On Parameterized Verification of Asynchronous Shared-Memory Pushdown Systems

Marie Fortin1 \hspace{1cm} Anca Muscholl2 \hspace{1cm} Igor Walukiewicz2

1LSV, ENS Cachan
2LaBRI, University of Bordeaux

Highlights 2016, Brussels
(C, D)-systems
(\mathcal{C}, \mathcal{D})\text{-systems}

One leader process \(\mathcal{D}\)
(pushdown system)
The model

Repeated reachability

Universal reachability

General result

\[(C, D)\text{-systems}\]

One leader process \(D\)

(pushdown system)

Arbitrarily many identical and anonymous contributors \(C\)

(pushdown systems)
(C, D)-systems

One leader process D
(pushdown system)

Bounded shared register
read/write
No lock

Arbitrarily many identical and
anonymous contributors C
(pushdown systems)
Previous Work

<table>
<thead>
<tr>
<th>The model</th>
<th>Repeated reachability</th>
<th>Universal reachability</th>
<th>General result</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Is there a run of the (C, D)-system where the leader performs \top, for some number of contributors?</td>
<td>Expspace</td>
<td>Pspace-complete</td>
</tr>
<tr>
<td></td>
<td>$[\text{Hague, 2011}]$</td>
<td>$[\text{Esparza, Ganty, Majumdar, 2013}]$</td>
<td>Pspace-hard and in Nexptime</td>
</tr>
<tr>
<td></td>
<td>Is there a run of the (C, D)-system where the leader performs \top infinitely often, for some number of contributors?</td>
<td>$[\text{Durand-Gasselin, Esparza, Ganty, Majumdar, 2015}]$</td>
<td>$[\text{La Torre, Muscholl, Walukiewicz, 2015}]$</td>
</tr>
</tbody>
</table>
Previous Work

Reachability

Is there a run of the \((C, D)\)-system where the leader performs a special action \(\top\), for some number of contributors?

[Hague, 2011] \textbf{EXPSPACE}

[Esparza, Ganty, Majumdar, 2013] \textbf{PSPACE-complete}

[La Torre, Muscholl, Walukiewicz, 2015] Generalization
Previous Work

Reachability
Is there a run of the \((C, D)\)-system where the leader performs a special action \(\top\), for some number of contributors?

[Hague, 2011] \textbf{Expspace}

[Esparza, Ganty, Majumdar, 2013] \textbf{PSPACE-complete}

[La Torre, Muscholl, Walukiewicz, 2015] Generalization

Repeated reachability
Is there a run of the \((C, D)\)-system where the leader performs \(\top\) infinitely often, for some number of contributors?

[Durand-Gasselin, Esparza, Ganty, Majumdar, 2015] \textbf{PSPACE-hard and in \textsc{Nexptime}}
<table>
<thead>
<tr>
<th>The model</th>
<th>Universal reachability</th>
<th>General result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Repeated reachability</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The repeated reachability problem is Pspace-complete.

\[\text{Durand-Gasselin, Esparza, Ganty, Majumdar, 2015} \]:

- reduction to the case of finite-state contributors, by bounding the stacks of the contributors
- NP in the case of finite-state contributors $\rightarrow \text{Nexptime}$ for pushdown contributors

We re-use the reduction to finite-state contributors, but change the decision procedure
The repeated reachability problem is PSPACE-complete.

Durand-Gasselin, Esparza, Ganty, Majumdar, 2015: Reduction to the case of finite-state contributors, by bounding the stacks of the contributors NP in the case of finite-state contributors $\rightarrow \mathsf{Nexptime}$ for pushdown contributors.

We re-use the reduction to finite-state contributors, but change the decision procedure.
Repeated reachability

Theorem

The repeated reachability problem is P_{SPACE}-complete.

[Durand-Gasselin, Esparza, Ganty, Majumdar, 2015]:

- Reduction to the case of finite-state contributors, by bounding the stacks of the contributors
- NP in the case of finite-state contributors \rightarrow $NEXPTIME$ for pushdown contributors
Theorem
The repeated reachability problem is \(\text{PSPACE}\)-complete.

[Durand-Gasselin, Esparza, Ganty, Majumdar, 2015]:
- Reduction to the case of finite-state contributors, by bounding the stacks of the contributors
- \(\text{NP} \) in the case of finite-state contributors \(\rightarrow \text{NEXPTIME} \) for pushdown contributors

We re-use the reduction to finite-state contributors, but change the decision procedure
Key steps for the PSPACE upper bound

- Look for an ultimately periodic run.
Key steps for the \textbf{PSPACE} upper bound

- Look for an ultimately periodic run.
- Adapt from finite runs to infinite periodic runs the techniques of [La Torre, Muscholl, Walukiewicz, 2015]:

\[
\text{Intersection emptiness of } \ell + 1 \text{ finite automata computable in } \text{PSPACE}.
\]
Key steps for the PSPACE upper bound

- Look for an ultimately periodic run.
- Adapt from finite runs to infinite periodic runs the techniques of [La Torre, Muscholl, Walukiewicz, 2015]:
 - Define a transition system $D^\kappa = D + \text{capacity}$: set of values written by the contributors in the register.

Idea: if a contributor can produce a value g once, by adding copies of this contributor we can produce as many g’s as needed.
Key steps for the \textsc{Pspace} upper bound

- Look for an ultimately periodic run.
- Adapt from finite runs to infinite periodic runs the techniques of [La Torre, Muscholl, Walukiewicz, 2015]:
 - Define a transition system $D^\kappa = D + \text{capacity}$: set of values written by the contributors in the register.

 \textbf{Idea:} if a contributor can produce a value g once, by adding copies of this contributor we can produce as many g’s as needed.

 - Define similarly C^κ. A loop in D^κ corresponds to a loop in the (C, D)-system if each addition to the capacity is \textbf{supported} by a loop in C^κ producing the necessary write.
Key steps for the **PSPACE** upper bound

- Look for an ultimately periodic run.
- Adapt from finite runs to infinite periodic runs the techniques of [La Torre, Muscholl, Walukiewicz, 2015]:
 - Define a transition system $\mathcal{D}^\kappa = \mathcal{D} + \text{capacity}$: set of values written by the contributors in the register.

Idea: if a contributor can produce a value g once, by adding copies of this contributor we can produce as many g’s as needed.

- Define similarly \mathcal{C}^κ. A loop in \mathcal{D}^κ corresponds to a loop in the $(\mathcal{C}, \mathcal{D})$-system if each addition to the capacity is supported by a loop in \mathcal{C}^κ producing the necessary write.
- Replace \mathcal{D}^κ by its downward closure, and look for a supported loop in $\mathcal{D}^\kappa \downarrow$: one run of $\mathcal{D}^\kappa \downarrow + \ell$ runs of \mathcal{C}^κ.

Intersection emptiness of $\ell + 1$ finite automata computable in **Pspace**.
Key steps for the \textsf{PSPACE} upper bound

- Look for an ultimately periodic run.
- Adapt from finite runs to infinite periodic runs the techniques of [La Torre, Muscholl, Walukiewicz, 2015]:
 - Define a transition system $\mathcal{D}^\kappa = \mathcal{D} + \text{capacity}$: set of values written by the contributors in the register.

\textbf{Idea:} if a contributor can produce a value g once, by adding copies of this contributor we can produce as many g's as needed.

- Define similarly \mathcal{C}^κ. A loop in \mathcal{D}^κ corresponds to a loop in the $(\mathcal{C}, \mathcal{D})$-system if each addition to the capacity is \textit{supported} by a loop in \mathcal{C}^κ producing the necessary write.
- Replace \mathcal{D}^κ by its downward closure, and look for a supported loop in $\mathcal{D}^\kappa \downarrow$: one run of $\mathcal{D}^\kappa \downarrow + \ell$ runs of \mathcal{C}^κ.
 \rightarrow Intersection emptiness of $\ell + 1$ finite automata computable in \textsf{PSPACE}.
Universal reachability

<table>
<thead>
<tr>
<th>Reachability</th>
<th>Universal reachability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Is there a run of the ((C, D))-system where the leader performs a special action (⊤), for some number of contributors?</td>
<td>Does the leader perform (⊤) in all ((\text{finite or infinite})) maximal runs of the ((C, D))-system, for any number of contributors?</td>
</tr>
<tr>
<td>Repeated reachability</td>
<td></td>
</tr>
</tbody>
</table>
Universal reachability

Motivation
Correctness problems for distributed algorithms: is the outcome correct (does the leader execute \top) for an arbitrary number of participants and for every run of the algorithm?
Universal reachability

Motivation
Correctness problems for distributed algorithms: is the outcome correct (does the leader execute \top) for an arbitrary number of participants and for every run of the algorithm?

Specificity
We consider finite maximal runs as well as infinite ones
\rightarrow deadlock detection
Universal reachability

Theorem

The universal reachability problem is co\text{NP}-complete.
Universal reachability

Theorem
The universal reachability problem is co\textsc{Nexptime}-complete.

Is there a maximal run without any occurrence of \top?
Universal reachability

Theorem

The universal reachability problem is co\textup{NEXPTIME}-complete.

Is there a maximal run without any occurrence of \(\top \)?

- For infinite runs: reduction to repeated reachability
The universal reachability problem is co\text{NEXPTIME}-complete.

Is there a maximal run without any occurrence of \top?

- For infinite runs: reduction to repeated reachability
- For finite runs: use the reduction to the case of finite-state contributors, show that it is \text{NP}-complete
The universal reachability problem is \text{coNExptime}-complete.

Is there a maximal run without any occurrence of \top?

- For infinite runs: reduction to repeated reachability
- For finite runs: use the reduction to the case of finite-state contributors, show that it is \text{NP}-complete
- \text{NExptime}-hardness: tiling of the $2^n \times 2^n$ square.
Until now: verification of properties on leader actions only.

We consider the verification of regular properties \(P \subseteq (\Sigma_C \cup \Sigma_D)^* \cup (\Sigma_C \cup \Sigma_D)^\omega \) on both

- finite and infinite traces
- leader and contributor actions
Generalization

Until now: verification of properties on leader actions only.

We consider the verification of regular properties
\[\mathcal{P} \subseteq (\Sigma_C \cup \Sigma_D)^* \cup (\Sigma_C \cup \Sigma_D)^\omega \]
on both
- finite and infinite traces
- leader and contributor actions

Restriction

\(C\)-expanding properties: if \(u \in \mathcal{P}\) and \(u'\) is obtained by repeating some contributor actions in \(u\), then \(u' \in \mathcal{P}\).
Main result

Theorem

The following problem is \textsc{Nexptime}-complete:

\textbf{Input:} a (C, D)-system, and a regular C-expanding property $P \subseteq (\Sigma_C \cup \Sigma_D)^* \cup (\Sigma_C \cup \Sigma_D)\omega$.

\textbf{Question:} Is there a maximal trace of the (C, D)-system that belongs to P?
Main result

Theorem

The following problem is \textsc{NEXPTIME}-complete:

\textbf{Input:} a \((C, D) \)-system, and a regular \(C \)-expanding property \(\mathcal{P} \subseteq (\Sigma_C \cup \Sigma_D)^* \cup (\Sigma_C \cup \Sigma_D)^\omega \).

\textbf{Question:} Is there a maximal trace of the \((C, D) \)-system that belongs to \(\mathcal{P} \)?

Steps of the proof:

- Reduction to a property on leader actions, by transforming the \((C, D) \)-system into one where all contributor actions are reflected in leader writes.
Main result

Theorem

The following problem is \(\text{NEXPTIME} \)-complete:

Input: a \((\mathcal{C}, \mathcal{D})\)-system, and a regular \(\mathcal{C} \)-expanding property \(\mathcal{P} \subseteq (\Sigma_{\mathcal{C}} \cup \Sigma_{\mathcal{D}})^* \cup (\Sigma_{\mathcal{C}} \cup \Sigma_{\mathcal{D}})^\omega \).

Question: Is there a maximal trace of the \((\mathcal{C}, \mathcal{D})\)-system that belongs to \(\mathcal{P} \) ?

Steps of the proof:

- Reduction to a property on leader actions, by transforming the \((\mathcal{C}, \mathcal{D})\)-system into one where all contributor actions are reflected in leader writes
- Reduction to our previous results
 - Infinite traces: reduction to repeated reachability
 - Finite traces: results about universal reachability
Summary

We improved the complexity upper bound for repeated reachability from \textit{Nexptime} to \textit{Pspace}. We introduced universal reachability, and showed that it is co-Nexptime-complete. Verification of regular C-expanding properties is also Nexptime-complete.

Thank you!
Summary

- We improved the complexity upper bound for repeated reachability from \(\text{Nexptime} \) to \(\text{Pspace} \)
Summary

- We improved the complexity upper bound for repeated reachability from NEXPTIME to PSPACE
- We introduced universal reachability, and showed that it is coNEXPTIME-complete
We improved the complexity upper bound for repeated reachability from NEXPTIME to PSPACE.

We introduced universal reachability, and showed that it is coNEXPTIME-complete.

Verification of regular C-expanding properties is also NEXPTIME-complete.
Summary

- We improved the complexity upper bound for repeated reachability from \textbf{Nexptime} to \textbf{Pspace}
- We introduced universal reachability, and showed that it is \textbf{coNexptime}-complete
- Verification of regular C-expanding properties is also \textbf{Nexptime}-complete

Thank you!