How undecidable are HyperLTL and
HyperCTL*?

Marie Fortin, Louwe Kuijer, Patrick Totzke, Martin Zimmermann

University of Liverpool

Logic & Semantics Seminar, Cambridge — March 4, 2022

Hyperproperties [Clarkson, Schneider 2010]

Specifications that relate multiple executions of a system, such
as in information-flow security policies.

Hyperproperties [Clarkson, Schneider 2010]

Specifications that relate multiple executions of a system, such
as in information-flow security policies.

public public
input output
private private
input output
—_—

e.g. “no secret information should leak to low-level users”

Hyperproperties [Clarkson, Schneider 2010]

Specifications that relate multiple executions of a system, such
as in information-flow security policies.

e Noninterference

e Observational determinism

e Declassification

HyperLTL and HyperCTL*

N
N
~
N
N

~ _ branching time

N
~

N
linear time >

LTL A

HyperLTL and HyperCTL*

~ _ branching time

N
~
N
~

N
linear time >

one execution

at a time

N
N

HyperLTL and HyperCTL*

~ _ branching time

N
~
N
~

N
linear time >

HyperLTL)

= LTL + trace quantifiers

one execution

at a time

N
N

HyperLTL and HyperCTL*

~ _ branching time

N
~

N HyperCTL*

linear time \\\ o
~ = CTL* + path quantifiers

HyperLTL)

= LTL + trace quantifiers

one execution

at a time

N
~

Linear Temporal Logic (LTL)

LTL
Yu=a|W|PVY[pAY | XY [PpUP[Fp |Gy

Linear Temporal Logic (LTL)

LTL
wiiz/aﬁ@/)I@DV@DI@DAWXW@UUWF@DIG@/)

a € AP
(atomic proposition)

Linear Temporal Logic (LTL)

LTL

Ypu=al|W[PVY |PAY XY |pUyP|FyY |Gy
/ /

a € AP “Next 9"

(atomic proposition)

Linear Temporal Logic (LTL)

LTL

Yi=a| W |YVY | YA | XY |pUy|Fy |Gy
/ / /

ac AP “Next 1" " Until "

(atomic proposition)

Linear Temporal Logic (LTL)

LTL

Yvi=al| WYV |yAY [XY Uy |Fy| Gy
/ S/ !

a € AP “Next ¥" “2 Until 3" “Eventually 1"

(atomic proposition)

Linear Temporal Logic (LTL)

LTL
Yvi=al| WYV |yAY [XY Uy |Fy| Gy
/ / / ! N
a € AP “Next 1" "t Until ¢ "Eventually ¢" “Globally %"

(atomic proposition)

Linear Temporal Logic (LTL)

LTL
Yvi=al| WYV |yAY [XY Uy |Fy| Gy
/ / / ! N
a € AP “Next 1" "t Until ¢ "Eventually ¢" “Globally %"

(atomic proposition)

Examples

Linear Temporal Logic (LTL)

LTL
Yvi=al| WYV |yAY [XY Uy |Fy| Gy
/ / / ! N
a € AP “Next 1" "t Until ¢ "Eventually ¢" “Globally %"

(atomic proposition)

Examples
e Safety: G —bad

Linear Temporal Logic (LTL)

LTL
Yvi=al| WYV |yAY [XY Uy |Fy| Gy
/ / / ! N
a € AP “Next 1" "t Until ¢ "Eventually ¢" “Globally %"

(atomic proposition)
Examples
e Safety: G —bad

e Liveness: GFactive

Linear Temporal Logic (LTL)

LTL

Yi=a| = [pVY | PAY Xy YUy |Fy |Gy
/ S/ N

a € AP “Next ¥" “t Until 3" “Eventually 7" “Globally %"
(atomic proposition)

Examples
e Safety: G —bad
e Liveness: GFactive
e G(request — X(—request U grant))
“every request is eventually granted, and there can be no other

request in the meantime”

Linear Temporal Logic (LTL)

LTL

Yi=a| = [pVY | PAY Xy YUy |Fy |Gy
/ S/ N

a € AP “Next ¥" “t Until 3" “Eventually 7" “Globally %"
(atomic proposition)

Examples
e Safety: G —bad
e Liveness: GFactive
o G(request — X(—request U grant))
“every request is eventually granted, and there can be no other

request in the meantime”

Properties of individual traces N — 2AP

Cannot compare executions

HyperLTL [Clarkson et al. 2014]

Syntax of HyperLTL

= dmp | Vo | ¥

Yiu=ar | W |YVY[YAY | XY [pUP[Fy| Gy
7 !

“Next 1" ‘“ Until ¢ “Eventually ¢" “Globally 1"

HyperLTL [Clarkson et al. 2014]

Syntax of HyperLTL

pu=dr.p |Vr.e |y

Yiu=ar | W |YVY[YAY | XY [pUP[Fy| Gy
7 !

“Next 1" ‘“ Until ¢ “Eventually ¢" “Globally 1"

HyperLTL [Clarkson et al. 2014]

Syntax of HyperLTL

pu=dr.p |Vr.e |y

Yu=ar | W |PVY[pAY | XY [pUyP[Fy| Gy
7 ! \

“Next 1" ‘“ Until ¢ “Eventually ¢" “Globally 1"

HyperLTL [Clarkson et al. 2014]

Syntax of HyperLTL

pu=dmp | Ve | ¢
Ypiu=a. || oVY | YAY [XY [pUp|[Fy |Gy
7/ | N
“Next ¢" "1 Until 1" “Eventually 1" “Globally 1"
Example:

Vr.Vr'. G(in_public_ <+ in_public_,)
— G(out_public_ <> out_public_,)

“Any two traces with the same public input have the same
public output”

HyperLTL [Clarkson et al. 2014]

Syntax of HyperLTL

pu=dmp | Ve | ¢
Ypiu=a. || oVY | YAY [XY [pUp|[Fy |Gy
7/ | N
“Next ¢" "1 Until 1" “Eventually 1" “Globally 1"
Example:

Vr.Vr'. G(in_public_ <+ in_public_,)
— G(out_public_ <> out_public_,)

“Any two traces with the same public input have the same
public output”

Always in prenex normal form: Qm.Q, 7, . .. ©
—_———

trace quantifiers LTL formula

HyperLTL [Clarkson et al. 2014]

A transition system 7T satisfies a HyperLTL formula ¢ if
Traces(T) k= .

HyperLTL [Clarkson et al. 2014]

A transition system 7T satisfies a HyperLTL formula ¢ if
Traces(T) k= .

r- -8—o0

g A{a}

Example

0

{a}

8 O

HyperLTL [Clarkson et al. 2014]

A transition system 7T satisfies a HyperLTL formula ¢ if
Traces(T) k= .

Example

r- B

g A{a}

o {ag
Traces(T)={ @ {a} @ {a} {a} {a} {a}
o o {ap & {a} {a} {a}

o @ @ {a} @ {a} {a}
200 !

T

HyperLTL [Clarkson et al. 2014]

A transition system 7T satisfies a HyperLTL formula ¢ if
Traces(T) k= .

Example

r- B

g A{a}

o {ag
Traces(T)={ @ {a} @ {a} {a} {a} {a}
o o {ap & {a} {a} {a}
o @ @ {a} @ {a} {a}
T = Vr. In'. G(az <> Xaq)

HyperLTL [Clarkson et al. 2014]

A transition system 7T satisfies a HyperLTL formula ¢ if
Traces(T) k= .

Example

r- B

g A{a}

o {ag
Traces(T)={ @ {a} @ {a} {a} {a} {a}
g @ {a o {a {a {a}
o @ @ {a} @ {a} {a}
T E=Nr. 37, G(az <> Xay)

HyperLTL [Clarkson et al. 2014]

A transition system 7T satisfies a HyperLTL formula ¢ if
Traces(T) k= .

Example

r- B

g A{a}

o {ag
Traces(T)={ @ {a} @ {a} {a} {a} {a}
g @ {a o {a {a {a}
g o @ {a} @ {a} {a}
T = Nr. @& G (ar <> Xaq)

HyperLTL [Clarkson et al. 2014]

A transition system 7T satisfies a HyperLTL formula ¢ if
Traces(T) k= .

Example

T = *8 O—0 8
@

g A{a}

Traces(T)={ @ {a} @ {a} {a} {a} {a}
g @ {a o {a {a {a}

o @ @ {at @ {a} {a} -,
) 1

T = Nr. 358 G (ar <> Xay)

HyperLTL [Clarkson et al. 2014]

A transition system 7T satisfies a HyperLTL formula ¢ if
Traces(T) k= .

Example

T = *8 O—0 8
@

g A{a}

Traces(T)={ @ {a} @ {a} {a} {a} {a}
g @ {a o {a {a {a}
g o @ {a} @ {a} {a}
) 1

T = Nr. 358 G (ar <> Xay)

HyperLTL [Clarkson et al. 2014]

A transition system 7T satisfies a HyperLTL formula ¢ if
Traces(T) k= .

Example

T = *8 O—0 8
@

g A{a}

Traces(T)={ @ {a} @ {a} {a} {a} {a}
g @ {a o {a {a {a}
g o @ {a} @ {a} {a}
) 1

T = Nr. 358 G (ar <> Xay)

HyperCTL* [Clarkson et al. 2014]

HyperCTL* [Clarkson et al. 2014]

Syntax of HyperCTL*
pu=3dre|Vrp|a | pleVe | Xe|pUp|Fe |Gy

HyperCTL* [Clarkson et al. 2014]

Syntax of HyperCTL*
pu=3dre|Vrp|a | pleVe | Xe|pUp|Fe |Gy

HyperCTL* [Clarkson et al. 2014]

Syntax of HyperCTL*
pu=3dre|Vrp|a | pleVe | Xe|pUp|Fe |Gy

e No prenex normal form
e Branching-time semantics:
e evaluation over transition systems/computation trees
rather than sets of traces
e quantifiers range over paths in the transition system,
starting in the latest state

HyperCTL* [Clarkson et al. 2014]

Syntax of HyperCTL*
pu=3dre|Vrp|a | pleVe | Xe|pUp|Fe |Gy

e No prenex normal form
e Branching-time semantics:
e evaluation over transition systems/computation trees
rather than sets of traces
e quantifiers range over paths in the transition system,
starting in the latest state
e Time progresses synchronously in all branches when
evaluating temporal operators

HyperCTL* [Clarkson et al. 2014]

Syntax of HyperCTL*
pu=3dre|Vrp|a | pleVe | Xe|pUp|Fe |Gy

e No prenex normal form
e Branching-time semantics:
e evaluation over transition systems/computation trees
rather than sets of traces
e quantifiers range over paths in the transition system,
starting in the latest state
e Time progresses synchronously in all branches when
evaluating temporal operators

e Strict generalization of both HyperLTL and CTL*

HyperCTL* [Clarkson et al. 2014]

Example

o = V. Glay = Vr'. G(by <> br))

HyperCTL* [Clarkson et al. 2014]

Example
o = V. Glay = Vr'. G(by <> br))

“All paths starting from an a-labeled state coincide on 0"

a a,b

HyperCTL* [Clarkson et al. 2014]

Example
o =Nn. Gla, = Vr'. G(by <> br))

“All paths starting from an a-labeled state coincide on 0"

a a,b

HyperCTL* [Clarkson et al. 2014]

Example
o =Nn. Gla, — ¥&S G(br < b))

“All paths starting from an a-labeled state coincide on 0"

a a,b

Undecidability

HyperLTL and HyperCTL* model-checking problems are
decidable . ..

... but their satisfiability problems are undecidable.

Undecidability

HyperLTL and HyperCTL* model-checking problems are
decidable . ..

... but their satisfiability problems are undecidable.

How undecidable is HyperLTL or HyperCTL* satisfiability?

Levels of Undecidability

Decidable Undecidable

Recursively

enumerable
20 — %9 n— %} w2 ¥
e e
28:1‘[8 ...2(1):1‘[(1) ...2[2):1‘[3
AN AN
1m0 — 119 m — I 2 — 2

L Co-recursively

enumerable

arithmetical hierarchy analytical hierarchy

10

Levels of Undecidability

Decidable Undecidable

Recursively

enumerable
20 — %9 n— %} w2 ¥
e e
28:1‘[8 ...2(1):1‘[(1) ...2[2):1‘[3
AN AN
1m0 — 119 m — I 2 — 2

L Co-recursively

enumerable

arithmetical hierarchy analytical hierarchy
Y7 definable by a formula of the form J*V*J*v* ... ¢
—_—

~
. ibloﬁksd j-th order
(J + 1)th order 3 i metic

variables 10

Levels of Undecidability

Decidable Undecidable

Recursively

enumerable
20 — %9 n— %} w2 ¥
e e
28:1‘[8 ...2(1):1‘[(1) ...2[2):1‘[3
AN AN
1m0 — 119 m — I 2 — 2

L Co-recursively

enumerable

arithmetical hierarchy analytical hierarchy
first-order arithmetic second-order arithmetic third-order arithmetic
Y7 definable by a formula of the form FJ*V*J*v* ... ¢
—_—

~
. ibloﬁksd j-th order
(J + 1)th order 3 i metic

variables 10

What Was Known

11

What Was Known

e HyperLTL satisfiability is >.{-hard. [Finkbeiner, Hahn 2016]

11

What Was Known

e HyperLTL satisfiability is >.{-hard. [Finkbeiner, Hahn 2016]

e HyperLTL satisfiability restricted to finite sets of
traces is X.{-complete (complete for the class of
recursively enumerable problems).

[Finkbeiner, Hahn, Hans 2018], [Mascle, Zimmermann, 2020]

11

What Was Known

e HyperLTL satisfiability is >.{-hard. [Finkbeiner, Hahn 2016]
e HyperLTL satisfiability restricted to finite sets of
traces is X.{-complete (complete for the class of
recursively enumerable problems).
[Finkbeiner, Hahn, Hans 2018], [Mascle, Zimmermann, 2020]
e HyperCTL* satisfiability is >|-hard.
[Clarkson, Finkbeiner, Koleini, Micinski, Rabe, Sdnchez 2014]

11

What Was Known

e HyperLTL satisfiability is >.{-hard. [Finkbeiner, Hahn 2016]
e HyperLTL satisfiability restricted to finite sets of
traces is X.{-complete (complete for the class of
recursively enumerable problems).
[Finkbeiner, Hahn, Hans 2018], [Mascle, Zimmermann, 2020]
e HyperCTL* satisfiability is >|-hard.
[Clarkson, Finkbeiner, Koleini, Micinski, Rabe, Sdnchez 2014]
e Finite-state HyperCTL* satisfiability is X%-complete.
[Clarkson, Finkbeiner, Koleini, Micinski, Rabe, Sdnchez 2014]

11

Completeness Results

Decidable Undecidable

Recursively
enumerable

29 — 5 st — 5l N2 — 332
/ 4
AN N

9 — 113 I — 11k 112 — 112

L Co-recursively

enumerable

arithmetical hierarchy analytical hierarchy
first-order arithmetic second-order arithmetic third-order arithmetic

12

Completeness Results

Decidable Undecidable
HyperLTL
Recursively satisfiability
enumerable i
0 — X3 o — X3 o —x3
e e
EO HO ~--Zé:Hé ---22 H2
N N SN
H?*H% H%*H% Hf*H2
L Co-recursively
enumerable
arithmetical hierarchy analytical hierarchy
first-order arithmetic second-order arithmetic third-order arithmetic

12

Completeness Results

Decidable Undecidable
HyperLTL HyperCTL
Recursively satisfiability satisfiability
enumerable i J(
¢ — »0 ¥1— 2} »2— 2
e e
»9= 115 L= o 28 =1IE
AN N (
Iy — 113 I — II; I} — 113
L Co-recursively

enumerable

arithmetical hierarchy analytical hierarchy

first-order arithmetic second-order arithmetic third-order arithmetic

12

Completeness Results

Decidable Undecidable
HyperLTL HyperCTL
Recursively satisfiability satisfiability
enumerable i J(
¢ — »0 ¥1— 2} »2— 2
e e
»9= 115 L= so0 I = 1K
N NI
9 — 113 I — 11 13 — 112
L Co-recursively l Membership at any level of HyperLTL
enumerable quantifier alternation hierarchy
arithmetical hierarchy analytical hierarchy
first-order arithmetic second-order arithmetic third-order arithmetic

12

HyperLTL Satisfiability — Membership

Lemma

HyperLTL satisfiability is in ¥}

13

HyperLTL Satisfiability — Membership

Lemma

HyperLTL satisfiability is in X1, i.e., there is a formula
such that

Y € HyperLTL is satisfiable iff ®([1)])@.

encoding of ¢ as a natural number

13

HyperLTL Satisfiability — Membership

Lemma

HyperLTL satisfiability is in X1, i.e., there is a formula
such that

Y € HyperLTL is satisfiable iff ®([1)] Q@.

encoding of v as a natural number
Some intuitions:

° every satisfiable HyperLTL
formula has a countable model [Finkbeiner, Zimmermann '17]

13

HyperLTL Satisfiability — Membership

Lemma

HyperLTL satisfiability is in X1, i.e., there is a formula
such that

Y € HyperLTL is satisfiable iff ®([1)] Q@.

encoding of v as a natural number
Some intuitions:

° every satisfiable HyperLTL
formula has a countable model [Finkbeiner, Zimmermann '17]
e Countable models can be seen as functions from
N x N — N mapping a pair (trace, position) to a label

13

HyperLTL Satisfiability — Membership

Lemma

HyperLTL satisfiability is in X1, i.e., there is a formula
such that

Y € HyperLTL is satisfiable iff ®([1)] Q@.

encoding of v as a natural number
Some intuitions:

° every satisfiable HyperLTL
formula has a countable model [Finkbeiner, Zimmermann '17]
e Countable models can be seen as functions from
N x N — N mapping a pair (trace, position) to a label
e Existential second-order quantification is used to encode
the existence of a model 13

HyperLTL Satisfiability — Hardness

Lemma
HyperLTL satisfiability is 3{-hard.

Proof idea: by reduction from the
given a set of tiles, is there a tiling of N x N such that a
specific tile occurs infinitely often on the N x 0 border?

14

HyperLTL Satisfiability — Hardness

Lemma
HyperLTL satisfiability is 3{-hard.

Proof idea: by reduction from the recurring tiling problem:
given a set of tiles, is there a tiling of N x N such that a
specific tile occurs infinitely often on the N x 0 border?

e Each tile is encoded by an atomic proposition

14

HyperLTL Satisfiability — Hardness

Lemma
HyperLTL satisfiability is 3{-hard.

Proof idea: by reduction from the recurring tiling problem:
given a set of tiles, is there a tiling of N x N such that a
specific tile occurs infinitely often on the N x 0 border?

e Each tile is encoded by an atomic proposition

e Each row is encoded by a trace

14

HyperLTL Satisfiability — Hardness

Lemma
HyperLTL satisfiability is 3{-hard.

Proof idea: by reduction from the recurring tiling problem:
given a set of tiles, is there a tiling of N x N such that a
specific tile occurs infinitely often on the N x 0 border?

e Each tile is encoded by an atomic proposition

e Each row is encoded by a trace

e Rows/traces are ordered vertically using a special atomic
proposition y true exactly once in each trace: y is true at
time ¢ on the trace representing row N x ¢

14

HyperLTL Satisfiability — Hardness

Proof idea (continued):
Define ¢ € HyperLTL expressing that:

ii5)

HyperLTL Satisfiability — Hardness

Proof idea (continued):
Define ¢ € HyperLTL expressing that:

1. there is exactly one tile at every position in every trace

ii5)

HyperLTL Satisfiability — Hardness

Proof idea (continued):
Define ¢ € HyperLTL expressing that:

1. there is exactly one tile at every position in every trace

2. y is true exactly once on each trace

V. (=yr U (yr AXG=y,))

ii5)

HyperLTL Satisfiability — Hardness

Proof idea (continued):
Define ¢ € HyperLTL expressing that:

1. there is exactly one tile at every position in every trace
2. y is true exactly once on each trace

3. for every i, there is a trace with y at position

(Fr.yr) A (V. 37", Fy. A Xyl))

ii5)

HyperLTL Satisfiability — Hardness

Proof idea (continued):
Define ¢ € HyperLTL expressing that:

1. there is exactly one tile at every position in every trace
2. y is true exactly once on each trace
3. for every i, there is a trace with y at position

4. two traces with the same position for y are identical

vV, 7' F(yr Ayw) — G (/\ Te & Tﬂr>

T

ii5)

HyperLTL Satisfiability — Hardness

Proof idea (continued):

Define ¢ € HyperLTL expressing that:

1.

there is exactly one tile at every position in every trace

2. y is true exactly once on each trace
3.
4
5

for every i, there is a trace with y at position

. two traces with the same position for y are identical

. tiles match horizontally

vr. G \/ T N X Ty

(r,7"YeH

ii5)

HyperLTL Satisfiability — Hardness

Proof idea (continued):

Define ¢ € HyperLTL expressing that:

1.

there is exactly one tile at every position in every trace

.y is true exactly once on each trace
. for every i, there is a trace with y at position ¢

2
3
4.
5
6

two traces with the same position for y are identical

. tiles match horizontally

. tiles match vertically

vV, 7' Flyr AXyp) = G \/ Tr N Tt

(r,7")ev

ii5)

HyperLTL Satisfiability — Hardness

Proof idea (continued):

Define ¢ € HyperLTL expressing that:

1.

N e B o @O

there is exactly one tile at every position in every trace
y is true exactly once on each trace

for every i, there is a trace with y at position

two traces with the same position for y are identical
tiles match horizontally

tiles match vertically

the specified tile occurs infinitely often on the trace where

y is true at 0
dm. (yﬂ' NG F(TO)W)

ii5)

HyperLTL vs. HyperCTL"

Theorem

HyperLTL satisfiability is

16

HyperLTL vs. HyperCTL"

Theorem

HyperLTL satisfiability is

Theorem
HyperCTL* satisfiability is

16

HyperLTL vs. HyperCTL"

Theorem

HyperLTL satisfiability is

Theorem
HyperCTL* satisfiability is

existential — existential arithmetic

16

HyperLTL vs. HyperCTL"

Theorem

HyperLTL satisfiability is

Theorem
HyperCTL* satisfiability is

existential — existential arithmetic
Why?

e Every satisfiable HyperLTL formula has a countable model

e Some formulas of HyperCTL* require models of
cardinality ¢ = |2"| (and this bound is optimal)

16

o
i)
(7))
(1}
Q
-
s}
(1}
>
=
©
=
=]
e
(1}
@)
(F5
(=}
A
Q
=]
s

17

Models of Cardinality at Least ¢

The following can be expressed in HyperCTL*:
e Every state is labeled red or black, and 1 or 0

17

Models of Cardinality at Least ¢

The following can be expressed in HyperCTL*:
e Every state is labeled red or black, and 1 or 0
e Every black state has a (black) 0- and 1-successor

17

Models of Cardinality at Least ¢

The following can be expressed in HyperCTL*:
e Every state is labeled red or black, and 1 or 0
e Every black state has a (black) 0- and 1-successor
e Every black path has a copy in the red part
V7. (Xblack, — 3. X(red A G(0, ¢+ 0)))

17

Models of Cardinality at Least ¢

The following can be expressed in HyperCTL*:
e Every state is labeled red or black, and 1 or 0
Every black state has a (black) 0- and 1-successor
Every black path has a copy in the red part
V7. (Xblack, — 3. X(red A G(0, ¢+ 0)))
Two red paths starting in the same state have the same
sequence of labels (red paths are initially disjoint)
Vr. G (red7T — Vr'. G(0, < Oﬂz)) 17

Models of Cardinality at Least ¢

The following can be expressed in HyperCTL*:
e Every state is labeled red or black, and 1 or 0
Every black state has a (black) 0- and 1-successor
Every black path has a copy in the red part
V7. (Xblack, — 3. X(red A G(0, ¢+ 0)))
Two red paths starting in the same state have the same
sequence of labels (red paths are initially disjoint)
Vr. G (red7T — Vr'. G(0, < Oﬂz)) 17

Matching upper bound

Every satisfiable HyperCTL* formula ¢ has a model of
cardinality at most c.

18

Matching upper bound

Every satisfiable HyperCTL* formula ¢ has a model of
cardinality at most c.

e Start with an arbitrary model 7 of ¢, and Skolem
functions witnessing satisfaction.

18

Matching upper bound

Every satisfiable HyperCTL* formula ¢ has a model of
cardinality at most c.

e Start with an arbitrary model 7 of ¢, and Skolem
functions witnessing satisfaction.
e Saturation procedure:

To={so—=>s1— -}
771+1:7;U U f(l_f) <

T inputs from Tg b <4
f a skolem function

T, = U T for limit ordinals

o' <a

18

Matching upper bound

Every satisfiable HyperCTL* formula ¢ has a model of
cardinality at most c.

e Start with an arbitrary model 7 of ¢, and Skolem
functions witnessing satisfaction.
e Saturation procedure:

To={so—=>s1— -}
Tor1=Ta U U f(@) N

T inputs from Tg b <4
f a skolem function

T, = U T for limit ordinals

o' <a

18

Matching upper bound

Every satisfiable HyperCTL* formula ¢ has a model of
cardinality at most c.

e Start with an arbitrary model 7 of ¢, and Skolem
functions witnessing satisfaction.
e Saturation procedure:

To={so—=>s1— -}
Tar1=Ta U U f(@) 7i N

T inputs from Tg b
f a skolem function

T, = U T for limit ordinals

o' <a

18

Matching upper bound

Every satisfiable HyperCTL* formula ¢ has a model of
cardinality at most c.

e Start with an arbitrary model 7 of ¢, and Skolem
functions witnessing satisfaction.
e Saturation procedure:

To={so—=>s1— -}
Tar1=Ta U U f(@) 7i N

T inputs from Tg b 75
f a skolem function

T, = U T for limit ordinals

o' <a

18

Matching upper bound

Every satisfiable HyperCTL* formula ¢ has a model of
cardinality at most c.

e Start with an arbitrary model 7 of ¢, and Skolem
functions witnessing satisfaction.
e Saturation procedure:

To={so—=>s1— -}
Tar1=Ta U U f(@) 7i N

T inputs from Tg b 75
f a skolem function

T, = U T for limit ordinals

o' <a

18

Matching upper bound

Every satisfiable HyperCTL* formula ¢ has a model of
cardinality at most c.
e Start with an arbitrary model 7 of ¢, and Skolem
functions witnessing satisfaction.
e Saturation procedure:

76:{80%81—)"'}
Tosr1=Ta U U f(2) TN

T inputs from Tg b 75
f a skolem function

i U T, for limit ordinals
o' <a]
e Fixpoint at the first uncountable ordinal: 7, = 7,11

18

Matching upper bound

Every satisfiable HyperCTL* formula ¢ has a model of
cardinality at most c.
e Start with an arbitrary model 7 of ¢, and Skolem
functions witnessing satisfaction.
e Saturation procedure:

76:{80%81—)"'}
Tosr1=Ta U U f(2) TN

T inputs from Tg b 75
f a skolem function

i U T, for limit ordinals
o' <a]
e Fixpoint at the first uncountable ordinal: 7, = 7,11

e 7., contains at most ¢ vertices, and 7, = ¢.
18

Size of Minimal Models

Theorem

e Every satisfiable HyperCTL* formula has a model of
cardinality at most ¢ = |2"|.

e There is a satisfiable HyperCTL* formula that does not
have any model of cardinality less than c.

19

HyperCTL* Satisfiability

Theorem

HyperCTL* satisfiability is Sfﬂmplete.

Jxq, ..., dxn. oz, 21, ..., Ty)

third-order second-order
variables arithmetic

20

HyperCTL* Satisfiability

Theorem

HyperCTL* satisfiability is E'f—c\oAmplete.

Jxq, ..., 32, Doz, 21, ..., 24)

third-order second-order

Upper bound variables arithmetic

e Every satisfiable HyperCTL* formula has a model of
cardinality at most ¢
e set of states = 2N
e transitions = subset of 2N x 2N
e labeling function 2% — N

20

HyperCTL* Satisfiability

Theorem
HyperCTL* satisfiability is E'f—c\oAmplete.

Jxq, ..., 32, Doz, 21, ..., 24)

third-order second-order

Upper bound variables arithmetic

e Every satisfiable HyperCTL* formula has a model of
cardinality at most ¢

e set of states = 2N
e transitions = subset of 2N x 2N
e labeling function 2% — N

e Use third-order quantifiers to express the existence of a
model

20

HyperCTL* Satisfiability

Theorem

HyperCTL* satisfiability is Sfﬂmplete.

Jxq, ..., dxn. oz, 21, ..., Ty)

third-order second-order

Lower bound variables arithmetic

From an existential third-order arithmetic formula ®(z) and n,
construct 1 such that N = ®(n) iff ¢ is satisfiable:

20

HyperCTL* Satisfiability

Theorem

HyperCTL* satisfiability is Sfﬂmplete.

Jxq, ..., dxn. oz, 21, ..., Ty)

third-order second-order

Lower bound variables arithmetic

From an existential third-order arithmetic formula ®(z) and n,
construct 1 such that N = ®(n) iff ¢ is satisfiable:

e n € N ~~ path with 1 in n-th position only;

20

HyperCTL* Satisfiability

Theorem

HyperCTL* satisfiability is E'f—c\oAmplete.

Jxq, ..., 32, Doz, 21, ..., 24)

third-order second-order

Lower bound variables arithmetic

From an existential third-order arithmetic formula ®(z) and n,
construct ¢ such that N = ®(n) iff ¢ is satisfiable:

e n € N ~~ path with 1 in n-th position only;

e A C N ~~ path labeled by characteristic sequence of A;
First and second-order quantifiers ~~ path quantifiers

20

HyperCTL* Satisfiability

Theorem

HyperCTL* satisfiability is E'f—c\oAmplete.

Jxq, ..., 32, Doz, 21, ..., 24)

third-order second-order

Lower bound variables I
From an existential third-order arithmetic formula ®(z) and n,
construct 1 such that N = ®(n) iff ¢ is satisfiable:
e n € N ~~ path with 1 in n-th position only;
e A C N ~~ path labeled by characteristic sequence of A;
First and second-order quantifiers ~~ path quantifiers
e One atomic proposition p; for each third-order x;.
Existential third-order quantifiers ~~ satisfiability

20

Conclusion

21

Conclusion

e HyperLTL satisfiability problem is ¥|-complete, thus
highly undecidable

21

Conclusion

e HyperLTL satisfiability problem is ¥|-complete, thus
highly undecidable

e HyperCTL* satisfiability problem is >{-complete, which is
infinitely higher than X1 in the hierarchy

21

Conclusion

e HyperLTL satisfiability problem is ¥|-complete, thus
highly undecidable

e HyperCTL* satisfiability problem is >{-complete, which is
infinitely higher than X1 in the hierarchy

e First (and optimal) bound on the minimal size of models
for HyperCTL*:

e every satisfiable formula has a model with at most ¢
many states
e there is satisfiable formula that requires ¢ many states

21

Conclusion

Other results:

22

Conclusion

Other results:

e HyperLTL satisfiability is still ¥}-complete when
restricted to ultimately periodic traces.

22

Conclusion

Other results:

e HyperLTL satisfiability is still ¥}-complete when
restricted to ultimately periodic traces.

e HyperCTL* satisfiability restricted to countable or finitely
branching transition systems is equivalent to the problem
of evaluating a second-order arithmetic formula.

22

Conclusion

Other results:
e HyperLTL satisfiability is still ¥}-complete when
restricted to ultimately periodic traces.
e HyperCTL* satisfiability restricted to countable or finitely

branching transition systems is equivalent to the problem
of evaluating a second-order arithmetic formula.

e deciding if a HyperLTL formula is equivalent to one with
n quantifier alternations is exactly as hard unsatisfiability,
i.e. TT{-complete.

22

Thank you!

