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Hyperproperties [Clarkson, Schneider 2010]

Specifications that relate multiple executions of a system, such

as in information-flow security policies.

2



Hyperproperties [Clarkson, Schneider 2010]

Specifications that relate multiple executions of a system, such

as in information-flow security policies.

public

input

private

input

public

output

private

output

e.g. “no secret information should leak to low-level users”
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Hyperproperties [Clarkson, Schneider 2010]

Specifications that relate multiple executions of a system, such

as in information-flow security policies.

• Noninterference

• Observational determinism

• Declassification

• · · ·
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HyperLTL and HyperCTL∗
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= CTL∗ + path quantifiers

= LTL + trace quantifiers

linear time

branching time
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at a time
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Linear Temporal Logic (LTL)

LTL

ψ ::= a | ¬ψ | ψ ∨ ψ | ψ ∧ ψ | Xψ | ψ U ψ | Fψ | Gψ

a ∈ AP

(atomic proposition)
“Next ψ” “ψ Until ψ” “Eventually ψ” “Globally ψ”

Examples

• Safety: G¬bad
• Liveness: G F active

• G(request→ X(¬request U grant))

“every request is eventually granted, and there can be no other

request in the meantime”

Properties of individual traces N→ 2AP

Cannot compare executions
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HyperLTL [Clarkson et al. 2014]

Syntax of HyperLTL

ϕ ::= ∃π.ϕ | ∀π.ϕ | ψ
ψ ::= aπ | ¬ψ | ψ ∨ ψ | ψ ∧ ψ | Xψ | ψ U ψ | Fψ | Gψ

“p holds at the current

position on trace π”

“Next ψ” “ψ Until ψ” “Eventually ψ” “Globally ψ”

Example:

∀π.∀π′. G(in publicπ ↔ in publicπ′)

→ G(out publicπ ↔ out publicπ′)

“Any two traces with the same public input have the same

public output”

Always in prenex normal form: Q1π1.Qnπn . . .︸ ︷︷ ︸
trace quantifiers

ϕ︸︷︷︸
LTL formula

5
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HyperLTL [Clarkson et al. 2014]

A transition system T satisfies a HyperLTL formula ϕ if

Traces(T ) |= ϕ.

Example

∅ {a} ∅ {a}
T =

Traces(T ) = { ∅ {a} ∅ {a} {a} {a} {a} · · · ,
∅ ∅ {a} ∅ {a} {a} {a} · · · ,
∅ ∅ ∅ {a} ∅ {a} {a} · · · ,
· · · }

T |= ∀π. ∃π′. G (aπ ↔ X aπ′)
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HyperCTL∗ [Clarkson et al. 2014]

Syntax of HyperCTL∗

ϕ ::= ∃π.ϕ | ∀π.ϕ | aπ | ¬ϕ | ϕ ∨ ϕ | Xϕ | ϕ U ϕ | Fϕ | Gϕ

• No prenex normal form

• Branching-time semantics:

• evaluation over transition systems/computation trees

rather than sets of traces

• quantifiers range over paths in the transition system,

starting in the latest state

• Time progresses synchronously in all branches when

evaluating temporal operators

• Strict generalization of both HyperLTL and CTL∗

7
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HyperCTL∗ [Clarkson et al. 2014]

Example

ϕ = ∀π. G(aπ → ∀π′. G(bπ ↔ bπ′))

“All paths starting from an a-labeled state coincide on b”

a

b

a
...

a, b

...

a, b

...
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Undecidability

HyperLTL and HyperCTL∗ model-checking problems are

decidable . . .

. . . but their satisfiability problems are undecidable.

How undecidable is HyperLTL or HyperCTL∗ satisfiability?
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Levels of Undecidability
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i : definable by a formula of the form ∃∗∀∗∃∗∀∗ · · ·︸ ︷︷ ︸

i blocks
(j + 1)th order

variables
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j-th order
arithmetic
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What Was Known

• HyperLTL satisfiability is Σ0
1-hard. [Finkbeiner, Hahn 2016]

• HyperLTL satisfiability restricted to finite sets of

traces is Σ0
1-complete (complete for the class of

recursively enumerable problems).

[Finkbeiner, Hahn, Hans 2018], [Mascle, Zimmermann, 2020]

• HyperCTL∗ satisfiability is Σ1
1-hard.

[Clarkson, Finkbeiner, Koleini, Micinski, Rabe, Sánchez 2014]

• Finite-state HyperCTL∗ satisfiability is Σ0
1-complete.

[Clarkson, Finkbeiner, Koleini, Micinski, Rabe, Sánchez 2014]
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1-complete.
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HyperLTL Satisfiability – Membership

Lemma

HyperLTL satisfiability is in Σ1
1

, i.e., there is a formula

Φ(x) = ∃x1, . . . ,∃xn.︸ ︷︷ ︸
second-order

variables

Φ0(x, x1, . . . , xn)︸ ︷︷ ︸
first-order
arithmetic

such that

ψ ∈ HyperLTL is satisfiable iff Φ(dψe) holds.

encoding of ψ as a natural number

Some intuitions:

• Minimal size of a model: every satisfiable HyperLTL

formula has a countable model [Finkbeiner, Zimmermann ’17]

• Countable models can be seen as functions from

N× N→ N mapping a pair (trace, position) to a label

• Existential second-order quantification is used to encode

the existence of a model

13
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HyperLTL Satisfiability – Hardness

Lemma

HyperLTL satisfiability is Σ1
1-hard.

Proof idea: by reduction from the recurring tiling problem:

given a set of tiles, is there a tiling of N× N such that a

specific tile occurs infinitely often on the N× 0 border?

• Each tile is encoded by an atomic proposition

• Each row is encoded by a trace

• Rows/traces are ordered vertically using a special atomic

proposition y true exactly once in each trace: y is true at

time i on the trace representing row N× i

14
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HyperLTL Satisfiability – Hardness

Proof idea (continued):

Define ϕ ∈ HyperLTL expressing that:

1. there is exactly one tile at every position in every trace

2. y is true exactly once on each trace

3. for every i, there is a trace with y at position i

4. two traces with the same position for y are identical

5. tiles match horizontally

6. tiles match vertically

7. the specified tile occurs infinitely often on the trace where

y is true at 0

15
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4. two traces with the same position for y are identical

5. tiles match horizontally

∀π. G

 ∨
(τ,τ ′)∈H

τπ ∧ X τπ′



6. tiles match vertically
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y is true at 0
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HyperLTL Satisfiability – Hardness

Proof idea (continued):

Define ϕ ∈ HyperLTL expressing that:

1. there is exactly one tile at every position in every trace

2. y is true exactly once on each trace

3. for every i, there is a trace with y at position i

4. two traces with the same position for y are identical

5. tiles match horizontally
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HyperLTL vs. HyperCTL∗

Theorem

HyperLTL satisfiability is Σ1
1-complete.

Theorem

HyperCTL∗ satisfiability is Σ2
1-complete.

existential second-order → existential third-order arithmetic

Why?

• Every satisfiable HyperLTL formula has a countable model

• Some formulas of HyperCTL∗ require models of

cardinality c = |2N| (and this bound is optimal)
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Models of Cardinality at Least c

0
0

1

1
0

1

0 0 0

0 1

1 0

1 1 1

At least c = |2N|
distinct red paths

The following can be expressed in HyperCTL∗:

• Every state is labeled red or black, and 1 or 0

• Every black state has a (black) 0- and 1-successor

• Every black path has a copy in the red part

∀π.
(

X blackπ → ∃π′. X(redπ′ ∧ G(0π ↔ 0π′))
)

• Two red paths starting in the same state have the same

sequence of labels (red paths are initially disjoint)

∀π. G
(
redπ → ∀π′. G(0π ↔ 0π′)

)
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Matching upper bound

Every satisfiable HyperCTL∗ formula ϕ has a model of

cardinality at most c.

• Start with an arbitrary model T of ϕ, and Skolem

functions witnessing satisfaction.

• Saturation procedure:

T0 = {s0 → s1 → · · · }

Tα+1 = Tα ∪
⋃

x̄ inputs from Tα
f a skolem function

f(x̄)

Tα =
⋃
α′<α

Tα′ for limit ordinals

T0
T1

T2

Tω

• Fixpoint at the first uncountable ordinal: Tω1 = Tω1+1.

• Tω1 contains at most c vertices, and Tω1 |= ϕ.

18
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Size of Minimal Models

Theorem

• Every satisfiable HyperCTL∗ formula has a model of

cardinality at most c = |2N|.
• There is a satisfiable HyperCTL∗ formula that does not

have any model of cardinality less than c.

19



HyperCTL∗ Satisfiability

Theorem

HyperCTL∗ satisfiability is Σ2
1-complete.

∃x1, . . . ,∃xn.︸ ︷︷ ︸
third-order
variables

Φ0(x, x1, . . . , xn)︸ ︷︷ ︸
second-order

arithmetic

20
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third-order
variables

Φ0(x, x1, . . . , xn)︸ ︷︷ ︸
second-order

arithmeticUpper bound

• Every satisfiable HyperCTL∗ formula has a model of

cardinality at most c

• set of states = 2N

• transitions = subset of 2N × 2N

• labeling function 2N → N

• Use third-order quantifiers to express the existence of a

model
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Conclusion

• HyperLTL satisfiability problem is Σ1
1-complete, thus

highly undecidable

• HyperCTL∗ satisfiability problem is Σ2
1-complete, which is

infinitely higher than Σ1
1 in the hierarchy

• First (and optimal) bound on the minimal size of models

for HyperCTL∗:

• every satisfiable formula has a model with at most c

many states

• there is satisfiable formula that requires c many states
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Conclusion

Other results:

• HyperLTL satisfiability is still Σ1
1-complete when

restricted to ultimately periodic traces.

• HyperCTL∗ satisfiability restricted to countable or finitely

branching transition systems is equivalent to the problem

of evaluating a second-order arithmetic formula.

• deciding if a HyperLTL formula is equivalent to one with

n quantifier alternations is exactly as hard unsatisfiability,

i.e. Π1
1-complete.
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Thank you!
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