Expressivity of first-order logic, star-free propositional dynamic logic and communicating automata

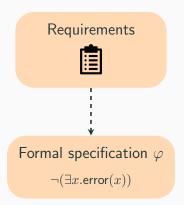
Marie Fortin

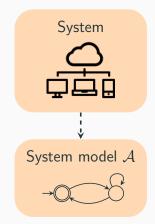
PhD Defense - November 27, 2020

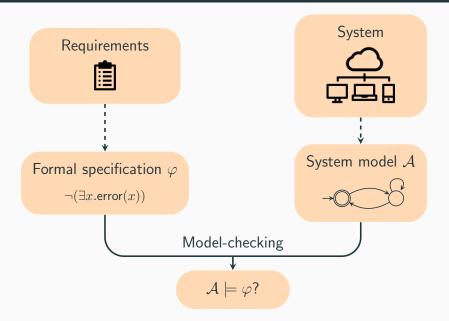
LSV, ENS Paris-Saclay, Université Paris-Saclay

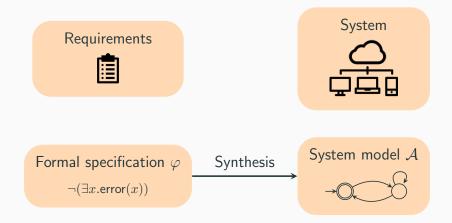
Introduction

Requirements









Example: "every request is eventually granted"

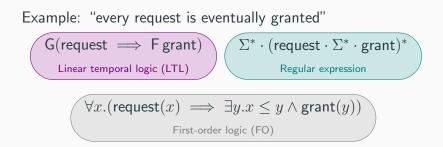
Example: "every request is eventually granted"

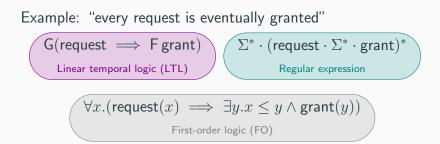
Example: "every request is eventually granted"

 $G(request \implies Fgrant)$ Linear temporal logic (LTL)

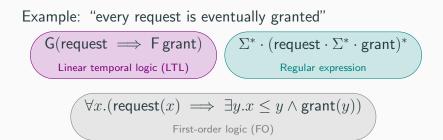
$$\forall x. (\mathsf{request}(x) \implies \exists y.x \le y \land \mathsf{grant}(y))$$

First-order logic (FO)





Comparing specification languages



Comparing specification languages

• Expressive power

Example: "every request is eventually granted" $\begin{array}{c} \mathsf{G}(\mathsf{request} \implies \mathsf{F}\,\mathsf{grant}) \\ \texttt{Linear temporal logic (LTL)} \end{array} \qquad \begin{array}{c} \Sigma^* \cdot (\mathsf{request} \cdot \Sigma^* \cdot \mathsf{grant})^* \\ \texttt{Regular expression} \end{array}$ $\begin{array}{c} \forall x.(\mathsf{request}(x) \implies \exists y.x \leq y \land \mathsf{grant}(y)) \\ \texttt{First-order logic (FO)} \end{array}$

Comparing specification languages

- Expressive power
- Complexity/Decidability

Example: "every request is eventually granted" $G(\text{request} \implies \mathsf{F} \text{ grant})$ Linear temporal logic (LTL) $\Sigma^* \cdot (\text{request} \cdot \Sigma^* \cdot \text{grant})^*$ Regular expression $\forall x.(\text{request}(x) \implies \exists y.x \leq y \land \text{grant}(y))$ First-order logic (FO)

Comparing specification languages

- Expressive power
- Complexity/Decidability

• Succinctness

Example: "every request is eventually granted" $G(\text{request} \implies \mathsf{F} \text{ grant})$ Linear temporal logic (LTL) $\Sigma^* \cdot (\text{request} \cdot \Sigma^* \cdot \text{grant})^*$ Regular expression $\forall x.(\text{request}(x) \implies \exists y.x \leq y \land \text{grant}(y))$ First-order logic (FO)

Comparing specification languages

- Expressive power
- Complexity/Decidability

- Succinctness
- Convenience

Example: "every request is eventually granted" $G(\text{request} \implies \mathsf{F} \text{ grant})$ Linear temporal logic (LTL) $\Sigma^* \cdot (\text{request} \cdot \Sigma^* \cdot \text{grant})^*$ Regular expression $\forall x.(\text{request}(x) \implies \exists y.x \leq y \land \text{grant}(y))$ First-order logic (FO)

Comparing specification languages

- Expressive power
- Complexity/Decidability

- Succinctness
- Convenience

Example: "every request is eventually granted" $G(\text{request} \implies \mathsf{F} \text{ grant})$ Linear temporal logic (LTL) $\Sigma^* \cdot (\text{request} \cdot \Sigma^* \cdot \text{grant})^*$ Regular expression $\forall x.(\text{request}(x) \implies \exists y.x \leq y \land \text{grant}(y))$ First-order logic (FO)

Comparing specification languages

- Expressive power
- Complexity/Decidability

Comparisons with automata

- Succinctness
- Convenience

Example: "every request is eventually granted" $G(\text{request} \implies \mathsf{F} \text{ grant})$ Linear temporal logic (LTL) $\Sigma^* \cdot (\text{request} \cdot \Sigma^* \cdot \text{grant})^*$ Regular expression $\forall x.(\text{request}(x) \implies \exists y.x \leq y \land \text{grant}(y))$ First-order logic (FO)

Comparing specification languages

- Expressive power
- Complexity/Decidability

Comparisons with automata

Given a specification, can we always construct an equivalent automaton?

- Succinctness
- Convenience

Theorem [Büchi 1960, Elgot 1961, Trakhtenbrot 1962]

Finite automata and MSO have the same expressive power.

Theorem [Büchi 1960, Elgot 1961, Trakhtenbrot 1962] Finite automata and MSO have the same expressive power.

Theorem

Over words, FO[<] defines the same class of languages as

- LTL
- FO³[<]
- Star-free expressions
- Counter-free automata
- Aperiodic monoids

[McNaughton, Papert 1971]

[McNaughton, Papert 1971]

[Schützenberger 1965]

[Kamp 1968]

[Kamp 1968]

Theorem [Büchi 1960, Elgot 1961, Trakhtenbrot 1962] Finite automata and MSO have the same expressive power.

Theorem

Over words, FO[<] defines the same class of languages as

- LTL [Kamp 1968]
- FO³[<]

- [Kamp 1968]
- Star-free expressions [McN
 - Counter-free automata
 - Aperiodic monoids

[McNaughton, Papert 1971]

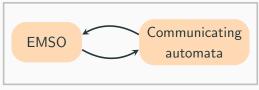
[McNaughton, Papert 1971]

[Schützenberger 1965]

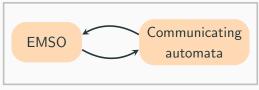
What about more complex structures?

Logic-automata connections

Logic-automata connections

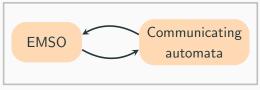


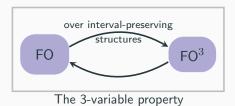
Logic-automata connections



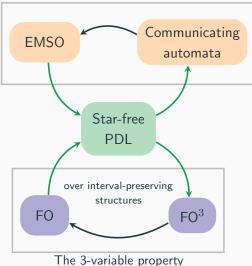
The 3-variable property

Logic-automata connections

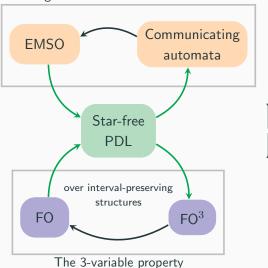




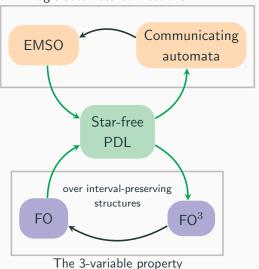
Logic-automata connections



Logic-automata connections



Logic-automata connections

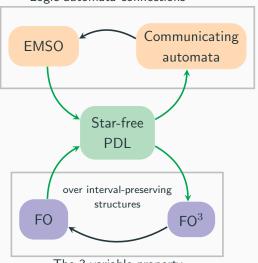


Part II

A Büchi theorem for message-passing systems

Part I Star-free PDL

Logic-automata connections



The 3-variable property

Part II A Büchi theorem for message-passing systems

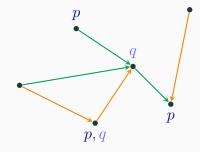
Part I Star-free PDL

Part III

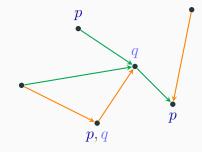
Sufficient conditions for the 3-variable property

Star-free PDL

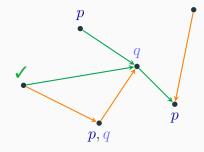
Examples



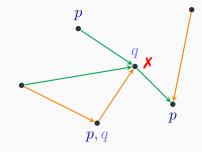
- Binary relations \rightarrow and \rightarrow
- Unary predicates p, q



- Binary relations \rightarrow and \rightarrow
- Unary predicates p, q

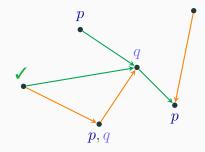


- Binary relations \rightarrow and \rightarrow
- Unary predicates p, q



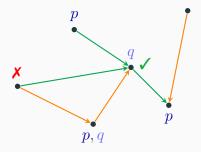
- Binary relations \rightarrow and \rightarrow
- Unary predicates p, q

• $p \lor \langle \rightarrow \rangle q$ • $\langle \rightarrow \cdot \rightarrow^{-1} \rangle (p \lor q)$



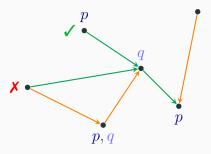
- Binary relations \rightarrow and \rightarrow
- Unary predicates p, q

- $p \lor \langle \rightarrow \rangle q$
- $\bullet \ \left\langle \rightarrow \cdot \rightarrow^{-1} \right\rangle (p \lor q)$
- $\langle \rightarrow \cdot \{p\}? \cdot \rightarrow^{-1} \rangle$ true



- Binary relations \rightarrow and \rightarrow
- Unary predicates p, q

- $p \lor \langle \rightarrow \rangle q$
- $\bullet \ \left\langle \rightarrow \cdot \rightarrow^{-1} \right\rangle \left(p \lor q \right)$
- $\langle \rightarrow \cdot \{p\}? \cdot \rightarrow^{-1} \rangle$ true
- $\bullet \ \left\langle \rightarrow \cap \left(\rightarrow \cdot \rightarrow \right)^{\mathsf{c}} \right\rangle q$



- Binary relations \rightarrow and \rightarrow
- Unary predicates p, q

Over structures with

- domain ${\mathbb R}$
- binary relations < and +q for every $q \in \mathbb{Q}_+$
- atomic propositions P, Q, \ldots

Over structures with

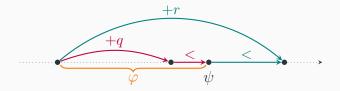
- domain $\mathbb R$
- binary relations < and +q for every $q \in \mathbb{Q}_+$
- atomic propositions P, Q, \ldots

 $\varphi \: \mathsf{U}_{(q,r)} \: \psi \equiv$

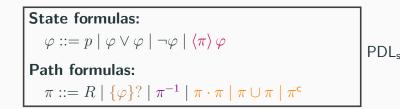
Over structures with

- domain ${\mathbb R}$
- binary relations < and +q for every $q \in \mathbb{Q}_+$
- atomic propositions P, Q, \ldots

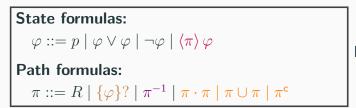
$$\varphi \operatorname{\mathsf{U}}_{(q,r)} \psi \equiv \left\langle (+q \cdot <) \cap (+r \cdot <^{-1}) \cap (< \cdot \{\neg \varphi\}? \cdot <)^{\mathsf{c}} \right\rangle \psi$$



Syntax of Star-free Propositional Dynamic Logic



Syntax of Star-free Propositional Dynamic Logic

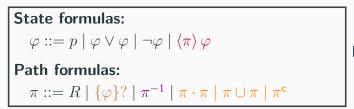


 $\mathsf{PDL}_{\mathsf{sf}}$

Combines features from

- Propositional Dynamic Logic [Fisher, Ladner 1979]
- Star-free regular expressions
- The calculus of relations

Syntax of Star-free Propositional Dynamic Logic

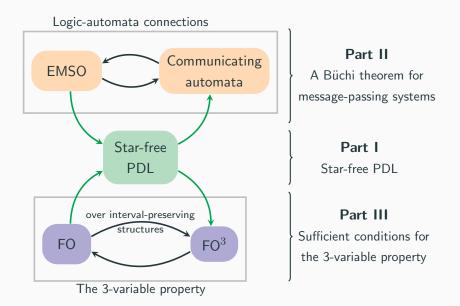


PDL_{sf}

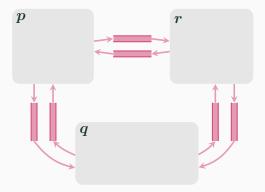
Combines features from

- Propositional Dynamic Logic [Fisher, Ladner 1979]
- Star-free regular expressions
- The calculus of relations

Theorem [Tarski, Givant 1987] (calculus of relations) PDL_{sf} and FO^3 are expressively equivalent.

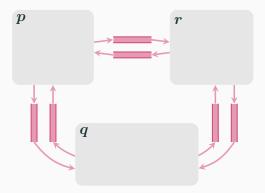


A Büchi theorem for message-passing systems

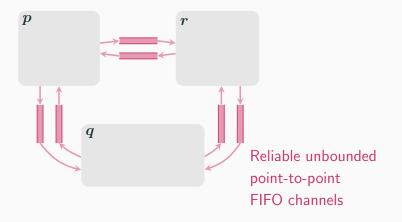


¹[Brand, Zafiropulo 1983]

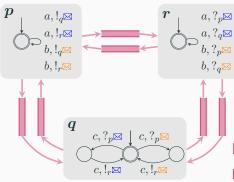
Fixed, finite set of processes, e.g. $\{p,q,r\}$



Fixed, finite set of processes, e.g. $\{p, q, r\}$



Fixed, finite set of processes, e.g. $\{p, q, r\}$

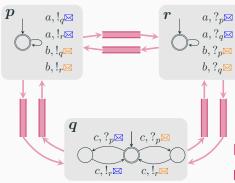


One finite automaton for each process

- Finite input alphabet,
 e.g. Σ = {a, b, c}
- Sends/receives from a finite message alphabet,
 e.g. {\vec{M}, \vec{M}}

Reliable unbounded point-to-point FIFO channels

Fixed, finite set of processes, e.g. $\{p, q, r\}$



Global acceptance condition

One finite automaton for each process

- Finite input alphabet,
 e.g. Σ = {a, b, c}
- Sends/receives from a finite message alphabet,
 e.g. {\vee, \vee}

Reliable unbounded point-to-point FIFO channels

¹[Brand, Zafiropulo 1983]

Message Sequence Charts (MSC)

The language of a CFM is a set of MSCs.

Message Sequence Charts (MSC)

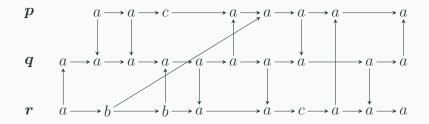
The language of a CFM is a set of MSCs.

Partial order consisting of

• One sequence of events for each process

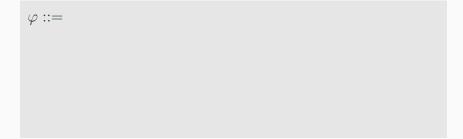
Message Sequence Charts (MSC)

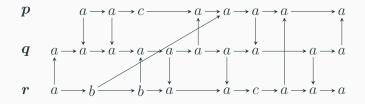
The language of a CFM is a set of MSCs.



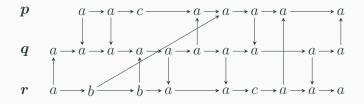
Partial order consisting of

- One sequence of events for each process
- Message relation connecting matching sends and receives

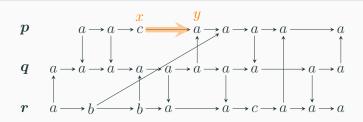




11

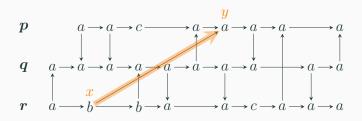


$$\begin{array}{lll} \varphi ::= & a(x) \mid p(x) & & \mbox{label/process of event } x \\ & \mid x \rightarrow y & & \mbox{process successor} \end{array}$$

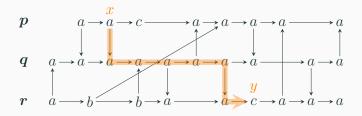


11

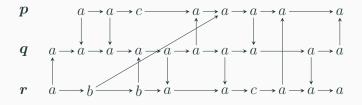
$$\begin{array}{lll} \varphi ::= & a(x) \mid p(x) & & \mbox{label/process of event } x \\ & \mid x \rightarrow y & & \mbox{process successor} \\ & \mid x \lhd y & & \mbox{message relation} \end{array}$$



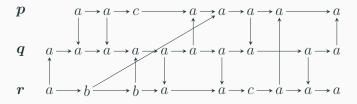
$$\begin{array}{lll} \varphi ::= & a(x) \mid p(x) & & \mbox{label/process of event } x \\ & \mid x \rightarrow y & & \mbox{process successor} \\ & \mid x \triangleleft y & & \mbox{message relation} \\ & \mid x \leq y & & \mbox{happened-before [Lamport 1978]} \end{array}$$



$$\begin{array}{lll} \varphi ::= & a(x) \mid p(x) & \mbox{label/process of event } x \\ & \mid x \rightarrow y & \mbox{process successor} \\ & \mid x \triangleleft y & \mbox{message relation} \\ & \mid x \leq y & \mbox{happened-before [Lamport 1978]} \\ & \mid \neg \varphi \mid \varphi \lor \varphi \mid \exists x. \ \varphi \mid \exists X. \ \varphi \mid x \in X \end{array}$$

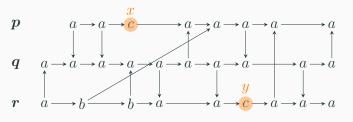


$$\begin{array}{lll} \varphi ::= & a(x) \mid p(x) & \mbox{ label/process of event } x \\ & \mid x \to y & \mbox{ process successor} \\ & \mid x \lhd y & \mbox{ message relation} \\ & \mid x \le y & \mbox{ happened-before [Lamport 1978]} \\ & \mid \neg \varphi \mid \varphi \lor \varphi \mid \exists x. \ \varphi \mid \exists X. \ \varphi \mid x \in X \end{array}$$



Example: mutual exclusion $\neg(\exists x. \exists y. c(x) \land c(y) \land x \parallel y)$

$$\begin{array}{lll} \varphi ::= & a(x) \mid p(x) & \mbox{ label/process of event } x \\ & \mid x \rightarrow y & \mbox{ process successor} \\ & \mid x \triangleleft y & \mbox{ message relation} \\ & \mid x \leq y & \mbox{ happened-before [Lamport 1978]} \\ & \mid \neg \varphi \mid \varphi \lor \varphi \mid \exists x. \ \varphi \mid \exists X. \ \varphi \mid x \in X \end{array}$$



Example: mutual exclusion $\neg(\exists x. \exists y. c(x) \land c(y) \land x \parallel y)$ $\neg(x \leq y) \land \neg(y \leq x) \leftarrow \dashv$

11

Theorem [Büchi 1960, Elgot 1961, Trakhtenbrot 1962]

If there is only one process,

CFMs (= finite automata) = $MSO[\lhd, \leq]$.

Theorem [Büchi 1960, Elgot 1961, Trakhtenbrot 1962]

If there is only one process,

 $\mathsf{CFMs} \ (= \mathsf{finite} \ \mathsf{automata}) = \mathsf{MSO}[\lhd, \leq].$

With ≥ 2 processes, CFMs are not closed under complement. [Bollig, Leucker 2006]

Theorem [Büchi 1960, Elgot 1961, Trakhtenbrot 1962]

If there is only one process,

But:

CFMs (= finite automata) = $MSO[\lhd, \leq]$.

With ≥ 2 processes, CFMs are not closed under complement.

[Bollig, Leucker 2006]

Theorem [Bollig, Leucker 2006]

Over finite MSCs, $CFM = EMSO[\lhd, \rightarrow]$.

Theorem [Büchi 1960, Elgot 1961, Trakhtenbrot 1962]

If there is only one process,

But:

CFMs (= finite automata) = $MSO[\lhd, \leq]$.

With ≥ 2 processes, CFMs are not closed under complement.

[Bollig, Leucker 2006]

Theorem [Bollig, Leucker 2006]

Over finite MSCs, $CFM = EMSO[\lhd, \rightarrow]$.

 $\rightarrow \exists X_0 \dots \exists X_n. \varphi \text{ with } \varphi \in \mathsf{FO}[\lhd, \rightarrow]$

Theorem [Büchi 1960, Elgot 1961, Trakhtenbrot 1962]

If there is only one process,

CFMs (= finite automata) = $MSO[\lhd, \leq]$.

With ≥ 2 processes, CFMs are not closed under complement.

But:

[Bollig, Leucker 2006]

Theorem [Bollig, Leucker 2006]

Over finite MSCs, $CFM = EMSO[\lhd, \rightarrow]$.

Theorem [Bollig, Kuske 2008]

Over infinite MSCs, $CFM = EMSO^{\infty}[\triangleleft, \rightarrow]$.

Theorem [Büchi 1960, Elgot 1961, Trakhtenbrot 1962]

If there is only one process,

CFMs (= finite automata) = $MSO[\lhd, \leq]$.

With ≥ 2 processes, CFMs are not closed under complement. But: [Bollig, Leucker 2006]

Theorem [Bollig, Leucker 2006]

Over finite MSCs, $CFM = EMSO[\lhd, \rightarrow]$.

Theorem [Bollig, Kuske 2008] Over infinite MSCs, $CFM = EMSO^{\infty}[\triangleleft, \rightarrow]$.

Note: here the happened-before relation \leq is not included. \rightarrow Harder to formalize concurrency properties such as mutual exclusion.

The equivalence with $MSO[\lhd, \leq]$ is recovered if we assume that the channels are of bounded size.

Theorem

 $\mathsf{CFM} = \mathsf{MSO}[\lhd, \leq] \text{ over }$

- finite, universally bounded MSCs [Henriksen,Mukund,Narayan Kumar,Sohoni,Thiagarajan 2005]
- infinite, universally bounded MSCs [Kuske 2003]
- finite, existentially bounded MSCs

[Genest, Kuske, Muscholl 2006]

The equivalence with $MSO[\lhd, \leq]$ is recovered if we assume that the channels are of bounded size.

Theorem

 $\mathsf{CFM} = \mathsf{MSO}[\lhd, \leq] \text{ over }$

- finite, universally bounded MSCs [Henriksen,Mukund,Narayan Kumar,Sohoni,Thiagarajan 2005]
- infinite, universally bounded MSCs [Kuske 2003]
- finite, existentially bounded MSCs

[Genest, Kuske, Muscholl 2006]

Remark: model-checking is undecidable in general, but decidable when restricted to bounded MSCs.

Theorem [Bollig,F.,Gastin 2018 & 2020] Over finite and infinite MSCs, $CFM = EMSO[\lhd, <]$.

Theorem [Bollig, F., Gastin 2018 & 2020] Over finite and infinite MSCs, $CFM = EMSO[\triangleleft, \leq]$.

Other consequence: new, direct proof for the bounded case:

Theorem [Bollig, F., Gastin 2020]

Over finite and infinite existentially bounded MSCs, $\mathsf{CFM} = \mathsf{MSO}[\lhd, \leq].$

Theorem [Bollig, F., Gastin 2018 & 2020] Over finite and infinite MSCs, $CFM = EMSO[\triangleleft, \leq]$.

Other consequence: new, direct proof for the bounded case:

Theorem [Bollig, F., Gastin 2020]

Over finite and infinite existentially bounded MSCs, $CFM = MSO[\lhd, \le]$.

Remarks

Remarks

• $\mathsf{CFM} \subseteq \mathsf{EMSO}[\lhd, \leq]$ already known

Remarks

- $\bullet \ \mathsf{CFM} \subseteq \mathsf{EMSO}[\lhd, \leq] \ \mathsf{already} \ \mathsf{known}$
- EMSO[$\lhd,\leq]\subseteq$ CFM follows from FO[$\lhd,\leq]\subseteq$ CFM and closure under projection

Remarks

- $\mathsf{CFM} \subseteq \mathsf{EMSO}[\lhd, \leq]$ already known
- EMSO[$\lhd,\leq]\subseteq$ CFM follows from FO[$\lhd,\leq]\subseteq$ CFM and closure under projection
- $\bullet \ \mathsf{FO}[\lhd,\leq]=\mathsf{FO}[\lhd,\leq_{\mathsf{proc}}]$

Remarks

- $\mathsf{CFM} \subseteq \mathsf{EMSO}[\lhd, \leq]$ already known
- EMSO[$\lhd,\leq]\subseteq$ CFM follows from FO[$\lhd,\leq]\subseteq$ CFM and closure under projection
- $FO[\lhd, \leq] = FO[\lhd, \leq_{proc}]$

 $\textbf{Goal:} \ \mathsf{FO}[\lhd,\leq_{\mathsf{proc}}] \subseteq \mathsf{CFM}$

Remarks

- $\mathsf{CFM} \subseteq \mathsf{EMSO}[\lhd, \leq]$ already known
- EMSO[$\lhd,\leq]\subseteq$ CFM follows from FO[$\lhd,\leq]\subseteq$ CFM and closure under projection
- $FO[\lhd, \leq] = FO[\lhd, \leq_{proc}]$

$\textbf{Goal:} \ \mathsf{FO}[\lhd,\leq_{\mathsf{proc}}] \subseteq \mathsf{CFM}$

Difficulty: CFMs are not closed under complement.

Remarks

- $\mathsf{CFM} \subseteq \mathsf{EMSO}[\lhd, \leq]$ already known
- EMSO[$\lhd,\leq]\subseteq$ CFM follows from FO[$\lhd,\leq]\subseteq$ CFM and closure under projection
- $FO[\lhd, \leq] = FO[\lhd, \leq_{proc}]$

$\textbf{Goal:} \ \mathsf{FO}[\lhd,\leq_{\mathsf{proc}}] \subseteq \mathsf{CFM}$

Difficulty: CFMs are not closed under complement.

Idea: Use fragments of star-free PDL as intermediate steps.

State formulas:

$$\varphi ::= P \mid p \mid \varphi \lor \varphi \mid \neg \varphi \mid \langle \pi \rangle \varphi$$

$$\pi ::= \rightarrow | \triangleleft_{p,q} | \{\varphi\}? | \pi^{-1} | \pi \cdot \pi | \pi \cup \pi | \pi^{0}$$

State formulas:

$$\varphi ::= P \mid p \mid \varphi \lor \varphi \mid \neg \varphi \mid \langle \pi \rangle \varphi$$

State formulas:

$$\varphi ::= P \mid p \mid \varphi \lor \varphi \mid \neg \varphi \mid \langle \pi \rangle \varphi \mid \mathsf{Loop}(\pi)$$

State formulas:

$$\varphi ::= P \mid p \mid \varphi \lor \varphi \mid \neg \varphi \mid \langle \pi \rangle \varphi \mid \mathsf{Loop}(\pi)$$

State formulas: $\varphi ::= P \mid p \mid \varphi \lor \varphi \mid \neg \varphi \mid \langle \pi \rangle \varphi \mid \mathsf{Loop}(\pi)$ Path formulas: $\pi ::= \rightarrow \mid \triangleleft_{p,q} \mid \{\varphi\}? \mid \pi^{-1} \mid \pi \cdot \pi \mid \texttt{Total} \mid \texttt{V} \mid \top \mid \overset{\varphi}{\rightarrow}$

• $\operatorname{Loop}(\pi)$: $e \in \llbracket \operatorname{Loop}(\pi) \rrbracket$ if $(e, e) \in \llbracket \pi \rrbracket$

State formulas:

$$\varphi ::= P \mid p \mid \varphi \lor \varphi \mid \neg \varphi \mid \langle \pi \rangle \varphi \mid \mathsf{Loop}(\pi)$$

$$\pi ::= \rightarrow | \triangleleft_{p,q} | \{\varphi\}? | \pi^{-1} | \pi \cdot \pi |$$

- $\operatorname{Loop}(\pi)$: $e \in \llbracket \operatorname{Loop}(\pi) \rrbracket$ if $(e, e) \in \llbracket \pi \rrbracket$
- \top is the universal relation

State formulas:

$$\varphi ::= P \mid p \mid \varphi \lor \varphi \mid \neg \varphi \mid \langle \pi \rangle \varphi \mid \mathsf{Loop}(\pi)$$

$$\pi ::= \rightarrow | \triangleleft_{p,q} | \{\varphi\}? | \pi^{-1} | \pi \cdot \pi | \operatorname{Figure} | \operatorname{Figure} | \operatorname{Figure} | | \varphi|?$$

- $\operatorname{Loop}(\pi)$: $e \in \llbracket \operatorname{Loop}(\pi) \rrbracket$ if $(e, e) \in \llbracket \pi \rrbracket$
- \top is the universal relation
- $\xrightarrow{\varphi}$: similar to Until

$$\mathsf{PDL}_{\mathsf{sf}}[\xrightarrow{\varphi},\mathsf{Loop}]$$

State formulas:

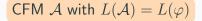
$$\varphi ::= P \mid p \mid \varphi \lor \varphi \mid \neg \varphi \mid \langle \pi \rangle \varphi \mid \mathsf{Loop}(\pi)$$

- $\operatorname{Loop}(\pi)$: $e \in \llbracket \operatorname{Loop}(\pi) \rrbracket$ if $(e, e) \in \llbracket \pi \rrbracket$
- \top is the universal relation
- $\xrightarrow{\varphi}$: similar to Until

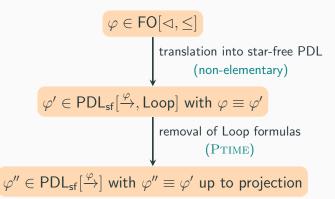
PDL_{sf}[
$$\xrightarrow{\varphi}$$
, Loop]
State formulas:
 $\varphi ::= P \mid p \mid \varphi \lor \varphi \mid \neg \varphi \mid \langle \pi \rangle \varphi \mid \text{Loop}(\pi)$
Path formulas:
 $\pi ::= \rightarrow \mid \lhd_{p,q} \mid \{\varphi\}? \mid \pi^{-1} \mid \pi \cdot \pi \mid \overrightarrow{\pi \lor \pi} \mid \cancel{\varphi} \mid \top \mid \xrightarrow{\varphi}$

- $\operatorname{Loop}(\pi)$: $e \in \llbracket \operatorname{Loop}(\pi) \rrbracket$ if $(e, e) \in \llbracket \pi \rrbracket$
- \top is the universal relation
- $\xrightarrow{\varphi}$: similar to Until •

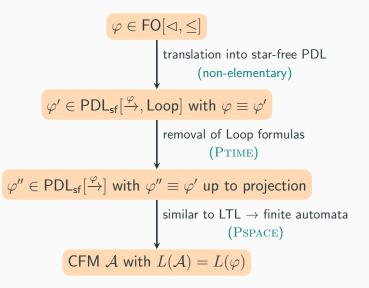
Negation occurs only at the level of state formulas (as in LTL)

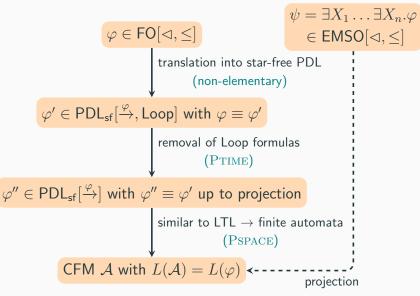


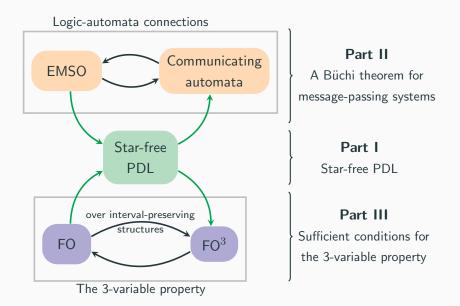
CFM
$$\mathcal{A}$$
 with $L(\mathcal{A}) = L(\varphi)$



CFM \mathcal{A} with $L(\mathcal{A}) = L(\varphi)$







The 3-variable property for interval-preserving structures

Over MSCs, FO and $\mathsf{PDL}_{\mathsf{sf}}$ have the same expressive power.

Over MSCs, FO and $\mathsf{PDL}_{\mathsf{sf}}$ have the same expressive power.

Theorem

 PDL_{sf} and FO^3 have the same expressive power.

Over MSCs, FO and PDL_{sf} have the same expressive power.



Over MSCs, FO and $\mathsf{PDL}_{\mathsf{sf}}$ have the same expressive power.

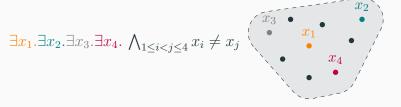
 \rightarrow MSCs have the 3-variable property.

• Over arbitrary structures, strict hierarchy

 $\mathsf{FO}^1 \subsetneq \mathsf{FO}^2 \subsetneq \mathsf{FO}^3 \subsetneq \mathsf{FO}^4 \subsetneq \cdots$

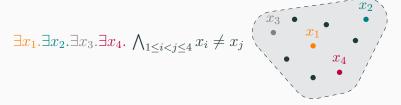
• Over arbitrary structures, strict hierarchy

 $\mathsf{FO}^1 \subsetneq \mathsf{FO}^2 \subsetneq \mathsf{FO}^3 \subsetneq \mathsf{FO}^4 \subsetneq \cdots$



• Over arbitrary structures, strict hierarchy

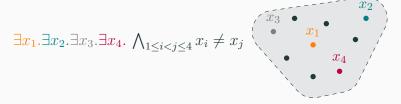
 $\mathsf{FO}^1 \subsetneq \mathsf{FO}^2 \subsetneq \mathsf{FO}^3 \subsetneq \mathsf{FO}^4 \subsetneq \cdots$



• For some classes of models, the hierarchy collapses:

• Over arbitrary structures, strict hierarchy

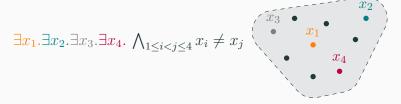
 $\mathsf{FO}^1 \subsetneq \mathsf{FO}^2 \subsetneq \mathsf{FO}^3 \subsetneq \mathsf{FO}^4 \subsetneq \cdots$



• For some classes of models, the hierarchy collapses: $\exists x. \exists y. (x < y \land \exists x. (y < x \land \exists y. x < y))$

• Over arbitrary structures, strict hierarchy

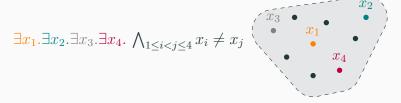
 $\mathsf{FO}^1 \subsetneq \mathsf{FO}^2 \subsetneq \mathsf{FO}^3 \subsetneq \mathsf{FO}^4 \subsetneq \cdots$



• For some classes of models, the hierarchy collapses: $\exists x. \exists y. (x < y \land \exists x. (y < x \land \exists y. x < y))$

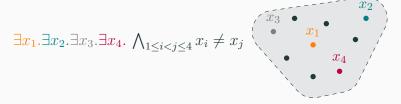
• Over arbitrary structures, strict hierarchy

 $\mathsf{FO}^1 \subsetneq \mathsf{FO}^2 \subsetneq \mathsf{FO}^3 \subsetneq \mathsf{FO}^4 \subsetneq \cdots$



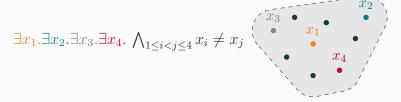
• Over arbitrary structures, strict hierarchy

 $\mathsf{FO}^1 \subsetneq \mathsf{FO}^2 \subsetneq \mathsf{FO}^3 \subsetneq \mathsf{FO}^4 \subsetneq \cdots$



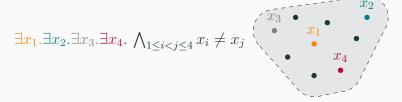
• Over arbitrary structures, strict hierarchy

 $\mathsf{FO}^1 \subsetneq \mathsf{FO}^2 \subsetneq \mathsf{FO}^3 \subsetneq \mathsf{FO}^4 \subsetneq \cdots$



• Over arbitrary structures, strict hierarchy

 $\mathsf{FO}^1 \subsetneq \mathsf{FO}^2 \subsetneq \mathsf{FO}^3 \subsetneq \mathsf{FO}^4 \subsetneq \cdots$

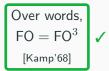


• For some classes of models, the hierarchy collapses: $\exists x. \exists y. (x < y \land \exists x. (y < x \land \exists y. x < y))$ $\begin{pmatrix} x & < y \\ \bullet & \bullet & \bullet & \bullet \end{pmatrix}$

Over linear orders, $FO = FO^3$.

Over words, $FO = FO^3$ [Kamp'68]

Over linear orders, $FO = FO^3$ \checkmark [Immerman-Kozen'89]



Over linear orders,
$$FO = FO^3$$

[Immerman-Kozen'89]

What happens if we have additional binary relations?

Over words,

$$FO = FO^3$$

[Kamp'68]

Over linear orders,

$$FO = FO^3$$

[Immerman-Kozen'89]

What happens if we have additional binary relations?

Over ordered graphs,
$$\forall k, \mathsf{FO} \neq \mathsf{FO}^k$$

[Rossman'08]

Over words,

$$FO = FO^3$$

[Kamp'68]

Over linear orders,

$$FO = FO^3$$

[Immerman-Kozen'89]

What happens if we have additional binary relations?

Over ordered graphs,
$$\forall k, \mathsf{FO} \neq \mathsf{FO}^k$$

[Rossman'08]

Over MSCs,

$$FO = FO^{3}$$

[Bollig-F.-Gastin'18]

Over words,

$$FO = FO^3$$

[Kamp'68]

Over linear orders,

$$FO = FO^3$$

[Immerman-Kozen'89]

What happens if we have additional binary relations?

Over ordered graphs,
$$\forall k, \mathsf{FO} \neq \mathsf{FO}^k$$

[Rossman'08]

Over MSCs,

$$FO = FO^3$$

[Bollig-F.-Gastin'18]

Over Mazurkiewicz traces, $FO = FO^3$ [Gastin-Mukund'02]

Over words,

$$FO = FO^3$$

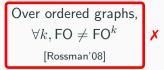
[Kamp'68]

Over linear orders,

$$FO = FO^3$$

[Immerman-Kozen'89]

What happens if we have additional binary relations?



Over
$$(\mathbb{R}, <, +1)$$
,
FO = FO³
[AHRW'15]

Over MSCs,

$$FO = FO^3$$

[Bollig-F.-Gastin'18]

Over Mazurkiewicz traces, $FO = FO^3$ [Gastin-Mukund'02]

Over words,

$$FO = FO^3$$

[Kamp'68]

What happens if we have additional binary relations?

What do the positive results have in common?

Theorem [F. 2019]

 $\mathsf{FO}=\mathsf{PDL}_{\mathsf{sf}}=\mathsf{FO}^3$ over structures with

- one linear order \leq
- relations $R_1, R_2 \ldots$ defined by monotone partial functions
- arbitrary unary predicates p, q, \ldots

Theorem [F. 2019]

 $\mathsf{FO}=\mathsf{PDL}_{\mathsf{sf}}=\mathsf{FO}^3$ over structures with

- one linear order \leq
- relations $R_1, R_2 \dots$ defined by monotone partial functions
- arbitrary unary predicates p, q, \ldots

Applications

1. Linear orders: finite or infinite words, $\mathbb{R},$ $\mathbb{Q},$ ordinals...

Theorem [F. 2019]

 $\mathsf{FO}=\mathsf{PDL}_{\mathsf{sf}}=\mathsf{FO}^3$ over structures with

- one linear order \leq
- relations $R_1, R_2 \dots$ defined by monotone partial functions
- arbitrary unary predicates p, q, \ldots

- 1. Linear orders: finite or infinite words, $\mathbb{R},$ $\mathbb{Q},$ ordinals...
- 2. $(\mathbb{R}, \leq, +1)$, $(\mathbb{R}, \leq, (+q)_{q \in \mathbb{Q}})$...

Theorem [F. 2019]

 $\mathsf{FO}=\mathsf{PDL}_{\mathsf{sf}}=\mathsf{FO}^3$ over structures with

- one linear order \leq
- relations $R_1, R_2 \ldots$ defined by monotone partial functions
- arbitrary unary predicates p, q, \ldots

- 1. Linear orders: finite or infinite words, $\mathbb{R},$ $\mathbb{Q},$ ordinals...
- 2. $(\mathbb{R}, \leq, +1)$, $(\mathbb{R}, \leq, (+q)_{q \in \mathbb{Q}})$...
- 3. (\mathbb{R}, \leq) + polynomial functions (new)

Theorem [F. 2019]

 $\mathsf{FO}=\mathsf{PDL}_{\mathsf{sf}}=\mathsf{FO}^3$ over structures with

- one linear order \leq
- relations $R_1, R_2 \dots$ defined by monotone partial functions
- arbitrary unary predicates p, q, \ldots

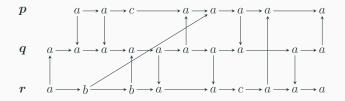
- 1. Linear orders: finite or infinite words, $\mathbb{R},$ $\mathbb{Q},$ ordinals...
- 2. $(\mathbb{R}, \leq, +1)$, $(\mathbb{R}, \leq, (+q)_{q \in \mathbb{Q}})$...
- 3. (\mathbb{R}, \leq) + polynomial functions (new)
- 4. MSCs (new)

Theorem [F. 2019]

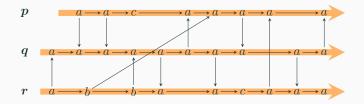
 $\mathsf{FO}=\mathsf{PDL}_{\mathsf{sf}}=\mathsf{FO}^3$ over structures with

- one linear order \leq
- relations $R_1, R_2 \ldots$ defined by monotone partial functions
- arbitrary unary predicates p, q, \ldots

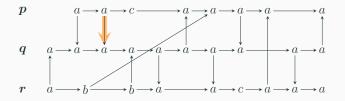
- 1. Linear orders: finite or infinite words, $\mathbb{R},$ $\mathbb{Q},$ ordinals...
- 2. $(\mathbb{R}, \leq, +1)$, $(\mathbb{R}, \leq, (+q)_{q \in \mathbb{Q}})$...
- 3. (\mathbb{R}, \leq) + polynomial functions (new)
- 4. MSCs (new)
- 5. Mazurkiewicz traces, pomsets without auto-concurrency



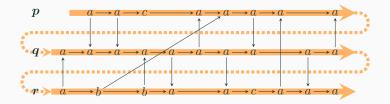
- Process order \leq_{proc}
- Message relations $\lhd_{p,q}$



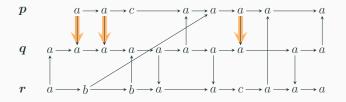
- Process order \leq_{proc}
- Message relations $\lhd_{p,q}$



- Process order \leq_{proc}
- Message relations $\triangleleft_{p,q}$



- Process order \leq_{proc} can be extended to a linear order \sqsubseteq
- Message relations $\lhd_{p,q}$



- Process order \leq_{proc} can be extended to a linear order \sqsubseteq
- Message relations $\triangleleft_{p,q}$ FIFO \rightarrow monotone

Theorem [F. 2019]

 $\mathsf{FO} = \mathsf{PDL}_{\mathsf{sf}} = \mathsf{FO}^3$ over structures with

- one linear order \leq
- relations $R_1, R_2 \dots$ defined by monotone partial functions
- arbitrary unary predicates p, q, \ldots

Theorem [F. 2019]

 $\mathsf{FO}=\mathsf{PDL}_{\mathsf{sf}}=\mathsf{FO}^3$ over structures with

- one linear order \leq
- interval-preserving binary relations R_1, R_2, \ldots
- arbitrary unary predicates p, q, \ldots

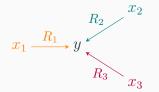
Theorem [F. 2019]

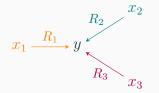
 $\mathsf{FO}=\mathsf{PDL}_{\mathsf{sf}}=\mathsf{FO}^3$ over structures with

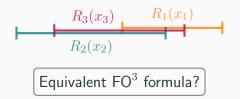
- ullet one linear order \leq
- interval-preserving binary relations R_1, R_2, \ldots
- arbitrary unary predicates p, q, \ldots

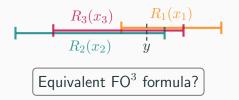
- 1. Linear orders with partial monotone functions (new)
- 2. Linear orders: finite or infinite words, $\mathbb{R},$ $\mathbb{Q},$ ordinals...
- 3. $(\mathbb{R}, \leq, +1)$, $(\mathbb{R}, \leq, (+q)_{q \in \mathbb{Q}})$...
- 4. (\mathbb{R}, \leq) + polynomial functions (new)
- 5. MSCs (new)
- 6. Mazurkiewicz traces, pomsets without auto-concurrency

How does the interval-preserving assumption help?









$$\begin{split} \varphi(x_1, x_2, x_3) &= \exists y. \, R_1(x_1, y) \land R_2(x_2, y) \land R_3(x_3, y) \\ &\equiv \left(\exists y. \, R_1(x_1, y) \land R_2(x_2, y) \land \right) \land \\ \left(\exists y. \, R_1(x_1, y) \land R_3(x_3, y) \land \right) \land \\ \left(\exists y. \, R_2(x_2, y) \land R_2(x_3, y) \land \right) \end{split}$$

$$\begin{array}{c|c} R_3(x_3) & R_1(x_1) \\ \hline R_2(x_2) & y \end{array}$$
Equivalent FO³ formula?

$$\varphi(x_1, x_2, x_3) = \exists y. R_1(x_1, y) \land R_2(x_2, y) \land R_3(x_3, y)$$
$$\equiv \left(\exists y. R_1(x_1, y) \land R_2(x_2, y) \land \exists x. R_3(x, y)\right) \land$$
$$\left(\exists y. R_1(x_1, y) \land R_3(x_3, y) \land \exists x. R_2(x, y)\right) \land$$
$$\left(\exists y. R_2(x_2, y) \land R_2(x_3, y) \land \exists x. R_1(x, y)\right)$$

$$R_{3}(x_{3}) \qquad R_{1}(x_{1})$$

$$R_{2}(x_{2}) \qquad y$$
Equivalent FO³ formula?

$$\begin{aligned} \varphi(x_1, x_2, x_3) &= \exists y. \, R_1(x_1, y) \land R_2(x_2, y) \land R_3(x_3, y) \\ &\equiv \left(\exists x_3. \, R_1(x_1, x_3) \land R_2(x_2, x_3) \land \exists x_1. \, R_3(x_1, x_3) \right) \land \\ &\left(\exists x_2. \, R_1(x_1, x_2) \land R_3(x_3, x_2) \land \exists x_1. \, R_2(x_1, x_2) \right) \land \\ &\left(\exists x_1. \, R_2(x_2, x_1) \land R_2(x_3, x_1) \land \exists x_2. \, R_1(x_2, x_1) \right) \end{aligned}$$

$$R_{3}(x_{3}) \qquad R_{1}(x_{1})$$

$$R_{2}(x_{2}) \qquad y$$
Equivalent FO³ formula?

Interval-preserving fragment of star-free PDL

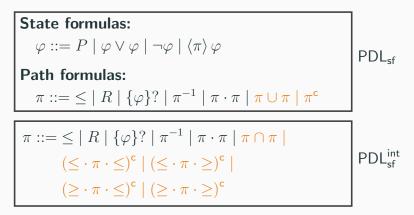
Goal: inductive translation from FO to $PDL_{sf} \equiv FO^3$.

Interval-preserving fragment of star-free PDL

Goal: inductive translation from FO to $PDL_{sf} \equiv FO^3$. Invariant: use only interval-preserving relations

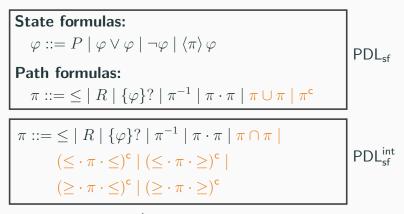
Interval-preserving fragment of star-free PDL

Goal: inductive translation from FO to $PDL_{sf} \equiv FO^3$. Invariant: use only interval-preserving relations

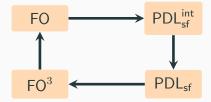


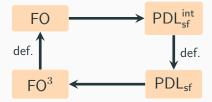
Interval-preserving fragment of star-free PDL

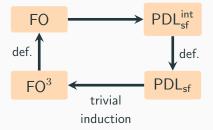
Goal: inductive translation from FO to $PDL_{sf} \equiv FO^3$. Invariant: use only interval-preserving relations



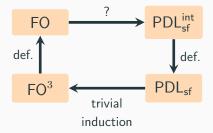
Lemma: $\forall \pi \in \mathsf{PDL}_{\mathsf{sf}}^{\mathsf{int}}$, $\llbracket \pi \rrbracket$ is interval-preserving.







- State formula $\varphi \in \mathsf{PDL}_{\mathsf{sf}} \quad \rightsquigarrow \quad \varphi^{\mathsf{FO}}(x) \in \mathsf{FO}$
- Path formula $\pi \in \mathsf{PDL}_{\mathsf{sf}} \quad \leadsto \quad \pi^{\mathsf{FO}}(x,y) \in \mathsf{FO}$



FO
$$\xrightarrow{?}$$
 PDL_{sf}^{int}

(Induction) Any FO formula $\Phi(x_1, \ldots, x_n)$ is equivalent to a finite positive boolean combination of formulas of the form $\pi^{\text{FO}}(x_i, x_j)$, where $\pi \in \text{PDL}_{sf}^{\text{int}}$.

FO
$$\xrightarrow{?}$$
 PDL_{sf}^{int}

(Induction) Any FO formula $\Phi(x_1, \ldots, x_n)$ is equivalent to a finite positive boolean combination of formulas of the form $\pi^{\text{FO}}(x_i, x_j)$, where $\pi \in \text{PDL}_{sf}^{\text{int}}$.

• Atomic formulas, disjunction: easy

FO
$$\xrightarrow{?}$$
 PDL_{sf}^{int}

(Induction) Any FO formula $\Phi(x_1, \ldots, x_n)$ is equivalent to a finite positive boolean combination of formulas of the form $\pi^{\text{FO}}(x_i, x_j)$, where $\pi \in \text{PDL}_{sf}^{\text{int}}$.

• Negation: Express π^{c} using $(\leq \cdot \pi \cdot \leq)^{c}$, $(\leq \cdot \pi \cdot \geq)^{c}$, $(\geq \cdot \pi \cdot \leq)^{c}$, $(\geq \cdot \pi \cdot \geq)^{c}$.

FO
$$\xrightarrow{?}$$
 PDL_{sf}^{int}

(Induction) Any FO formula $\Phi(x_1, \ldots, x_n)$ is equivalent to a finite positive boolean combination of formulas of the form $\pi^{\text{FO}}(x_i, x_j)$, where $\pi \in \text{PDL}_{sf}^{\text{int}}$.

• Existential quantification: Similar to the example before.

FO
$$\xrightarrow{?}$$
 PDL_{sf}^{int}

(Induction) Any FO formula $\Phi(x_1, \ldots, x_n)$ is equivalent to a finite positive boolean combination of formulas of the form $\pi^{\text{FO}}(x_i, x_j)$, where $\pi \in \text{PDL}_{sf}^{\text{int}}$.

• Existential quantification: Similar to the example before.

$$\exists x. \bigwedge_i \pi_i^{\mathsf{FO}}(x_i, x)$$

FO
$$\xrightarrow{?}$$
 PDL_{sf}^{int}

(Induction) Any FO formula $\Phi(x_1, \ldots, x_n)$ is equivalent to a finite positive boolean combination of formulas of the form $\pi^{\text{FO}}(x_i, x_j)$, where $\pi \in \text{PDL}_{sf}^{\text{int}}$.

• Existential quantification: Similar to the example before.

$$\underbrace{\exists x. \bigwedge_i \pi_i^{\mathsf{FO}}(x_i, x)}_{}$$

intersection of n intervals

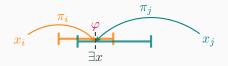
FO
$$\xrightarrow{?}$$
 PDL_{sf}^{int}

(Induction) Any FO formula $\Phi(x_1, \ldots, x_n)$ is equivalent to a finite positive boolean combination of formulas of the form $\pi^{\text{FO}}(x_i, x_j)$, where $\pi \in \text{PDL}_{sf}^{\text{int}}$.

• Existential quantification: Similar to the example before.

$$\underbrace{\exists x. \bigwedge_i \pi_i^{\mathsf{FO}}(x_i, x)}_{}$$

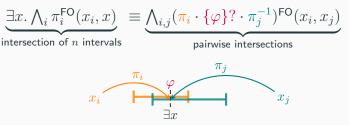
intersection of n intervals



FO
$$\xrightarrow{?}$$
 PDL_{sf}^{int}

(Induction) Any FO formula $\Phi(x_1, \ldots, x_n)$ is equivalent to a finite positive boolean combination of formulas of the form $\pi^{\text{FO}}(x_i, x_j)$, where $\pi \in \text{PDL}_{sf}^{\text{int}}$.

• Existential quantification: Similar to the example before.



Conclusion

• A new Büchi theorem: CFM = EMSO[≤, ⊲], even with unbounded channels.

- A new Büchi theorem: CFM = EMSO[≤, ⊲], even with unbounded channels.
- New proof that over existentially-bounded MSCs, $\label{eq:cfm} \mathsf{CFM} = \mathsf{MSO}[\leq,\lhd].$

- A new Büchi theorem: CFM = EMSO[≤, ⊲], even with unbounded channels.
- New proof that over existentially-bounded MSCs, $\label{eq:cfm} \mathsf{CFM} = \mathsf{MSO}[\leq,\lhd].$
- $FO = FO^3$ over interval-preserving structures.

- A new Büchi theorem: CFM = EMSO[≤, ⊲], even with unbounded channels.
- New proof that over existentially-bounded MSCs, $CFM = MSO[\leq, \lhd].$

$FO = FO^3$ over interval-preserving structures.

• New, unifying proof of several known results, including linear orders, $(\mathbb{R}, <, +1)$, and Mazurkiewicz traces.

- A new Büchi theorem: CFM = EMSO[≤, ⊲], even with unbounded channels.
- New proof that over existentially-bounded MSCs, $CFM = MSO[\leq, \lhd].$

$FO = FO^3$ over interval-preserving structures.

- New, unifying proof of several known results, including linear orders, $(\mathbb{R}, <, +1)$, and Mazurkiewicz traces.
- New applications: polynomial functions, linear orders with monotone functions, MSCs, ...

• Natural variant of PDL, equivalent to FO³.

- Natural variant of PDL, equivalent to FO³.
- 2-dimensional temporal logic expressively complete over interval-preserving structures.

- Natural variant of PDL, equivalent to FO³.
- 2-dimensional temporal logic expressively complete over interval-preserving structures.
- (Fragments of) PDL_{sf} serve as intermediate steps to go
 - from FO to FO^3 over interval-preserving structures.
 - from FO to CFMs.

- Natural variant of PDL, equivalent to FO³.
- 2-dimensional temporal logic expressively complete over interval-preserving structures.
- (Fragments of) PDL_{sf} serve as intermediate steps to go
 - from FO to FO^3 over interval-preserving structures.
 - from FO to CFMs.
- Over MSCs: expressively complete fragment closer to LTL and with a PSPACE translation into CFMs.

Continue a unified approach to expressivity problems: what makes a result work, and how can we extend it?

Continue a unified approach to expressivity problems: what makes a result work, and how can we extend it?

• Can we find a sufficient condition for the 3-variable property generalizing both interval-preserving structures and classes of trees for which similar results are known? Continue a unified approach to expressivity problems: what makes a result work, and how can we extend it?

- Can we find a sufficient condition for the 3-variable property generalizing both interval-preserving structures and classes of trees for which similar results are known?
- What are necessary conditions for the 3-variable property?

Continue a unified approach to expressivity problems: what makes a result work, and how can we extend it?

- Can we find a sufficient condition for the 3-variable property generalizing both interval-preserving structures and classes of trees for which similar results are known?
- What are necessary conditions for the 3-variable property?
- Over which classes of structures are EMSO and automata equivalent?

Continue a unified approach to expressivity problems: what makes a result work, and how can we extend it?

- Can we find a sufficient condition for the 3-variable property generalizing both interval-preserving structures and classes of trees for which similar results are known?
- What are necessary conditions for the 3-variable property?
- Over which classes of structures are EMSO and automata equivalent?
- What are sufficient conditions for the existence of an expressively complete (1-dimensional) temporal logic?

Specific questions for MSCs.

Specific questions for MSCs.

 Can every formula of CPDL, with operations (·, *, +, ⁻¹), be translated into an equivalent CFM? Known: YES with (·, c, +, ⁻¹) or (·, *, +), NO with (·, *, +, ∩, ⁻¹) [Bollig, Kuske, Meinecke 2010]

Specific questions for MSCs.

- Can every formula of CPDL, with operations (·, *, +, ⁻¹), be translated into an equivalent CFM? Known: YES with (·, c, +, ⁻¹) or (·, *, +), NO with (·, *, +, ∩, ⁻¹) [Bollig, Kuske, Meinecke 2010]
- Is there a 1-dimensional temporal logic over MSC that is expressively complete for first-order logic?