On Parameterized Verification of Asynchronous Shared-Memory Pushdown Systems

Marie Fortin¹

Anca Muscholl² Igor Walukiewicz²

¹LSV. ENS Cachan

²LaBRI, University of Bordeaux

Highlights 2016, Brussels

The model

Universal reachability

General result

 $(\mathcal{C},\mathcal{D})\text{-systems}$

 $(\mathcal{C},\mathcal{D})$ -systems

Arbitrarily many identical and **anonymous** contributors C (pushdown systems)

 $(\mathcal{C},\mathcal{D})$ -systems

Universal reachability

General result

Previous Work

Reachability

Is there a run of the $(\mathcal{C},\mathcal{D})\text{-system}$ where the leader performs a special action \top , for some number of contributors?

[Hague, 2011] EXPSPACE [Esparza, Ganty, Majumdar, 2013] PSPACE-complete [La Torre, Muscholl, Walukiewicz, 2015] Generalization

Previous Work

Reachability

Is there a run of the $(\mathcal{C},\mathcal{D})\text{-system}$ where the leader performs a special action \top , for some number of contributors?

[Hague, 2011] EXPSPACE [Esparza, Ganty, Majumdar, 2013] PSPACE-complete [La Torre, Muscholl, Walukiewicz, 2015] Generalization

Repeated reachability

Is there a run of the (C, D)-system where the leader performs \top infinitely often, for some number of contributors?

[Durand-Gasselin, Esparza, Ganty, Majumdar, 2015] PSPACE-hard and in NEXPTIME

Repeated reachability

Repeated reachability

Theorem

The repeated reachability problem is $\ensuremath{\operatorname{PSPACE}}$ -complete.

Repeated reachability

Theorem

The repeated reachability problem is $\ensuremath{\operatorname{PSPACE}}$ -complete.

[Durand-Gasselin, Esparza, Ganty, Majumdar, 2015]:

- Reduction to the case of finite-state contributors, by bounding the stacks of the contributors
- $\triangleright~NP$ in the case of finite-state contributors $\rightarrow~NEXPTIME$ for pushdown contributors

Repeated reachability

Theorem

The repeated reachability problem is $\ensuremath{\operatorname{PSPACE}}$ -complete.

[Durand-Gasselin, Esparza, Ganty, Majumdar, 2015]:

- Reduction to the case of finite-state contributors, by bounding the stacks of the contributors
- $\triangleright~NP$ in the case of finite-state contributors $\rightarrow~NEXPTIME$ for pushdown contributors

We re-use the reduction to finite-state contributors, but change the decision procedure

Key steps for the PSPACE upper bound

• Look for an ultimately periodic run.

- Look for an ultimately periodic run.
- Adapt from finite runs to infinite periodic runs the techniques of [La Torre, Muscholl, Walukiewicz, 2015]:

- Look for an ultimately periodic run.
- Adapt from finite runs to infinite periodic runs the techniques of [La Torre, Muscholl, Walukiewicz, 2015]:
 - Define a transition system $D^{\kappa} = D + capacity$: set of values written by the contributors in the register.

Idea: if a contributor can produce a value g once, by adding copies of this contributor we can produce as many g's as needed.

- Look for an ultimately periodic run.
- Adapt from finite runs to infinite periodic runs the techniques of [La Torre, Muscholl, Walukiewicz, 2015]:
 - Define a transition system $D^{\kappa} = D + capacity$: set of values written by the contributors in the register.

Idea: if a contributor can produce a value g once, by adding copies of this contributor we can produce as many g's as needed.

 Define similarly C^κ. A loop in D^κ corresponds to a loop in the (C, D)-system if each addition to the capacity is supported by a loop in C^κ producing the necessary write.

- Look for an ultimately periodic run.
- Adapt from finite runs to infinite periodic runs the techniques of [La Torre, Muscholl, Walukiewicz, 2015]:
 - Define a transition system $D^{\kappa} = D + capacity$: set of values written by the contributors in the register.

Idea: if a contributor can produce a value g once, by adding copies of this contributor we can produce as many g's as needed.

- Define similarly C^κ. A loop in D^κ corresponds to a loop in the (C, D)-system if each addition to the capacity is supported by a loop in C^κ producing the necessary write.
- Replace D^κ by its downard closure, and look for a supported loop in D^κ↓: one run of D^κ↓ + ℓ runs of C^κ.

- Look for an ultimately periodic run.
- Adapt from finite runs to infinite periodic runs the techniques of [La Torre, Muscholl, Walukiewicz, 2015]:
 - Define a transition system $D^{\kappa} = D + capacity$: set of values written by the contributors in the register.

Idea: if a contributor can produce a value g once, by adding copies of this contributor we can produce as many g's as needed.

- Define similarly C^κ. A loop in D^κ corresponds to a loop in the (C, D)-system if each addition to the capacity is supported by a loop in C^κ producing the necessary write.
- Replace D^κ by its downard closure, and look for a supported loop in D^κ↓: one run of D^κ↓ + ℓ runs of C^κ.
 → Intersection emptiness of ℓ + 1 finite automata computable in PSPACE.

Universal reachability

Reachability

Is there a run of the $(\mathcal{C}, \mathcal{D})$ -system where the leader performs a special action \top , for some number of contributors?

Repeated reachability

Is there a run of the (C, D)-system where the leader performs \top infinitely often, for some number of contributors?

Universal reachability

Does the leader perform \top in all **(finite or infinite) maximal** runs of the $(\mathcal{C}, \mathcal{D})$ -system, for any number of contributors ?

Universal reachability

Motivation

Correctness problems for distributed algorithms: is the outcome correct (does the leader execute \top) for an arbitrary number of participants and for every run of the algorithm?

Universal reachability

Motivation

Correctness problems for distributed algorithms: is the outcome correct (does the leader execute \top) for an arbitrary number of participants and for every run of the algorithm?

Specificity

We consider finite maximal runs as well as infinite ones \rightarrow deadlock detection

Universal reachability

Theorem

The universal reachability problem is coNexptime-complete.

Universal reachability

Theorem

The universal reachability problem is coNEXPTIME-complete.

Is there a maximal run without any occurrence of \top ?

Universal reachability

Theorem

The universal reachability problem is coNEXPTIME-complete.

- Is there a maximal run without any occurrence of \top ?
 - For infinite runs: reduction to repeated reachability

Universal reachability

Theorem

The universal reachability problem is coNEXPTIME-complete.

Is there a maximal run without any occurrence of \top ?

- For infinite runs: reduction to repeated reachability
- For finite runs: use the reduction to the case of finite-state contributors, show that it is NP-complete

Universal reachability

Theorem

The universal reachability problem is coNEXPTIME-complete.

Is there a maximal run without any occurrence of \top ?

- For infinite runs: reduction to repeated reachability
- For finite runs: use the reduction to the case of finite-state contributors, show that it is NP-complete
- NEXPTIME-hardness: tiling of the $2^n \times 2^n$ square.

Generalization

Until now: verification of properties on leader actions only.

We consider the verification of regular properties $\mathcal{P} \subseteq (\Sigma_C \cup \Sigma_D)^* \cup (\Sigma_C \cup \Sigma_D)^{\omega}$ on both

- finite and infinite traces
- leader and contributor actions

Generalization

Until now: verification of properties on leader actions only.

We consider the verification of regular properties $\mathcal{P} \subseteq (\Sigma_C \cup \Sigma_D)^* \cup (\Sigma_C \cup \Sigma_D)^{\omega}$ on both

- finite and infinite traces
- leader and contributor actions

Restriction

C-expanding properties: if $u \in \mathcal{P}$ and u' is obtained by repeating some contributor actions in u, then $u' \in \mathcal{P}$.

Main result

Theorem

The following problem is $\ensuremath{\operatorname{NEXPTIME}}$ -complete:

Input: a $(\mathcal{C}, \mathcal{D})$ -system, and a regular \mathcal{C} -expanding property $\mathcal{P} \subseteq (\Sigma_{\mathcal{C}} \cup \Sigma_{\mathcal{D}})^* \cup (\Sigma_{\mathcal{C}} \cup \Sigma_{\mathcal{D}})^{\omega}$.

Question: Is there a maximal trace of the $(\mathcal{C},\mathcal{D})\text{-system}$ that belongs to \mathcal{P} ?

Main result

Theorem

The following problem is NEXPTIME-complete: **Input:** a $(\mathcal{C}, \mathcal{D})$ -system, and a regular \mathcal{C} -expanding property $\mathcal{P} \subseteq (\Sigma_{\mathcal{C}} \cup \Sigma_{\mathcal{D}})^* \cup (\Sigma_{\mathcal{C}} \cup \Sigma_{\mathcal{D}})^{\omega}.$

Question: Is there a maximal trace of the $(\mathcal{C},\mathcal{D})\text{-system}$ that belongs to \mathcal{P} ?

Steps of the proof:

• Reduction to a property on leader actions, by transforming the $(\mathcal{C}, \mathcal{D})$ -system into one where all contributor actions are reflected in leader writes

Main result

Theorem

The following problem is NEXPTIME-complete: **Input:** a $(\mathcal{C}, \mathcal{D})$ -system, and a regular \mathcal{C} -expanding property $\mathcal{P} \subseteq (\Sigma_{\mathcal{C}} \cup \Sigma_{\mathcal{D}})^* \cup (\Sigma_{\mathcal{C}} \cup \Sigma_{\mathcal{D}})^{\omega}.$

Question: Is there a maximal trace of the $(\mathcal{C},\mathcal{D})\text{-system}$ that belongs to \mathcal{P} ?

Steps of the proof:

- Reduction to a property on leader actions, by transforming the $(\mathcal{C}, \mathcal{D})$ -system into one where all contributor actions are reflected in leader writes
- Reduction to our previous results
 - Infinite traces: reduction to repeated reachability
 - Finite traces: results about universal reachability

Universal reachability

General result

• We improved the complexity upper bound for repeated reachability from NEXPTIME to PSPACE

- We improved the complexity upper bound for repeated reachability from NEXPTIME to PSPACE
- \bullet We introduced universal reachability, and showed that it is $coN{\rm EXPTIME}{-}complete$

- We improved the complexity upper bound for repeated reachability from NEXPTIME to PSPACE
- \bullet We introduced universal reachability, and showed that it is coNEXPTIME-complete
- Verification of regular *C*-expanding properties is also NEXPTIME-complete

- We improved the complexity upper bound for repeated reachability from NEXPTIME to PSPACE
- We introduced universal reachability, and showed that it is coNEXPTIME-complete
- Verification of regular *C*-expanding properties is also NEXPTIME-complete

Thank you !