7"YeH
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Proof idea (continued):

Define ¢ € HyperLTL expressing that:

1.

there is exactly one tile at every position in every trace

.y is true exactly once on each trace
. for every i, there is a trace with y at position ¢

2
3
4.
5
6

two traces with the same position for y are identical

. tiles match horizontally

. tiles match vertically

vV, 7' Flyr AXyp) = G \/ Tr N Tt

(r,7")ev

ii5)
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Proof idea (continued):

Define ¢ € HyperLTL expressing that:

1.

N e B o @O

there is exactly one tile at every position in every trace
y is true exactly once on each trace

for every i, there is a trace with y at position

two traces with the same position for y are identical
tiles match horizontally

tiles match vertically

the specified tile occurs infinitely often on the trace where

y is true at 0
dm. (yﬂ' NG F(TO)W)

ii5)
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Theorem

HyperLTL satisfiability is

Theorem
HyperCTL* satisfiability is

existential — existential arithmetic
Why?

e Every satisfiable HyperLTL formula has a countable model

e Some formulas of HyperCTL* require models of
cardinality ¢ = |2"| (and this bound is optimal)

16
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e Start with an arbitrary model 7 of ¢, and Skolem
functions witnessing satisfaction.
e Saturation procedure:
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f a skolem function

i U T, for limit ordinals
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Matching upper bound

Every satisfiable HyperCTL* formula ¢ has a model of
cardinality at most c.
e Start with an arbitrary model 7 of ¢, and Skolem
functions witnessing satisfaction.
e Saturation procedure:

76:{80%81—)"'}
Tosr1=Ta U U f(2) TN

T inputs from Tg b 75
f a skolem function

i U T, for limit ordinals
o' <a ]
e Fixpoint at the first uncountable ordinal: 7, = 7,11

e 7., contains at most ¢ vertices, and 7, = ¢.
18



Size of Minimal Models

Theorem

e Every satisfiable HyperCTL* formula has a model of
cardinality at most ¢ = |2"|.

e There is a satisfiable HyperCTL* formula that does not
have any model of cardinality less than c.
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HyperCTL* Satisfiability

Theorem
HyperCTL* satisfiability is E'f—c\oAmplete.

Jxq, ..., 32, Doz, 21, ..., 24)

third-order second-order

Upper bound variables arithmetic

e Every satisfiable HyperCTL* formula has a model of
cardinality at most ¢

e set of states = 2N
e transitions = subset of 2N x 2N
e labeling function 2% — N

e Use third-order quantifiers to express the existence of a
model
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HyperCTL* Satisfiability

Theorem

HyperCTL* satisfiability is E'f—c\oAmplete.

Jxq, ..., 32, Doz, 21, ..., 24)

third-order second-order

Lower bound variables I
From an existential third-order arithmetic formula ®(z) and n,
construct 1 such that N = ®(n) iff ¢ is satisfiable:
e n € N ~~ path with 1 in n-th position only;
e A C N ~~ path labeled by characteristic sequence of A;
First and second-order quantifiers ~~ path quantifiers
e One atomic proposition p; for each third-order x;.
Existential third-order quantifiers ~~ satisfiability

20
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Conclusion

e HyperLTL satisfiability problem is ¥|-complete, thus
highly undecidable

e HyperCTL* satisfiability problem is >{-complete, which is
infinitely higher than X1 in the hierarchy

e First (and optimal) bound on the minimal size of models
for HyperCTL*:

e every satisfiable formula has a model with at most ¢
many states
e there is satisfiable formula that requires ¢ many states
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Conclusion

Other results:
e HyperLTL satisfiability is still ¥}-complete when
restricted to ultimately periodic traces.
e HyperCTL* satisfiability restricted to countable or finitely

branching transition systems is equivalent to the problem
of evaluating a second-order arithmetic formula.

e deciding if a HyperLTL formula is equivalent to one with
n quantifier alternations is exactly as hard unsatisfiability,
i.e. TT{-complete.
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Thank you!



