
How undecidable are HyperLTL and

HyperCTL∗?

Marie Fortin, Louwe Kuijer, Patrick Totzke, Martin Zimmermann

University of Liverpool

Logic & Semantics Seminar, Cambridge – March 4, 2022

1

Hyperproperties [Clarkson, Schneider 2010]

Specifications that relate multiple executions of a system, such

as in information-flow security policies.

2

Hyperproperties [Clarkson, Schneider 2010]

Specifications that relate multiple executions of a system, such

as in information-flow security policies.

public

input

private

input

public

output

private

output

e.g. “no secret information should leak to low-level users”

2

Hyperproperties [Clarkson, Schneider 2010]

Specifications that relate multiple executions of a system, such

as in information-flow security policies.

• Noninterference

• Observational determinism

• Declassification

• · · ·

2

HyperLTL and HyperCTL∗

LTL

CTL∗

HyperLTL

HyperCTL∗

= CTL∗ + path quantifiers

= LTL + trace quantifiers

linear time

branching time

one execution

at a time

3

HyperLTL and HyperCTL∗

LTL

CTL∗

HyperLTL

HyperCTL∗

= CTL∗ + path quantifiers

= LTL + trace quantifiers

linear time

branching time

one execution

at a time

3

HyperLTL and HyperCTL∗

LTL

CTL∗HyperLTL

HyperCTL∗

= CTL∗ + path quantifiers

= LTL + trace quantifiers

linear time

branching time

one execution

at a time

3

HyperLTL and HyperCTL∗

LTL

CTL∗HyperLTL

HyperCTL∗

= CTL∗ + path quantifiers

= LTL + trace quantifiers

linear time

branching time

one execution

at a time

3

Linear Temporal Logic (LTL)

LTL

ψ ::= a | ¬ψ | ψ ∨ ψ | ψ ∧ ψ | Xψ | ψ U ψ | Fψ | Gψ

a ∈ AP

(atomic proposition)
“Next ψ” “ψ Until ψ” “Eventually ψ” “Globally ψ”

Examples

• Safety: G¬bad
• Liveness: G F active

• G(request→ X(¬request U grant))

“every request is eventually granted, and there can be no other

request in the meantime”

Properties of individual traces N→ 2AP

Cannot compare executions

4

Linear Temporal Logic (LTL)

LTL

ψ ::= a | ¬ψ | ψ ∨ ψ | ψ ∧ ψ | Xψ | ψ U ψ | Fψ | Gψ

a ∈ AP

(atomic proposition)

“Next ψ” “ψ Until ψ” “Eventually ψ” “Globally ψ”

Examples

• Safety: G¬bad
• Liveness: G F active

• G(request→ X(¬request U grant))

“every request is eventually granted, and there can be no other

request in the meantime”

Properties of individual traces N→ 2AP

Cannot compare executions

4

Linear Temporal Logic (LTL)

LTL

ψ ::= a | ¬ψ | ψ ∨ ψ | ψ ∧ ψ | Xψ | ψ U ψ | Fψ | Gψ

a ∈ AP

(atomic proposition)
“Next ψ”

“ψ Until ψ” “Eventually ψ” “Globally ψ”

Examples

• Safety: G¬bad
• Liveness: G F active

• G(request→ X(¬request U grant))

“every request is eventually granted, and there can be no other

request in the meantime”

Properties of individual traces N→ 2AP

Cannot compare executions

4

Linear Temporal Logic (LTL)

LTL

ψ ::= a | ¬ψ | ψ ∨ ψ | ψ ∧ ψ | Xψ | ψ U ψ | Fψ | Gψ

a ∈ AP

(atomic proposition)
“Next ψ” “ψ Until ψ”

“Eventually ψ” “Globally ψ”

Examples

• Safety: G¬bad
• Liveness: G F active

• G(request→ X(¬request U grant))

“every request is eventually granted, and there can be no other

request in the meantime”

Properties of individual traces N→ 2AP

Cannot compare executions

4

Linear Temporal Logic (LTL)

LTL

ψ ::= a | ¬ψ | ψ ∨ ψ | ψ ∧ ψ | Xψ | ψ U ψ | Fψ | Gψ

a ∈ AP

(atomic proposition)
“Next ψ” “ψ Until ψ” “Eventually ψ”

“Globally ψ”

Examples

• Safety: G¬bad
• Liveness: G F active

• G(request→ X(¬request U grant))

“every request is eventually granted, and there can be no other

request in the meantime”

Properties of individual traces N→ 2AP

Cannot compare executions

4

Linear Temporal Logic (LTL)

LTL

ψ ::= a | ¬ψ | ψ ∨ ψ | ψ ∧ ψ | Xψ | ψ U ψ | Fψ | Gψ

a ∈ AP

(atomic proposition)
“Next ψ” “ψ Until ψ” “Eventually ψ” “Globally ψ”

Examples

• Safety: G¬bad
• Liveness: G F active

• G(request→ X(¬request U grant))

“every request is eventually granted, and there can be no other

request in the meantime”

Properties of individual traces N→ 2AP

Cannot compare executions

4

Linear Temporal Logic (LTL)

LTL

ψ ::= a | ¬ψ | ψ ∨ ψ | ψ ∧ ψ | Xψ | ψ U ψ | Fψ | Gψ

a ∈ AP

(atomic proposition)
“Next ψ” “ψ Until ψ” “Eventually ψ” “Globally ψ”

Examples

• Safety: G¬bad
• Liveness: G F active

• G(request→ X(¬request U grant))

“every request is eventually granted, and there can be no other

request in the meantime”

Properties of individual traces N→ 2AP

Cannot compare executions

4

Linear Temporal Logic (LTL)

LTL

ψ ::= a | ¬ψ | ψ ∨ ψ | ψ ∧ ψ | Xψ | ψ U ψ | Fψ | Gψ

a ∈ AP

(atomic proposition)
“Next ψ” “ψ Until ψ” “Eventually ψ” “Globally ψ”

Examples

• Safety: G¬bad

• Liveness: G F active

• G(request→ X(¬request U grant))

“every request is eventually granted, and there can be no other

request in the meantime”

Properties of individual traces N→ 2AP

Cannot compare executions

4

Linear Temporal Logic (LTL)

LTL

ψ ::= a | ¬ψ | ψ ∨ ψ | ψ ∧ ψ | Xψ | ψ U ψ | Fψ | Gψ

a ∈ AP

(atomic proposition)
“Next ψ” “ψ Until ψ” “Eventually ψ” “Globally ψ”

Examples

• Safety: G¬bad
• Liveness: G F active

• G(request→ X(¬request U grant))

“every request is eventually granted, and there can be no other

request in the meantime”

Properties of individual traces N→ 2AP

Cannot compare executions

4

Linear Temporal Logic (LTL)

LTL

ψ ::= a | ¬ψ | ψ ∨ ψ | ψ ∧ ψ | Xψ | ψ U ψ | Fψ | Gψ

a ∈ AP

(atomic proposition)
“Next ψ” “ψ Until ψ” “Eventually ψ” “Globally ψ”

Examples

• Safety: G¬bad
• Liveness: G F active

• G(request→ X(¬request U grant))

“every request is eventually granted, and there can be no other

request in the meantime”

Properties of individual traces N→ 2AP

Cannot compare executions

4

Linear Temporal Logic (LTL)

LTL

ψ ::= a | ¬ψ | ψ ∨ ψ | ψ ∧ ψ | Xψ | ψ U ψ | Fψ | Gψ

a ∈ AP

(atomic proposition)
“Next ψ” “ψ Until ψ” “Eventually ψ” “Globally ψ”

Examples

• Safety: G¬bad
• Liveness: G F active

• G(request→ X(¬request U grant))

“every request is eventually granted, and there can be no other

request in the meantime”

Properties of individual traces N→ 2AP

Cannot compare executions
4

HyperLTL [Clarkson et al. 2014]

Syntax of HyperLTL

ϕ ::= ∃π.ϕ | ∀π.ϕ | ψ
ψ ::= aπ | ¬ψ | ψ ∨ ψ | ψ ∧ ψ | Xψ | ψ U ψ | Fψ | Gψ

“p holds at the current

position on trace π”

“Next ψ” “ψ Until ψ” “Eventually ψ” “Globally ψ”

Example:

∀π.∀π′. G(in publicπ ↔ in publicπ′)

→ G(out publicπ ↔ out publicπ′)

“Any two traces with the same public input have the same

public output”

Always in prenex normal form: Q1π1.Qnπn . . .︸ ︷︷ ︸
trace quantifiers

ϕ︸︷︷︸
LTL formula

5

HyperLTL [Clarkson et al. 2014]

Syntax of HyperLTL

ϕ ::= ∃π.ϕ | ∀π.ϕ | ψ
ψ ::= aπ | ¬ψ | ψ ∨ ψ | ψ ∧ ψ | Xψ | ψ U ψ | Fψ | Gψ

“p holds at the current

position on trace π”

“Next ψ” “ψ Until ψ” “Eventually ψ” “Globally ψ”

Example:

∀π.∀π′. G(in publicπ ↔ in publicπ′)

→ G(out publicπ ↔ out publicπ′)

“Any two traces with the same public input have the same

public output”

Always in prenex normal form: Q1π1.Qnπn . . .︸ ︷︷ ︸
trace quantifiers

ϕ︸︷︷︸
LTL formula

5

HyperLTL [Clarkson et al. 2014]

Syntax of HyperLTL

ϕ ::= ∃π.ϕ | ∀π.ϕ | ψ
ψ ::= aπ | ¬ψ | ψ ∨ ψ | ψ ∧ ψ | Xψ | ψ U ψ | Fψ | Gψ

“p holds at the current

position on trace π”

“Next ψ” “ψ Until ψ” “Eventually ψ” “Globally ψ”

Example:

∀π.∀π′. G(in publicπ ↔ in publicπ′)

→ G(out publicπ ↔ out publicπ′)

“Any two traces with the same public input have the same

public output”

Always in prenex normal form: Q1π1.Qnπn . . .︸ ︷︷ ︸
trace quantifiers

ϕ︸︷︷︸
LTL formula

5

HyperLTL [Clarkson et al. 2014]

Syntax of HyperLTL

ϕ ::= ∃π.ϕ | ∀π.ϕ | ψ
ψ ::= aπ | ¬ψ | ψ ∨ ψ | ψ ∧ ψ | Xψ | ψ U ψ | Fψ | Gψ

“p holds at the current

position on trace π”

“Next ψ” “ψ Until ψ” “Eventually ψ” “Globally ψ”

Example:

∀π.∀π′. G(in publicπ ↔ in publicπ′)

→ G(out publicπ ↔ out publicπ′)

“Any two traces with the same public input have the same

public output”

Always in prenex normal form: Q1π1.Qnπn . . .︸ ︷︷ ︸
trace quantifiers

ϕ︸︷︷︸
LTL formula

5

HyperLTL [Clarkson et al. 2014]

Syntax of HyperLTL

ϕ ::= ∃π.ϕ | ∀π.ϕ | ψ
ψ ::= aπ | ¬ψ | ψ ∨ ψ | ψ ∧ ψ | Xψ | ψ U ψ | Fψ | Gψ

“p holds at the current

position on trace π”

“Next ψ” “ψ Until ψ” “Eventually ψ” “Globally ψ”

Example:

∀π.∀π′. G(in publicπ ↔ in publicπ′)

→ G(out publicπ ↔ out publicπ′)

“Any two traces with the same public input have the same

public output”

Always in prenex normal form: Q1π1.Qnπn . . .︸ ︷︷ ︸
trace quantifiers

ϕ︸︷︷︸
LTL formula

5

HyperLTL [Clarkson et al. 2014]

A transition system T satisfies a HyperLTL formula ϕ if

Traces(T) |= ϕ.

Example

∅ {a} ∅ {a}
T =

Traces(T) = { ∅ {a} ∅ {a} {a} {a} {a} · · · ,
∅ ∅ {a} ∅ {a} {a} {a} · · · ,
∅ ∅ ∅ {a} ∅ {a} {a} · · · ,
· · · }

T |= ∀π. ∃π′. G (aπ ↔ X aπ′)

6

HyperLTL [Clarkson et al. 2014]

A transition system T satisfies a HyperLTL formula ϕ if

Traces(T) |= ϕ.

Example

∅ {a} ∅ {a}
T =

Traces(T) = { ∅ {a} ∅ {a} {a} {a} {a} · · · ,
∅ ∅ {a} ∅ {a} {a} {a} · · · ,
∅ ∅ ∅ {a} ∅ {a} {a} · · · ,
· · · }

T |= ∀π. ∃π′. G (aπ ↔ X aπ′)

6

HyperLTL [Clarkson et al. 2014]

A transition system T satisfies a HyperLTL formula ϕ if

Traces(T) |= ϕ.

Example

∅ {a} ∅ {a}
T =

Traces(T) = { ∅ {a} ∅ {a} {a} {a} {a} · · · ,
∅ ∅ {a} ∅ {a} {a} {a} · · · ,
∅ ∅ ∅ {a} ∅ {a} {a} · · · ,
· · · }

T |= ∀π. ∃π′. G (aπ ↔ X aπ′)

6

HyperLTL [Clarkson et al. 2014]

A transition system T satisfies a HyperLTL formula ϕ if

Traces(T) |= ϕ.

Example

∅ {a} ∅ {a}
T =

Traces(T) = { ∅ {a} ∅ {a} {a} {a} {a} · · · ,
∅ ∅ {a} ∅ {a} {a} {a} · · · ,
∅ ∅ ∅ {a} ∅ {a} {a} · · · ,
· · · }

T |= ∀π. ∃π′. G (aπ ↔ X aπ′)
6

HyperLTL [Clarkson et al. 2014]

A transition system T satisfies a HyperLTL formula ϕ if

Traces(T) |= ϕ.

Example

∅ {a} ∅ {a}
T =

Traces(T) = { ∅ {a} ∅ {a} {a} {a} {a} · · · ,
∅ ∅ {a} ∅ {a} {a} {a} · · · ,
∅ ∅ ∅ {a} ∅ {a} {a} · · · ,
· · · }

T |= ∀π. ∃π′. G (aπ ↔ X aπ′)
6

HyperLTL [Clarkson et al. 2014]

A transition system T satisfies a HyperLTL formula ϕ if

Traces(T) |= ϕ.

Example

∅ {a} ∅ {a}
T =

Traces(T) = { ∅ {a} ∅ {a} {a} {a} {a} · · · ,
∅ ∅ {a} ∅ {a} {a} {a} · · · ,
∅ ∅ ∅ {a} ∅ {a} {a} · · · ,
· · · }

T |= ∀π. ∃π′. G (aπ ↔ X aπ′)
6

HyperLTL [Clarkson et al. 2014]

A transition system T satisfies a HyperLTL formula ϕ if

Traces(T) |= ϕ.

Example

∅ {a} ∅ {a}
T =

Traces(T) = { ∅ {a} ∅ {a} {a} {a} {a} · · · ,
∅ ∅ {a} ∅ {a} {a} {a} · · · ,
∅ ∅ ∅ {a} ∅ {a} {a} · · · ,
· · · }

T |= ∀π. ∃π′. G (aπ ↔ X aπ′)
6

HyperLTL [Clarkson et al. 2014]

A transition system T satisfies a HyperLTL formula ϕ if

Traces(T) |= ϕ.

Example

∅ {a} ∅ {a}
T =

Traces(T) = { ∅ {a} ∅ {a} {a} {a} {a} · · · ,
∅ ∅ {a} ∅ {a} {a} {a} · · · ,
∅ ∅ ∅ {a} ∅ {a} {a} · · · ,
· · · }

T |= ∀π. ∃π′. G (aπ ↔ X aπ′)
6

HyperLTL [Clarkson et al. 2014]

A transition system T satisfies a HyperLTL formula ϕ if

Traces(T) |= ϕ.

Example

∅ {a} ∅ {a}
T =

Traces(T) = { ∅ {a} ∅ {a} {a} {a} {a} · · · ,
∅ ∅ {a} ∅ {a} {a} {a} · · · ,
∅ ∅ ∅ {a} ∅ {a} {a} · · · ,
· · · }

T |= ∀π. ∃π′. G (aπ ↔ X aπ′)
6

HyperCTL∗ [Clarkson et al. 2014]

Syntax of HyperCTL∗

ϕ ::= ∃π.ϕ | ∀π.ϕ | aπ | ¬ϕ | ϕ ∨ ϕ | Xϕ | ϕ U ϕ | Fϕ | Gϕ

• No prenex normal form

• Branching-time semantics:

• evaluation over transition systems/computation trees

rather than sets of traces

• quantifiers range over paths in the transition system,

starting in the latest state

• Time progresses synchronously in all branches when

evaluating temporal operators

• Strict generalization of both HyperLTL and CTL∗

7

HyperCTL∗ [Clarkson et al. 2014]

Syntax of HyperCTL∗

ϕ ::= ∃π.ϕ | ∀π.ϕ | aπ | ¬ϕ | ϕ ∨ ϕ | Xϕ | ϕ U ϕ | Fϕ | Gϕ

• No prenex normal form

• Branching-time semantics:

• evaluation over transition systems/computation trees

rather than sets of traces

• quantifiers range over paths in the transition system,

starting in the latest state

• Time progresses synchronously in all branches when

evaluating temporal operators

• Strict generalization of both HyperLTL and CTL∗

7

HyperCTL∗ [Clarkson et al. 2014]

Syntax of HyperCTL∗

ϕ ::= ∃π.ϕ | ∀π.ϕ | aπ | ¬ϕ | ϕ ∨ ϕ | Xϕ | ϕ U ϕ | Fϕ | Gϕ

• No prenex normal form

• Branching-time semantics:

• evaluation over transition systems/computation trees

rather than sets of traces

• quantifiers range over paths in the transition system,

starting in the latest state

• Time progresses synchronously in all branches when

evaluating temporal operators

• Strict generalization of both HyperLTL and CTL∗

7

HyperCTL∗ [Clarkson et al. 2014]

Syntax of HyperCTL∗

ϕ ::= ∃π.ϕ | ∀π.ϕ | aπ | ¬ϕ | ϕ ∨ ϕ | Xϕ | ϕ U ϕ | Fϕ | Gϕ

• No prenex normal form

• Branching-time semantics:

• evaluation over transition systems/computation trees

rather than sets of traces

• quantifiers range over paths in the transition system,

starting in the latest state

• Time progresses synchronously in all branches when

evaluating temporal operators

• Strict generalization of both HyperLTL and CTL∗

7

HyperCTL∗ [Clarkson et al. 2014]

Syntax of HyperCTL∗

ϕ ::= ∃π.ϕ | ∀π.ϕ | aπ | ¬ϕ | ϕ ∨ ϕ | Xϕ | ϕ U ϕ | Fϕ | Gϕ

• No prenex normal form

• Branching-time semantics:

• evaluation over transition systems/computation trees

rather than sets of traces

• quantifiers range over paths in the transition system,

starting in the latest state

• Time progresses synchronously in all branches when

evaluating temporal operators

• Strict generalization of both HyperLTL and CTL∗

7

HyperCTL∗ [Clarkson et al. 2014]

Syntax of HyperCTL∗

ϕ ::= ∃π.ϕ | ∀π.ϕ | aπ | ¬ϕ | ϕ ∨ ϕ | Xϕ | ϕ U ϕ | Fϕ | Gϕ

• No prenex normal form

• Branching-time semantics:

• evaluation over transition systems/computation trees

rather than sets of traces

• quantifiers range over paths in the transition system,

starting in the latest state

• Time progresses synchronously in all branches when

evaluating temporal operators

• Strict generalization of both HyperLTL and CTL∗

7

HyperCTL∗ [Clarkson et al. 2014]

Example

ϕ = ∀π. G(aπ → ∀π′. G(bπ ↔ bπ′))

“All paths starting from an a-labeled state coincide on b”

a

b

a
...

a, b

...

a, b

...

8

HyperCTL∗ [Clarkson et al. 2014]

Example

ϕ = ∀π. G(aπ → ∀π′. G(bπ ↔ bπ′))

“All paths starting from an a-labeled state coincide on b”

a

b

a
...

a, b

...

a, b

...

8

HyperCTL∗ [Clarkson et al. 2014]

Example

ϕ = ∀π. G(aπ → ∀π′. G(bπ ↔ bπ′))

“All paths starting from an a-labeled state coincide on b”

a

b

a
...

a, b

...

a, b

...

8

HyperCTL∗ [Clarkson et al. 2014]

Example

ϕ = ∀π. G(aπ → ∀π′. G(bπ ↔ bπ′))

“All paths starting from an a-labeled state coincide on b”

a

b

a
...

a, b

...

a, b

...

8

Undecidability

HyperLTL and HyperCTL∗ model-checking problems are

decidable . . .

. . . but their satisfiability problems are undecidable.

How undecidable is HyperLTL or HyperCTL∗ satisfiability?

9

Undecidability

HyperLTL and HyperCTL∗ model-checking problems are

decidable . . .

. . . but their satisfiability problems are undecidable.

How undecidable is HyperLTL or HyperCTL∗ satisfiability?

9

Levels of Undecidability

Σ0
0 = Π0

0

Σ0
1

Π0
1

Σ0
2

Π0
2

· · · Σ1
0 = Π1

0

Σ1
1

Π1
1

Σ1
2

Π1
2

· · · Σ2
0 = Π2

0

Σ2
1

Π2
1

Σ2
2

Π2
2

· · ·

Decidable Undecidable

Co-recursively

enumerable

Recursively

enumerable

arithmetical hierarchy analytical hierarchy

Σj
i : definable by a formula of the form ∃∗∀∗∃∗∀∗ · · ·︸ ︷︷ ︸

i blocks
(j + 1)th order

variables

ϕ︸︷︷︸
j-th order
arithmetic

10

Levels of Undecidability

Σ0
0 = Π0

0

Σ0
1

Π0
1

Σ0
2

Π0
2

· · · Σ1
0 = Π1

0

Σ1
1

Π1
1

Σ1
2

Π1
2

· · · Σ2
0 = Π2

0

Σ2
1

Π2
1

Σ2
2

Π2
2

· · ·

Decidable Undecidable

Co-recursively

enumerable

Recursively

enumerable

arithmetical hierarchy analytical hierarchy

Σj
i : definable by a formula of the form ∃∗∀∗∃∗∀∗ · · ·︸ ︷︷ ︸

i blocks
(j + 1)th order

variables

ϕ︸︷︷︸
j-th order
arithmetic

10

Levels of Undecidability

Σ0
0 = Π0

0

Σ0
1

Π0
1

Σ0
2

Π0
2

· · · Σ1
0 = Π1

0

Σ1
1

Π1
1

Σ1
2

Π1
2

· · · Σ2
0 = Π2

0

Σ2
1

Π2
1

Σ2
2

Π2
2

· · ·

Decidable Undecidable

Co-recursively

enumerable

Recursively

enumerable

arithmetical hierarchy

first-order arithmetic

analytical hierarchy

second-order arithmetic third-order arithmetic

Σj
i : definable by a formula of the form ∃∗∀∗∃∗∀∗ · · ·︸ ︷︷ ︸

i blocks
(j + 1)th order

variables

ϕ︸︷︷︸
j-th order
arithmetic

10

What Was Known

• HyperLTL satisfiability is Σ0
1-hard. [Finkbeiner, Hahn 2016]

• HyperLTL satisfiability restricted to finite sets of

traces is Σ0
1-complete (complete for the class of

recursively enumerable problems).

[Finkbeiner, Hahn, Hans 2018], [Mascle, Zimmermann, 2020]

• HyperCTL∗ satisfiability is Σ1
1-hard.

[Clarkson, Finkbeiner, Koleini, Micinski, Rabe, Sánchez 2014]

• Finite-state HyperCTL∗ satisfiability is Σ0
1-complete.

[Clarkson, Finkbeiner, Koleini, Micinski, Rabe, Sánchez 2014]

11

What Was Known

• HyperLTL satisfiability is Σ0
1-hard. [Finkbeiner, Hahn 2016]

• HyperLTL satisfiability restricted to finite sets of

traces is Σ0
1-complete (complete for the class of

recursively enumerable problems).

[Finkbeiner, Hahn, Hans 2018], [Mascle, Zimmermann, 2020]

• HyperCTL∗ satisfiability is Σ1
1-hard.

[Clarkson, Finkbeiner, Koleini, Micinski, Rabe, Sánchez 2014]

• Finite-state HyperCTL∗ satisfiability is Σ0
1-complete.

[Clarkson, Finkbeiner, Koleini, Micinski, Rabe, Sánchez 2014]

11

What Was Known

• HyperLTL satisfiability is Σ0
1-hard. [Finkbeiner, Hahn 2016]

• HyperLTL satisfiability restricted to finite sets of

traces is Σ0
1-complete (complete for the class of

recursively enumerable problems).

[Finkbeiner, Hahn, Hans 2018], [Mascle, Zimmermann, 2020]

• HyperCTL∗ satisfiability is Σ1
1-hard.

[Clarkson, Finkbeiner, Koleini, Micinski, Rabe, Sánchez 2014]

• Finite-state HyperCTL∗ satisfiability is Σ0
1-complete.

[Clarkson, Finkbeiner, Koleini, Micinski, Rabe, Sánchez 2014]

11

What Was Known

• HyperLTL satisfiability is Σ0
1-hard. [Finkbeiner, Hahn 2016]

• HyperLTL satisfiability restricted to finite sets of

traces is Σ0
1-complete (complete for the class of

recursively enumerable problems).

[Finkbeiner, Hahn, Hans 2018], [Mascle, Zimmermann, 2020]

• HyperCTL∗ satisfiability is Σ1
1-hard.

[Clarkson, Finkbeiner, Koleini, Micinski, Rabe, Sánchez 2014]

• Finite-state HyperCTL∗ satisfiability is Σ0
1-complete.

[Clarkson, Finkbeiner, Koleini, Micinski, Rabe, Sánchez 2014]

11

What Was Known

• HyperLTL satisfiability is Σ0
1-hard. [Finkbeiner, Hahn 2016]

• HyperLTL satisfiability restricted to finite sets of

traces is Σ0
1-complete (complete for the class of

recursively enumerable problems).

[Finkbeiner, Hahn, Hans 2018], [Mascle, Zimmermann, 2020]

• HyperCTL∗ satisfiability is Σ1
1-hard.

[Clarkson, Finkbeiner, Koleini, Micinski, Rabe, Sánchez 2014]

• Finite-state HyperCTL∗ satisfiability is Σ0
1-complete.

[Clarkson, Finkbeiner, Koleini, Micinski, Rabe, Sánchez 2014]

11

Completeness Results

HyperLTL

satisfiability

HyperCTL∗

satisfiability

Membership at any level of HyperLTL

quantifier alternation hierarchy

Σ0
0 = Π0

0

Σ0
1

Π0
1

Σ0
2

Π0
2

· · · Σ1
0 = Π1

0

Σ1
1

Π1
1

Σ1
2

Π1
2

· · · Σ2
0 = Π2

0

Σ2
1

Π2
1

Σ2
2

Π2
2

· · ·

Decidable Undecidable

Co-recursively

enumerable

Recursively

enumerable

arithmetical hierarchy

first-order arithmetic

analytical hierarchy

second-order arithmetic third-order arithmetic

12

Completeness Results

HyperLTL

satisfiability

HyperCTL∗

satisfiability

Membership at any level of HyperLTL

quantifier alternation hierarchy

Σ0
0 = Π0

0

Σ0
1

Π0
1

Σ0
2

Π0
2

· · · Σ1
0 = Π1

0

Σ1
1

Π1
1

Σ1
2

Π1
2

· · · Σ2
0 = Π2

0

Σ2
1

Π2
1

Σ2
2

Π2
2

· · ·

Decidable Undecidable

Co-recursively

enumerable

Recursively

enumerable

arithmetical hierarchy

first-order arithmetic

analytical hierarchy

second-order arithmetic third-order arithmetic

12

Completeness Results

HyperLTL

satisfiability

HyperCTL∗

satisfiability

Membership at any level of HyperLTL

quantifier alternation hierarchy

Σ0
0 = Π0

0

Σ0
1

Π0
1

Σ0
2

Π0
2

· · · Σ1
0 = Π1

0

Σ1
1

Π1
1

Σ1
2

Π1
2

· · · Σ2
0 = Π2

0

Σ2
1

Π2
1

Σ2
2

Π2
2

· · ·

Decidable Undecidable

Co-recursively

enumerable

Recursively

enumerable

arithmetical hierarchy

first-order arithmetic

analytical hierarchy

second-order arithmetic third-order arithmetic

12

Completeness Results

HyperLTL

satisfiability

HyperCTL∗

satisfiability

Membership at any level of HyperLTL

quantifier alternation hierarchy

Σ0
0 = Π0

0

Σ0
1

Π0
1

Σ0
2

Π0
2

· · · Σ1
0 = Π1

0

Σ1
1

Π1
1

Σ1
2

Π1
2

· · · Σ2
0 = Π2

0

Σ2
1

Π2
1

Σ2
2

Π2
2

· · ·

Decidable Undecidable

Co-recursively

enumerable

Recursively

enumerable

arithmetical hierarchy

first-order arithmetic

analytical hierarchy

second-order arithmetic third-order arithmetic

12

HyperLTL Satisfiability – Membership

Lemma

HyperLTL satisfiability is in Σ1
1

, i.e., there is a formula

Φ(x) = ∃x1, . . . ,∃xn.︸ ︷︷ ︸
second-order

variables

Φ0(x, x1, . . . , xn)︸ ︷︷ ︸
first-order
arithmetic

such that

ψ ∈ HyperLTL is satisfiable iff Φ(dψe) holds.

encoding of ψ as a natural number

Some intuitions:

• Minimal size of a model: every satisfiable HyperLTL

formula has a countable model [Finkbeiner, Zimmermann ’17]

• Countable models can be seen as functions from

N× N→ N mapping a pair (trace, position) to a label

• Existential second-order quantification is used to encode

the existence of a model

13

HyperLTL Satisfiability – Membership

Lemma

HyperLTL satisfiability is in Σ1
1, i.e., there is a formula

Φ(x) = ∃x1, . . . ,∃xn.︸ ︷︷ ︸
second-order

variables

Φ0(x, x1, . . . , xn)︸ ︷︷ ︸
first-order
arithmetic

such that

ψ ∈ HyperLTL is satisfiable iff Φ(dψe) holds.

encoding of ψ as a natural number

Some intuitions:

• Minimal size of a model: every satisfiable HyperLTL

formula has a countable model [Finkbeiner, Zimmermann ’17]

• Countable models can be seen as functions from

N× N→ N mapping a pair (trace, position) to a label

• Existential second-order quantification is used to encode

the existence of a model

13

HyperLTL Satisfiability – Membership

Lemma

HyperLTL satisfiability is in Σ1
1, i.e., there is a formula

Φ(x) = ∃x1, . . . ,∃xn.︸ ︷︷ ︸
second-order

variables

Φ0(x, x1, . . . , xn)︸ ︷︷ ︸
first-order
arithmetic

such that

ψ ∈ HyperLTL is satisfiable iff Φ(dψe) holds.

encoding of ψ as a natural number

Some intuitions:

• Minimal size of a model: every satisfiable HyperLTL

formula has a countable model [Finkbeiner, Zimmermann ’17]

• Countable models can be seen as functions from

N× N→ N mapping a pair (trace, position) to a label

• Existential second-order quantification is used to encode

the existence of a model

13

HyperLTL Satisfiability – Membership

Lemma

HyperLTL satisfiability is in Σ1
1, i.e., there is a formula

Φ(x) = ∃x1, . . . ,∃xn.︸ ︷︷ ︸
second-order

variables

Φ0(x, x1, . . . , xn)︸ ︷︷ ︸
first-order
arithmetic

such that

ψ ∈ HyperLTL is satisfiable iff Φ(dψe) holds.

encoding of ψ as a natural number

Some intuitions:

• Minimal size of a model: every satisfiable HyperLTL

formula has a countable model [Finkbeiner, Zimmermann ’17]

• Countable models can be seen as functions from

N× N→ N mapping a pair (trace, position) to a label

• Existential second-order quantification is used to encode

the existence of a model

13

HyperLTL Satisfiability – Membership

Lemma

HyperLTL satisfiability is in Σ1
1, i.e., there is a formula

Φ(x) = ∃x1, . . . ,∃xn.︸ ︷︷ ︸
second-order

variables

Φ0(x, x1, . . . , xn)︸ ︷︷ ︸
first-order
arithmetic

such that

ψ ∈ HyperLTL is satisfiable iff Φ(dψe) holds.

encoding of ψ as a natural number

Some intuitions:

• Minimal size of a model: every satisfiable HyperLTL

formula has a countable model [Finkbeiner, Zimmermann ’17]

• Countable models can be seen as functions from

N× N→ N mapping a pair (trace, position) to a label

• Existential second-order quantification is used to encode

the existence of a model 13

HyperLTL Satisfiability – Hardness

Lemma

HyperLTL satisfiability is Σ1
1-hard.

Proof idea: by reduction from the recurring tiling problem:

given a set of tiles, is there a tiling of N× N such that a

specific tile occurs infinitely often on the N× 0 border?

• Each tile is encoded by an atomic proposition

• Each row is encoded by a trace

• Rows/traces are ordered vertically using a special atomic

proposition y true exactly once in each trace: y is true at

time i on the trace representing row N× i

14

HyperLTL Satisfiability – Hardness

Lemma

HyperLTL satisfiability is Σ1
1-hard.

Proof idea: by reduction from the recurring tiling problem:

given a set of tiles, is there a tiling of N× N such that a

specific tile occurs infinitely often on the N× 0 border?

• Each tile is encoded by an atomic proposition

• Each row is encoded by a trace

• Rows/traces are ordered vertically using a special atomic

proposition y true exactly once in each trace: y is true at

time i on the trace representing row N× i

14

HyperLTL Satisfiability – Hardness

Lemma

HyperLTL satisfiability is Σ1
1-hard.

Proof idea: by reduction from the recurring tiling problem:

given a set of tiles, is there a tiling of N× N such that a

specific tile occurs infinitely often on the N× 0 border?

• Each tile is encoded by an atomic proposition

• Each row is encoded by a trace

• Rows/traces are ordered vertically using a special atomic

proposition y true exactly once in each trace: y is true at

time i on the trace representing row N× i

14

HyperLTL Satisfiability – Hardness

Lemma

HyperLTL satisfiability is Σ1
1-hard.

Proof idea: by reduction from the recurring tiling problem:

given a set of tiles, is there a tiling of N× N such that a

specific tile occurs infinitely often on the N× 0 border?

• Each tile is encoded by an atomic proposition

• Each row is encoded by a trace

• Rows/traces are ordered vertically using a special atomic

proposition y true exactly once in each trace: y is true at

time i on the trace representing row N× i

14

HyperLTL Satisfiability – Hardness

Proof idea (continued):

Define ϕ ∈ HyperLTL expressing that:

1. there is exactly one tile at every position in every trace

2. y is true exactly once on each trace

3. for every i, there is a trace with y at position i

4. two traces with the same position for y are identical

5. tiles match horizontally

6. tiles match vertically

7. the specified tile occurs infinitely often on the trace where

y is true at 0

15

HyperLTL Satisfiability – Hardness

Proof idea (continued):

Define ϕ ∈ HyperLTL expressing that:

1. there is exactly one tile at every position in every trace

2. y is true exactly once on each trace

3. for every i, there is a trace with y at position i

4. two traces with the same position for y are identical

5. tiles match horizontally

6. tiles match vertically

7. the specified tile occurs infinitely often on the trace where

y is true at 0

15

HyperLTL Satisfiability – Hardness

Proof idea (continued):

Define ϕ ∈ HyperLTL expressing that:

1. there is exactly one tile at every position in every trace

2. y is true exactly once on each trace

∀π. (¬yπ U (yπ ∧ X G¬yπ))

3. for every i, there is a trace with y at position i

4. two traces with the same position for y are identical

5. tiles match horizontally

6. tiles match vertically

7. the specified tile occurs infinitely often on the trace where

y is true at 0

15

HyperLTL Satisfiability – Hardness

Proof idea (continued):

Define ϕ ∈ HyperLTL expressing that:

1. there is exactly one tile at every position in every trace

2. y is true exactly once on each trace

3. for every i, there is a trace with y at position i

(∃π. yπ) ∧ (∀π.∃π′. F(yπ ∧Xy′π))

4. two traces with the same position for y are identical

5. tiles match horizontally

6. tiles match vertically

7. the specified tile occurs infinitely often on the trace where

y is true at 0

15

HyperLTL Satisfiability – Hardness

Proof idea (continued):

Define ϕ ∈ HyperLTL expressing that:

1. there is exactly one tile at every position in every trace

2. y is true exactly once on each trace

3. for every i, there is a trace with y at position i

4. two traces with the same position for y are identical

∀π, π′. F(yπ ∧ yπ′)→ G

(∧
τ

τπ ↔ τπ′

)

5. tiles match horizontally

6. tiles match vertically

7. the specified tile occurs infinitely often on the trace where

y is true at 0

15

HyperLTL Satisfiability – Hardness

Proof idea (continued):

Define ϕ ∈ HyperLTL expressing that:

1. there is exactly one tile at every position in every trace

2. y is true exactly once on each trace

3. for every i, there is a trace with y at position i

4. two traces with the same position for y are identical

5. tiles match horizontally

∀π. G

 ∨
(τ,τ ′)∈H

τπ ∧ X τπ′



6. tiles match vertically

7. the specified tile occurs infinitely often on the trace where

y is true at 0

15

HyperLTL Satisfiability – Hardness

Proof idea (continued):

Define ϕ ∈ HyperLTL expressing that:

1. there is exactly one tile at every position in every trace

2. y is true exactly once on each trace

3. for every i, there is a trace with y at position i

4. two traces with the same position for y are identical

5. tiles match horizontally

6. tiles match vertically

∀π, π′. F(yπ ∧ X yπ′)→ G

 ∨
(τ,τ ′)∈V

τπ ∧ τπ′



7. the specified tile occurs infinitely often on the trace where

y is true at 0

15

HyperLTL Satisfiability – Hardness

Proof idea (continued):

Define ϕ ∈ HyperLTL expressing that:

1. there is exactly one tile at every position in every trace

2. y is true exactly once on each trace

3. for every i, there is a trace with y at position i

4. two traces with the same position for y are identical

5. tiles match horizontally

6. tiles match vertically

7. the specified tile occurs infinitely often on the trace where

y is true at 0

∃π. (yπ ∧ G F(τ0)π)

15

HyperLTL vs. HyperCTL∗

Theorem

HyperLTL satisfiability is Σ1
1-complete.

Theorem

HyperCTL∗ satisfiability is Σ2
1-complete.

existential second-order → existential third-order arithmetic

Why?

• Every satisfiable HyperLTL formula has a countable model

• Some formulas of HyperCTL∗ require models of

cardinality c = |2N| (and this bound is optimal)

16

HyperLTL vs. HyperCTL∗

Theorem

HyperLTL satisfiability is Σ1
1-complete.

Theorem

HyperCTL∗ satisfiability is Σ2
1-complete.

existential second-order → existential third-order arithmetic

Why?

• Every satisfiable HyperLTL formula has a countable model

• Some formulas of HyperCTL∗ require models of

cardinality c = |2N| (and this bound is optimal)

16

HyperLTL vs. HyperCTL∗

Theorem

HyperLTL satisfiability is Σ1
1-complete.

Theorem

HyperCTL∗ satisfiability is Σ2
1-complete.

existential second-order → existential third-order arithmetic

Why?

• Every satisfiable HyperLTL formula has a countable model

• Some formulas of HyperCTL∗ require models of

cardinality c = |2N| (and this bound is optimal)

16

HyperLTL vs. HyperCTL∗

Theorem

HyperLTL satisfiability is Σ1
1-complete.

Theorem

HyperCTL∗ satisfiability is Σ2
1-complete.

existential second-order → existential third-order arithmetic

Why?

• Every satisfiable HyperLTL formula has a countable model

• Some formulas of HyperCTL∗ require models of

cardinality c = |2N| (and this bound is optimal)

16

Models of Cardinality at Least c

0
0

1

1
0

1

0 0 0

0 1

1 0

1 1 1

At least c = |2N|
distinct red paths

The following can be expressed in HyperCTL∗:

• Every state is labeled red or black, and 1 or 0

• Every black state has a (black) 0- and 1-successor

• Every black path has a copy in the red part

∀π.
(

X blackπ → ∃π′. X(redπ′ ∧ G(0π ↔ 0π′))
)

• Two red paths starting in the same state have the same

sequence of labels (red paths are initially disjoint)

∀π. G
(
redπ → ∀π′. G(0π ↔ 0π′)

)

17

Models of Cardinality at Least c

0
0

1

1
0

1

0 0 0

0 1

1 0

1 1 1

At least c = |2N|
distinct red paths

The following can be expressed in HyperCTL∗:

• Every state is labeled red or black, and 1 or 0

• Every black state has a (black) 0- and 1-successor

• Every black path has a copy in the red part

∀π.
(

X blackπ → ∃π′. X(redπ′ ∧ G(0π ↔ 0π′))
)

• Two red paths starting in the same state have the same

sequence of labels (red paths are initially disjoint)

∀π. G
(
redπ → ∀π′. G(0π ↔ 0π′)

)

17

Models of Cardinality at Least c

0
0

1

1
0

1

0 0 0

0 1

1 0

1 1 1

At least c = |2N|
distinct red paths

The following can be expressed in HyperCTL∗:

• Every state is labeled red or black, and 1 or 0

• Every black state has a (black) 0- and 1-successor

• Every black path has a copy in the red part

∀π.
(

X blackπ → ∃π′. X(redπ′ ∧ G(0π ↔ 0π′))
)

• Two red paths starting in the same state have the same

sequence of labels (red paths are initially disjoint)

∀π. G
(
redπ → ∀π′. G(0π ↔ 0π′)

)

17

Models of Cardinality at Least c

0
0

1

1
0

1

0 0 0

0 1

1 0

1 1 1

At least c = |2N|
distinct red paths

The following can be expressed in HyperCTL∗:

• Every state is labeled red or black, and 1 or 0

• Every black state has a (black) 0- and 1-successor

• Every black path has a copy in the red part

∀π.
(

X blackπ → ∃π′. X(redπ′ ∧ G(0π ↔ 0π′))
)

• Two red paths starting in the same state have the same

sequence of labels (red paths are initially disjoint)

∀π. G
(
redπ → ∀π′. G(0π ↔ 0π′)

)

17

Models of Cardinality at Least c

0
0

1

1
0

1

0 0 0

0 1

1 0

1 1 1

At least c = |2N|
distinct red paths

The following can be expressed in HyperCTL∗:

• Every state is labeled red or black, and 1 or 0

• Every black state has a (black) 0- and 1-successor

• Every black path has a copy in the red part

∀π.
(

X blackπ → ∃π′. X(redπ′ ∧ G(0π ↔ 0π′))
)

• Two red paths starting in the same state have the same

sequence of labels (red paths are initially disjoint)

∀π. G
(
redπ → ∀π′. G(0π ↔ 0π′)

)
17

Models of Cardinality at Least c

0
0

1

1
0

1

0 0 0

0 1

1 0

1 1 1

At least c = |2N|
distinct red paths

The following can be expressed in HyperCTL∗:

• Every state is labeled red or black, and 1 or 0

• Every black state has a (black) 0- and 1-successor

• Every black path has a copy in the red part

∀π.
(

X blackπ → ∃π′. X(redπ′ ∧ G(0π ↔ 0π′))
)

• Two red paths starting in the same state have the same

sequence of labels (red paths are initially disjoint)

∀π. G
(
redπ → ∀π′. G(0π ↔ 0π′)

)
17

Matching upper bound

Every satisfiable HyperCTL∗ formula ϕ has a model of

cardinality at most c.

• Start with an arbitrary model T of ϕ, and Skolem

functions witnessing satisfaction.

• Saturation procedure:

T0 = {s0 → s1 → · · · }

Tα+1 = Tα ∪
⋃

x̄ inputs from Tα
f a skolem function

f(x̄)

Tα =
⋃
α′<α

Tα′ for limit ordinals

T0
T1

T2

Tω

• Fixpoint at the first uncountable ordinal: Tω1 = Tω1+1.

• Tω1 contains at most c vertices, and Tω1 |= ϕ.

18

Matching upper bound

Every satisfiable HyperCTL∗ formula ϕ has a model of

cardinality at most c.

• Start with an arbitrary model T of ϕ, and Skolem

functions witnessing satisfaction.

• Saturation procedure:

T0 = {s0 → s1 → · · · }

Tα+1 = Tα ∪
⋃

x̄ inputs from Tα
f a skolem function

f(x̄)

Tα =
⋃
α′<α

Tα′ for limit ordinals

T0
T1

T2

Tω

• Fixpoint at the first uncountable ordinal: Tω1 = Tω1+1.

• Tω1 contains at most c vertices, and Tω1 |= ϕ.

18

Matching upper bound

Every satisfiable HyperCTL∗ formula ϕ has a model of

cardinality at most c.

• Start with an arbitrary model T of ϕ, and Skolem

functions witnessing satisfaction.

• Saturation procedure:

T0 = {s0 → s1 → · · · }

Tα+1 = Tα ∪
⋃

x̄ inputs from Tα
f a skolem function

f(x̄)

Tα =
⋃
α′<α

Tα′ for limit ordinals

T0
T1

T2

Tω

• Fixpoint at the first uncountable ordinal: Tω1 = Tω1+1.

• Tω1 contains at most c vertices, and Tω1 |= ϕ.

18

Matching upper bound

Every satisfiable HyperCTL∗ formula ϕ has a model of

cardinality at most c.

• Start with an arbitrary model T of ϕ, and Skolem

functions witnessing satisfaction.

• Saturation procedure:

T0 = {s0 → s1 → · · · }

Tα+1 = Tα ∪
⋃

x̄ inputs from Tα
f a skolem function

f(x̄)

Tα =
⋃
α′<α

Tα′ for limit ordinals

T0

T1
T2

Tω

• Fixpoint at the first uncountable ordinal: Tω1 = Tω1+1.

• Tω1 contains at most c vertices, and Tω1 |= ϕ.

18

Matching upper bound

Every satisfiable HyperCTL∗ formula ϕ has a model of

cardinality at most c.

• Start with an arbitrary model T of ϕ, and Skolem

functions witnessing satisfaction.

• Saturation procedure:

T0 = {s0 → s1 → · · · }

Tα+1 = Tα ∪
⋃

x̄ inputs from Tα
f a skolem function

f(x̄)

Tα =
⋃
α′<α

Tα′ for limit ordinals

T0
T1

T2

Tω

• Fixpoint at the first uncountable ordinal: Tω1 = Tω1+1.

• Tω1 contains at most c vertices, and Tω1 |= ϕ.

18

Matching upper bound

Every satisfiable HyperCTL∗ formula ϕ has a model of

cardinality at most c.

• Start with an arbitrary model T of ϕ, and Skolem

functions witnessing satisfaction.

• Saturation procedure:

T0 = {s0 → s1 → · · · }

Tα+1 = Tα ∪
⋃

x̄ inputs from Tα
f a skolem function

f(x̄)

Tα =
⋃
α′<α

Tα′ for limit ordinals

T0
T1

T2

Tω

• Fixpoint at the first uncountable ordinal: Tω1 = Tω1+1.

• Tω1 contains at most c vertices, and Tω1 |= ϕ.

18

Matching upper bound

Every satisfiable HyperCTL∗ formula ϕ has a model of

cardinality at most c.

• Start with an arbitrary model T of ϕ, and Skolem

functions witnessing satisfaction.

• Saturation procedure:

T0 = {s0 → s1 → · · · }

Tα+1 = Tα ∪
⋃

x̄ inputs from Tα
f a skolem function

f(x̄)

Tα =
⋃
α′<α

Tα′ for limit ordinals

T0
T1

T2

Tω

• Fixpoint at the first uncountable ordinal: Tω1 = Tω1+1.

• Tω1 contains at most c vertices, and Tω1 |= ϕ.

18

Matching upper bound

Every satisfiable HyperCTL∗ formula ϕ has a model of

cardinality at most c.

• Start with an arbitrary model T of ϕ, and Skolem

functions witnessing satisfaction.

• Saturation procedure:

T0 = {s0 → s1 → · · · }

Tα+1 = Tα ∪
⋃

x̄ inputs from Tα
f a skolem function

f(x̄)

Tα =
⋃
α′<α

Tα′ for limit ordinals

T0
T1

T2

Tω

• Fixpoint at the first uncountable ordinal: Tω1 = Tω1+1.

• Tω1 contains at most c vertices, and Tω1 |= ϕ.

18

Matching upper bound

Every satisfiable HyperCTL∗ formula ϕ has a model of

cardinality at most c.

• Start with an arbitrary model T of ϕ, and Skolem

functions witnessing satisfaction.

• Saturation procedure:

T0 = {s0 → s1 → · · · }

Tα+1 = Tα ∪
⋃

x̄ inputs from Tα
f a skolem function

f(x̄)

Tα =
⋃
α′<α

Tα′ for limit ordinals

T0
T1

T2

Tω

• Fixpoint at the first uncountable ordinal: Tω1 = Tω1+1.

• Tω1 contains at most c vertices, and Tω1 |= ϕ.
18

Size of Minimal Models

Theorem

• Every satisfiable HyperCTL∗ formula has a model of

cardinality at most c = |2N|.
• There is a satisfiable HyperCTL∗ formula that does not

have any model of cardinality less than c.

19

HyperCTL∗ Satisfiability

Theorem

HyperCTL∗ satisfiability is Σ2
1-complete.

∃x1, . . . ,∃xn.︸ ︷︷ ︸
third-order
variables

Φ0(x, x1, . . . , xn)︸ ︷︷ ︸
second-order

arithmetic

20

HyperCTL∗ Satisfiability

Theorem

HyperCTL∗ satisfiability is Σ2
1-complete.

∃x1, . . . ,∃xn.︸ ︷︷ ︸
third-order
variables

Φ0(x, x1, . . . , xn)︸ ︷︷ ︸
second-order

arithmeticUpper bound

• Every satisfiable HyperCTL∗ formula has a model of

cardinality at most c

• set of states = 2N

• transitions = subset of 2N × 2N

• labeling function 2N → N

• Use third-order quantifiers to express the existence of a

model

20

HyperCTL∗ Satisfiability

Theorem

HyperCTL∗ satisfiability is Σ2
1-complete.

∃x1, . . . ,∃xn.︸ ︷︷ ︸
third-order
variables

Φ0(x, x1, . . . , xn)︸ ︷︷ ︸
second-order

arithmeticUpper bound

• Every satisfiable HyperCTL∗ formula has a model of

cardinality at most c

• set of states = 2N

• transitions = subset of 2N × 2N

• labeling function 2N → N

• Use third-order quantifiers to express the existence of a

model

20

HyperCTL∗ Satisfiability

Theorem

HyperCTL∗ satisfiability is Σ2
1-complete.

∃x1, . . . ,∃xn.︸ ︷︷ ︸
third-order
variables

Φ0(x, x1, . . . , xn)︸ ︷︷ ︸
second-order

arithmeticLower bound

From an existential third-order arithmetic formula Φ(x) and n,

construct ψ such that N |= Φ(n) iff ψ is satisfiable:

20

HyperCTL∗ Satisfiability

Theorem

HyperCTL∗ satisfiability is Σ2
1-complete.

∃x1, . . . ,∃xn.︸ ︷︷ ︸
third-order
variables

Φ0(x, x1, . . . , xn)︸ ︷︷ ︸
second-order

arithmeticLower bound

From an existential third-order arithmetic formula Φ(x) and n,

construct ψ such that N |= Φ(n) iff ψ is satisfiable:

• n ∈ N path with 1 in n-th position only;

• A ⊆ N path labeled by characteristic sequence of A;

First and second-order quantifiers path quantifiers

• One atomic proposition pi for each third-order xi.

Existential third-order quantifiers satisfiability

20

HyperCTL∗ Satisfiability

Theorem

HyperCTL∗ satisfiability is Σ2
1-complete.

∃x1, . . . ,∃xn.︸ ︷︷ ︸
third-order
variables

Φ0(x, x1, . . . , xn)︸ ︷︷ ︸
second-order

arithmeticLower bound

From an existential third-order arithmetic formula Φ(x) and n,

construct ψ such that N |= Φ(n) iff ψ is satisfiable:

• n ∈ N path with 1 in n-th position only;

• A ⊆ N path labeled by characteristic sequence of A;

First and second-order quantifiers path quantifiers

• One atomic proposition pi for each third-order xi.

Existential third-order quantifiers satisfiability

20

HyperCTL∗ Satisfiability

Theorem

HyperCTL∗ satisfiability is Σ2
1-complete.

∃x1, . . . ,∃xn.︸ ︷︷ ︸
third-order
variables

Φ0(x, x1, . . . , xn)︸ ︷︷ ︸
second-order

arithmeticLower bound

From an existential third-order arithmetic formula Φ(x) and n,

construct ψ such that N |= Φ(n) iff ψ is satisfiable:

• n ∈ N path with 1 in n-th position only;

• A ⊆ N path labeled by characteristic sequence of A;

First and second-order quantifiers path quantifiers

• One atomic proposition pi for each third-order xi.

Existential third-order quantifiers satisfiability

20

Conclusion

• HyperLTL satisfiability problem is Σ1
1-complete, thus

highly undecidable

• HyperCTL∗ satisfiability problem is Σ2
1-complete, which is

infinitely higher than Σ1
1 in the hierarchy

• First (and optimal) bound on the minimal size of models

for HyperCTL∗:

• every satisfiable formula has a model with at most c

many states

• there is satisfiable formula that requires c many states

21

Conclusion

• HyperLTL satisfiability problem is Σ1
1-complete, thus

highly undecidable

• HyperCTL∗ satisfiability problem is Σ2
1-complete, which is

infinitely higher than Σ1
1 in the hierarchy

• First (and optimal) bound on the minimal size of models

for HyperCTL∗:

• every satisfiable formula has a model with at most c

many states

• there is satisfiable formula that requires c many states

21

Conclusion

• HyperLTL satisfiability problem is Σ1
1-complete, thus

highly undecidable

• HyperCTL∗ satisfiability problem is Σ2
1-complete, which is

infinitely higher than Σ1
1 in the hierarchy

• First (and optimal) bound on the minimal size of models

for HyperCTL∗:

• every satisfiable formula has a model with at most c

many states

• there is satisfiable formula that requires c many states

21

Conclusion

• HyperLTL satisfiability problem is Σ1
1-complete, thus

highly undecidable

• HyperCTL∗ satisfiability problem is Σ2
1-complete, which is

infinitely higher than Σ1
1 in the hierarchy

• First (and optimal) bound on the minimal size of models

for HyperCTL∗:

• every satisfiable formula has a model with at most c

many states

• there is satisfiable formula that requires c many states

21

Conclusion

Other results:

• HyperLTL satisfiability is still Σ1
1-complete when

restricted to ultimately periodic traces.

• HyperCTL∗ satisfiability restricted to countable or finitely

branching transition systems is equivalent to the problem

of evaluating a second-order arithmetic formula.

• deciding if a HyperLTL formula is equivalent to one with

n quantifier alternations is exactly as hard unsatisfiability,

i.e. Π1
1-complete.

22

Conclusion

Other results:

• HyperLTL satisfiability is still Σ1
1-complete when

restricted to ultimately periodic traces.

• HyperCTL∗ satisfiability restricted to countable or finitely

branching transition systems is equivalent to the problem

of evaluating a second-order arithmetic formula.

• deciding if a HyperLTL formula is equivalent to one with

n quantifier alternations is exactly as hard unsatisfiability,

i.e. Π1
1-complete.

22

Conclusion

Other results:

• HyperLTL satisfiability is still Σ1
1-complete when

restricted to ultimately periodic traces.

• HyperCTL∗ satisfiability restricted to countable or finitely

branching transition systems is equivalent to the problem

of evaluating a second-order arithmetic formula.

• deciding if a HyperLTL formula is equivalent to one with

n quantifier alternations is exactly as hard unsatisfiability,

i.e. Π1
1-complete.

22

Conclusion

Other results:

• HyperLTL satisfiability is still Σ1
1-complete when

restricted to ultimately periodic traces.

• HyperCTL∗ satisfiability restricted to countable or finitely

branching transition systems is equivalent to the problem

of evaluating a second-order arithmetic formula.

• deciding if a HyperLTL formula is equivalent to one with

n quantifier alternations is exactly as hard unsatisfiability,

i.e. Π1
1-complete.

22

Thank you!

22

