
Expressivity of first-order logic,

star-free propositional dynamic logic

and communicating automata

Marie Fortin

PhD Defense – November 27, 2020

LSV, ENS Paris-Saclay, Université Paris-Saclay

1

Introduction

Verification

Requirements
System

System model AFormal specification ϕ

¬(∃x.error(x))

A |= ϕ?

Model-checking

Synthesis

2

Verification

Requirements
System

System model AFormal specification ϕ

¬(∃x.error(x))

A |= ϕ?

Model-checking

Synthesis

2

Verification

Requirements
System

System model AFormal specification ϕ

¬(∃x.error(x))

A |= ϕ?

Model-checking

Synthesis

2

Verification

Requirements
System

System model AFormal specification ϕ

¬(∃x.error(x))

A |= ϕ?

Model-checking

Synthesis

2

Verification

Requirements
System

System model AFormal specification ϕ

¬(∃x.error(x))

A |= ϕ?

Model-checking

Synthesis

2

Specification: many choices!

Example: “every request is eventually granted”

G(request =⇒ F grant)

Linear temporal logic (LTL)

Σ∗ · (request · Σ∗ · grant)∗

Regular expression

∀x.(request(x) =⇒ ∃y.x ≤ y ∧ grant(y))

First-order logic (FO)

Comparing specification languages

• Expressive power

• Complexity/Decidability

• Succinctness

• Convenience

Comparisons with automata

Given a specification, can we always construct an equivalent

automaton?

3

Specification: many choices!

Example: “every request is eventually granted”

G(request =⇒ F grant)

Linear temporal logic (LTL)

Σ∗ · (request · Σ∗ · grant)∗

Regular expression

∀x.(request(x) =⇒ ∃y.x ≤ y ∧ grant(y))

First-order logic (FO)

Comparing specification languages

• Expressive power

• Complexity/Decidability

• Succinctness

• Convenience

Comparisons with automata

Given a specification, can we always construct an equivalent

automaton?

3

Specification: many choices!

Example: “every request is eventually granted”

G(request =⇒ F grant)

Linear temporal logic (LTL)

Σ∗ · (request · Σ∗ · grant)∗

Regular expression

∀x.(request(x) =⇒ ∃y.x ≤ y ∧ grant(y))

First-order logic (FO)

Comparing specification languages

• Expressive power

• Complexity/Decidability

• Succinctness

• Convenience

Comparisons with automata

Given a specification, can we always construct an equivalent

automaton?

3

Specification: many choices!

Example: “every request is eventually granted”

G(request =⇒ F grant)

Linear temporal logic (LTL)

Σ∗ · (request · Σ∗ · grant)∗

Regular expression

∀x.(request(x) =⇒ ∃y.x ≤ y ∧ grant(y))

First-order logic (FO)

Comparing specification languages

• Expressive power

• Complexity/Decidability

• Succinctness

• Convenience

Comparisons with automata

Given a specification, can we always construct an equivalent

automaton?

3

Specification: many choices!

Example: “every request is eventually granted”

G(request =⇒ F grant)

Linear temporal logic (LTL)

Σ∗ · (request · Σ∗ · grant)∗

Regular expression

∀x.(request(x) =⇒ ∃y.x ≤ y ∧ grant(y))

First-order logic (FO)

Comparing specification languages

• Expressive power

• Complexity/Decidability

• Succinctness

• Convenience

Comparisons with automata

Given a specification, can we always construct an equivalent

automaton?

3

Specification: many choices!

Example: “every request is eventually granted”

G(request =⇒ F grant)

Linear temporal logic (LTL)

Σ∗ · (request · Σ∗ · grant)∗

Regular expression

∀x.(request(x) =⇒ ∃y.x ≤ y ∧ grant(y))

First-order logic (FO)

Comparing specification languages

• Expressive power

• Complexity/Decidability

• Succinctness

• Convenience

Comparisons with automata

Given a specification, can we always construct an equivalent

automaton?

3

Specification: many choices!

Example: “every request is eventually granted”

G(request =⇒ F grant)

Linear temporal logic (LTL)

Σ∗ · (request · Σ∗ · grant)∗

Regular expression

∀x.(request(x) =⇒ ∃y.x ≤ y ∧ grant(y))

First-order logic (FO)

Comparing specification languages

• Expressive power

• Complexity/Decidability

• Succinctness

• Convenience

Comparisons with automata

Given a specification, can we always construct an equivalent

automaton?

3

Specification: many choices!

Example: “every request is eventually granted”

G(request =⇒ F grant)

Linear temporal logic (LTL)

Σ∗ · (request · Σ∗ · grant)∗

Regular expression

∀x.(request(x) =⇒ ∃y.x ≤ y ∧ grant(y))

First-order logic (FO)

Comparing specification languages

• Expressive power

• Complexity/Decidability

• Succinctness

• Convenience

Comparisons with automata

Given a specification, can we always construct an equivalent

automaton?

3

Specification: many choices!

Example: “every request is eventually granted”

G(request =⇒ F grant)

Linear temporal logic (LTL)

Σ∗ · (request · Σ∗ · grant)∗

Regular expression

∀x.(request(x) =⇒ ∃y.x ≤ y ∧ grant(y))

First-order logic (FO)

Comparing specification languages

• Expressive power

• Complexity/Decidability

• Succinctness

• Convenience

Comparisons with automata

Given a specification, can we always construct an equivalent

automaton?

3

Specification: many choices!

Example: “every request is eventually granted”

G(request =⇒ F grant)

Linear temporal logic (LTL)

Σ∗ · (request · Σ∗ · grant)∗

Regular expression

∀x.(request(x) =⇒ ∃y.x ≤ y ∧ grant(y))

First-order logic (FO)

Comparing specification languages

• Expressive power

• Complexity/Decidability

• Succinctness

• Convenience

Comparisons with automata

Given a specification, can we always construct an equivalent

automaton?

3

Specification: many choices!

Example: “every request is eventually granted”

G(request =⇒ F grant)

Linear temporal logic (LTL)

Σ∗ · (request · Σ∗ · grant)∗

Regular expression

∀x.(request(x) =⇒ ∃y.x ≤ y ∧ grant(y))

First-order logic (FO)

Comparing specification languages

• Expressive power

• Complexity/Decidability

• Succinctness

• Convenience

Comparisons with automata

Given a specification, can we always construct an equivalent

automaton?

3

Specification: many choices!

Example: “every request is eventually granted”

G(request =⇒ F grant)

Linear temporal logic (LTL)

Σ∗ · (request · Σ∗ · grant)∗

Regular expression

∀x.(request(x) =⇒ ∃y.x ≤ y ∧ grant(y))

First-order logic (FO)

Comparing specification languages

• Expressive power

• Complexity/Decidability

• Succinctness

• Convenience

Comparisons with automata

Given a specification, can we always construct an equivalent

automaton? 3

Some expressivity results over finite words

Theorem [Büchi 1960, Elgot 1961, Trakhtenbrot 1962]

Finite automata and MSO have the same expressive power.

Theorem

Over words, FO[<] defines the same class of languages as

• LTL [Kamp 1968]

• FO3[<] [Kamp 1968]

• Star-free expressions [McNaughton, Papert 1971]

• Counter-free automata [McNaughton, Papert 1971]

• Aperiodic monoids [Schützenberger 1965]

What about more complex structures?

4

Some expressivity results over finite words

Theorem [Büchi 1960, Elgot 1961, Trakhtenbrot 1962]

Finite automata and MSO have the same expressive power.

Theorem

Over words, FO[<] defines the same class of languages as

• LTL [Kamp 1968]

• FO3[<] [Kamp 1968]

• Star-free expressions [McNaughton, Papert 1971]

• Counter-free automata [McNaughton, Papert 1971]

• Aperiodic monoids [Schützenberger 1965]

What about more complex structures?

4

Some expressivity results over finite words

Theorem [Büchi 1960, Elgot 1961, Trakhtenbrot 1962]

Finite automata and MSO have the same expressive power.

Theorem

Over words, FO[<] defines the same class of languages as

• LTL [Kamp 1968]

• FO3[<] [Kamp 1968]

• Star-free expressions [McNaughton, Papert 1971]

• Counter-free automata [McNaughton, Papert 1971]

• Aperiodic monoids [Schützenberger 1965]

What about more complex structures?

4

Some expressivity results over finite words

Theorem [Büchi 1960, Elgot 1961, Trakhtenbrot 1962]

Finite automata and MSO have the same expressive power.

Theorem

Over words, FO[<] defines the same class of languages as

• LTL [Kamp 1968]

• FO3[<] [Kamp 1968]

• Star-free expressions [McNaughton, Papert 1971]

• Counter-free automata [McNaughton, Papert 1971]

• Aperiodic monoids [Schützenberger 1965]

What about more complex structures?

4

Outline

EMSO
Communicating

automata

Logic-automata connections

FO FO3

over interval-preserving

structures

The 3-variable property

Star-free

PDL

Part I

Star-free PDL

Part II

A Büchi theorem for

message-passing systems

Part III

Sufficient conditions for

the 3-variable property

5

Outline

EMSO
Communicating

automata

Logic-automata connections

FO FO3

over interval-preserving

structures

The 3-variable property

Star-free

PDL

Part I

Star-free PDL

Part II

A Büchi theorem for

message-passing systems

Part III

Sufficient conditions for

the 3-variable property

5

Outline

EMSO
Communicating

automata

Logic-automata connections

FO FO3

over interval-preserving

structures

The 3-variable property

Star-free

PDL

Part I

Star-free PDL

Part II

A Büchi theorem for

message-passing systems

Part III

Sufficient conditions for

the 3-variable property

5

Outline

EMSO
Communicating

automata

Logic-automata connections

FO FO3

over interval-preserving

structures

The 3-variable property

Star-free

PDL

Part I

Star-free PDL

Part II

A Büchi theorem for

message-passing systems

Part III

Sufficient conditions for

the 3-variable property

5

Outline

EMSO
Communicating

automata

Logic-automata connections

FO FO3

over interval-preserving

structures

The 3-variable property

Star-free

PDL

Part I

Star-free PDL

Part II

A Büchi theorem for

message-passing systems

Part III

Sufficient conditions for

the 3-variable property

5

Outline

EMSO
Communicating

automata

Logic-automata connections

FO FO3

over interval-preserving

structures

The 3-variable property

Star-free

PDL

Part I

Star-free PDL

Part II

A Büchi theorem for

message-passing systems

Part III

Sufficient conditions for

the 3-variable property

5

Outline

EMSO
Communicating

automata

Logic-automata connections

FO FO3

over interval-preserving

structures

The 3-variable property

Star-free

PDL

Part I

Star-free PDL

Part II

A Büchi theorem for

message-passing systems

Part III

Sufficient conditions for

the 3-variable property

5

Outline

EMSO
Communicating

automata

Logic-automata connections

FO FO3

over interval-preserving

structures

The 3-variable property

Star-free

PDL

Part I

Star-free PDL

Part II

A Büchi theorem for

message-passing systems

Part III

Sufficient conditions for

the 3-variable property

5

Outline

EMSO
Communicating

automata

Logic-automata connections

FO FO3

over interval-preserving

structures

The 3-variable property

Star-free

PDL

Part I

Star-free PDL

Part II

A Büchi theorem for

message-passing systems

Part III

Sufficient conditions for

the 3-variable property

5

Star-free PDL

Examples

• p ∨ 〈→〉 q
• 〈→ ·→−1〉 (p ∨ q)
• 〈→ · {p}? · →−1〉 true
• 〈→ ∩ (→ ·→)c〉 q

p, q
p

q

p

3
7

3
3

7
7

3

• Binary relations → and →
• Unary predicates p, q

6

Examples

• p ∨ 〈→〉 q

• 〈→ ·→−1〉 (p ∨ q)
• 〈→ · {p}? · →−1〉 true
• 〈→ ∩ (→ ·→)c〉 q

p, q
p

q

p

3
7

3
3

7
7

3

• Binary relations → and →
• Unary predicates p, q

6

Examples

• p ∨ 〈→〉 q

• 〈→ ·→−1〉 (p ∨ q)
• 〈→ · {p}? · →−1〉 true
• 〈→ ∩ (→ ·→)c〉 q

p, q
p

q

p

3

7
3

3
7

7

3

• Binary relations → and →
• Unary predicates p, q

6

Examples

• p ∨ 〈→〉 q

• 〈→ ·→−1〉 (p ∨ q)
• 〈→ · {p}? · →−1〉 true
• 〈→ ∩ (→ ·→)c〉 q

p, q
p

q

p

3

7

3
3

7
7

3

• Binary relations → and →
• Unary predicates p, q

6

Examples

• p ∨ 〈→〉 q
• 〈→ ·→−1〉 (p ∨ q)

• 〈→ · {p}? · →−1〉 true
• 〈→ ∩ (→ ·→)c〉 q

p, q
p

q

p

3
7

3

3
7

7

3

• Binary relations → and →
• Unary predicates p, q

6

Examples

• p ∨ 〈→〉 q
• 〈→ ·→−1〉 (p ∨ q)
• 〈→ · {p}? · →−1〉 true

• 〈→ ∩ (→ ·→)c〉 q

p, q
p

q

p

3
7

3

3
7

7

3

• Binary relations → and →
• Unary predicates p, q

6

Examples

• p ∨ 〈→〉 q
• 〈→ ·→−1〉 (p ∨ q)
• 〈→ · {p}? · →−1〉 true
• 〈→ ∩ (→ ·→)c〉 q p, q

p

q

p

3
7

3
3

7

7

3

• Binary relations → and →
• Unary predicates p, q

6

Example: MTL modalities

Over structures with

• domain R
• binary relations < and +q for every q ∈ Q+

• atomic propositions P,Q, . . .

ϕ U(q,r) ψ ≡

〈
(+q ·<) ∩ (+r ·<−1) ∩ (< · {¬ϕ}? ·<)c〉ψ

ψ

t t+ q t+ r

ϕ

+q
<

+r

<

ϕ

7

Example: MTL modalities

Over structures with

• domain R
• binary relations < and +q for every q ∈ Q+

• atomic propositions P,Q, . . .

ϕ U(q,r) ψ ≡

〈
(+q ·<) ∩ (+r ·<−1) ∩ (< · {¬ϕ}? ·<)c〉ψ

ψ

t t+ q t+ r

ϕ

+q
<

+r

<

ϕ

7

Example: MTL modalities

Over structures with

• domain R
• binary relations < and +q for every q ∈ Q+

• atomic propositions P,Q, . . .

ϕ U(q,r) ψ ≡
〈

(+q ·<) ∩ (+r ·<−1) ∩ (< · {¬ϕ}? ·<)c〉ψ

ψ

t t+ q t+ r

ϕ

+q
<

+r

<

ϕ

7

Syntax of Star-free Propositional Dynamic Logic

State formulas:

ϕ ::= p | ϕ ∨ ϕ | ¬ϕ | 〈π〉ϕ

Path formulas:

π ::= R | {ϕ}? | π−1 | π · π | π ∪ π | πc

PDLsf

Combines features from

• Propositional Dynamic Logic [Fisher, Ladner 1979]

• Star-free regular expressions

• The calculus of relations

Theorem [Tarski, Givant 1987] (calculus of relations)

PDLsf and FO3 are expressively equivalent.

8

Syntax of Star-free Propositional Dynamic Logic

State formulas:

ϕ ::= p | ϕ ∨ ϕ | ¬ϕ | 〈π〉ϕ

Path formulas:

π ::= R | {ϕ}? | π−1 | π · π | π ∪ π | πc

PDLsf

Combines features from

• Propositional Dynamic Logic [Fisher, Ladner 1979]

• Star-free regular expressions

• The calculus of relations

Theorem [Tarski, Givant 1987] (calculus of relations)

PDLsf and FO3 are expressively equivalent.

8

Syntax of Star-free Propositional Dynamic Logic

State formulas:

ϕ ::= p | ϕ ∨ ϕ | ¬ϕ | 〈π〉ϕ

Path formulas:

π ::= R | {ϕ}? | π−1 | π · π | π ∪ π | πc

PDLsf

Combines features from

• Propositional Dynamic Logic [Fisher, Ladner 1979]

• Star-free regular expressions

• The calculus of relations

Theorem [Tarski, Givant 1987] (calculus of relations)

PDLsf and FO3 are expressively equivalent.

8

EMSO
Communicating

automata

Logic-automata connections

FO FO3

over interval-preserving

structures

The 3-variable property

Star-free

PDL

Part I

Star-free PDL

Part II

A Büchi theorem for

message-passing systems

Part III

Sufficient conditions for

the 3-variable property

A Büchi theorem for

message-passing systems

Communicating finite-state machines (CFMs)1

Fixed, finite set of processes, e.g. {p, q, r}

p

a, !q�

a, !r�

b, !q�

b, !r�

q

c, ?p�

c, !r�

c, ?p�

c, !r�

r

a, ?p�

a, ?q�

b, ?p�

b, ?q�

Reliable unbounded

point-to-point

FIFO channels

One finite automaton

for each process

• Finite input alphabet,

e.g. Σ = {a, b, c}
• Sends/receives from a

finite message alphabet,

e.g. {�,�}

Global acceptance condition

1[Brand, Zafiropulo 1983] 9

Communicating finite-state machines (CFMs)1

Fixed, finite set of processes, e.g. {p, q, r}

p

a, !q�

a, !r�

b, !q�

b, !r�

q

c, ?p�

c, !r�

c, ?p�

c, !r�

r

a, ?p�

a, ?q�

b, ?p�

b, ?q�

Reliable unbounded

point-to-point

FIFO channels

One finite automaton

for each process

• Finite input alphabet,

e.g. Σ = {a, b, c}
• Sends/receives from a

finite message alphabet,

e.g. {�,�}

Global acceptance condition

1[Brand, Zafiropulo 1983] 9

Communicating finite-state machines (CFMs)1

Fixed, finite set of processes, e.g. {p, q, r}

p

a, !q�

a, !r�

b, !q�

b, !r�

q

c, ?p�

c, !r�

c, ?p�

c, !r�

r

a, ?p�

a, ?q�

b, ?p�

b, ?q�

Reliable unbounded

point-to-point

FIFO channels

One finite automaton

for each process

• Finite input alphabet,

e.g. Σ = {a, b, c}
• Sends/receives from a

finite message alphabet,

e.g. {�,�}

Global acceptance condition

1[Brand, Zafiropulo 1983] 9

Communicating finite-state machines (CFMs)1

Fixed, finite set of processes, e.g. {p, q, r}

p a, !q�

a, !r�

b, !q�

b, !r�

q
c, ?p�

c, !r�

c, ?p�

c, !r�

r a, ?p�

a, ?q�

b, ?p�

b, ?q�

Reliable unbounded

point-to-point

FIFO channels

One finite automaton

for each process

• Finite input alphabet,

e.g. Σ = {a, b, c}
• Sends/receives from a

finite message alphabet,

e.g. {�,�}

Global acceptance condition

1[Brand, Zafiropulo 1983] 9

Communicating finite-state machines (CFMs)1

Fixed, finite set of processes, e.g. {p, q, r}

p a, !q�

a, !r�

b, !q�

b, !r�

q
c, ?p�

c, !r�

c, ?p�

c, !r�

r a, ?p�

a, ?q�

b, ?p�

b, ?q�

Reliable unbounded

point-to-point

FIFO channels

One finite automaton

for each process

• Finite input alphabet,

e.g. Σ = {a, b, c}
• Sends/receives from a

finite message alphabet,

e.g. {�,�}

Global acceptance condition

1[Brand, Zafiropulo 1983] 9

Message Sequence Charts (MSC)

The language of a CFM is a set of MSCs.

a a c a a a a a

a a a a a a a a a a

a b b a a c a a a

p

q

r

Partial order consisting of

• One sequence of events for each process

• Message relation connecting matching sends and receives

10

Message Sequence Charts (MSC)

The language of a CFM is a set of MSCs.

a a c a a a a a

a a a a a a a a a a

a b b a a c a a a

p

q

r

Partial order consisting of

• One sequence of events for each process

• Message relation connecting matching sends and receives

10

Message Sequence Charts (MSC)

The language of a CFM is a set of MSCs.

a a c a a a a a

a a a a a a a a a a

a b b a a c a a a

p

q

r

Partial order consisting of

• One sequence of events for each process

• Message relation connecting matching sends and receives

10

Monadic Second-Order logic (MSO) over MSCs

ϕ ::=

a(x) | p(x) label/process of event x

| x→ y process successor

| xC y message relation

| x ≤ y happened-before [Lamport 1978]

| ¬ϕ | ϕ ∨ ϕ | ∃x. ϕ | ∃X. ϕ | x ∈ X

a a c a a a a a

a a a a a a a a a a

a b b a a c a a a

p

q

r

x y

x

yx

y

x

y

Example: mutual exclusion ¬(∃x. ∃y. c(x) ∧ c(y) ∧ x ‖ y)

¬(x ≤ y) ∧ ¬(y ≤ x)

11

Monadic Second-Order logic (MSO) over MSCs

ϕ ::= a(x) | p(x) label/process of event x

| x→ y process successor

| xC y message relation

| x ≤ y happened-before [Lamport 1978]

| ¬ϕ | ϕ ∨ ϕ | ∃x. ϕ | ∃X. ϕ | x ∈ X

a a c a a a a a

a a a a a a a a a a

a b b a a c a a a

p

q

r

x y

x

yx

y

x

y

Example: mutual exclusion ¬(∃x. ∃y. c(x) ∧ c(y) ∧ x ‖ y)

¬(x ≤ y) ∧ ¬(y ≤ x)

11

Monadic Second-Order logic (MSO) over MSCs

ϕ ::= a(x) | p(x) label/process of event x

| x→ y process successor

| xC y message relation

| x ≤ y happened-before [Lamport 1978]

| ¬ϕ | ϕ ∨ ϕ | ∃x. ϕ | ∃X. ϕ | x ∈ X

a a c a a a a a

a a a a a a a a a a

a b b a a c a a a

p

q

r

x y

x

yx

y

x

y

Example: mutual exclusion ¬(∃x. ∃y. c(x) ∧ c(y) ∧ x ‖ y)

¬(x ≤ y) ∧ ¬(y ≤ x)

11

Monadic Second-Order logic (MSO) over MSCs

ϕ ::= a(x) | p(x) label/process of event x

| x→ y process successor

| xC y message relation

| x ≤ y happened-before [Lamport 1978]

| ¬ϕ | ϕ ∨ ϕ | ∃x. ϕ | ∃X. ϕ | x ∈ X

a a c a a a a a

a a a a a a a a a a

a b b a a c a a a

p

q

r

x y

x

y

x

y

x

y

Example: mutual exclusion ¬(∃x. ∃y. c(x) ∧ c(y) ∧ x ‖ y)

¬(x ≤ y) ∧ ¬(y ≤ x)

11

Monadic Second-Order logic (MSO) over MSCs

ϕ ::= a(x) | p(x) label/process of event x

| x→ y process successor

| xC y message relation

| x ≤ y happened-before [Lamport 1978]

| ¬ϕ | ϕ ∨ ϕ | ∃x. ϕ | ∃X. ϕ | x ∈ X

a a c a a a a a

a a a a a a a a a a

a b b a a c a a a

p

q

r

x y

x

y

x

y

x

y

Example: mutual exclusion ¬(∃x. ∃y. c(x) ∧ c(y) ∧ x ‖ y)

¬(x ≤ y) ∧ ¬(y ≤ x)

11

Monadic Second-Order logic (MSO) over MSCs

ϕ ::= a(x) | p(x) label/process of event x

| x→ y process successor

| xC y message relation

| x ≤ y happened-before [Lamport 1978]

| ¬ϕ | ϕ ∨ ϕ | ∃x. ϕ | ∃X. ϕ | x ∈ X

a a c a a a a a

a a a a a a a a a a

a b b a a c a a a

p

q

r

x y

x

yx

y

x

y

Example: mutual exclusion ¬(∃x. ∃y. c(x) ∧ c(y) ∧ x ‖ y)

¬(x ≤ y) ∧ ¬(y ≤ x)

11

Monadic Second-Order logic (MSO) over MSCs

ϕ ::= a(x) | p(x) label/process of event x

| x→ y process successor

| xC y message relation

| x ≤ y happened-before [Lamport 1978]

| ¬ϕ | ϕ ∨ ϕ | ∃x. ϕ | ∃X. ϕ | x ∈ X

a a c a a a a a

a a a a a a a a a a

a b b a a c a a a

p

q

r

x y

x

yx

y

x

y

Example: mutual exclusion ¬(∃x. ∃y. c(x) ∧ c(y) ∧ x ‖ y)

¬(x ≤ y) ∧ ¬(y ≤ x)

11

Monadic Second-Order logic (MSO) over MSCs

ϕ ::= a(x) | p(x) label/process of event x

| x→ y process successor

| xC y message relation

| x ≤ y happened-before [Lamport 1978]

| ¬ϕ | ϕ ∨ ϕ | ∃x. ϕ | ∃X. ϕ | x ∈ X

a a c a a a a a

a a a a a a a a a a

a b b a a c a a a

p

q

r

x y

x

yx

y

x

y

Example: mutual exclusion ¬(∃x. ∃y. c(x) ∧ c(y) ∧ x ‖ y)

¬(x ≤ y) ∧ ¬(y ≤ x)
11

Expressive power of CFMs

Theorem [Büchi 1960, Elgot 1961, Trakhtenbrot 1962]

If there is only one process,

CFMs (= finite automata) = MSO[C,≤].

With ≥ 2 processes, CFMs are not closed under complement.

[Bollig, Leucker 2006]But:

Theorem [Bollig, Leucker 2006]

Over finite MSCs, CFM = EMSO[C,→].

Theorem [Bollig, Kuske 2008]

Over infinite MSCs, CFM = EMSO∞[C,→].

Note: here the happened-before relation ≤ is not included.

→ Harder to formalize concurrency properties such as mutual exclusion.

12

Expressive power of CFMs

Theorem [Büchi 1960, Elgot 1961, Trakhtenbrot 1962]

If there is only one process,

CFMs (= finite automata) = MSO[C,≤].

With ≥ 2 processes, CFMs are not closed under complement.

[Bollig, Leucker 2006]

But:

Theorem [Bollig, Leucker 2006]

Over finite MSCs, CFM = EMSO[C,→].

Theorem [Bollig, Kuske 2008]

Over infinite MSCs, CFM = EMSO∞[C,→].

Note: here the happened-before relation ≤ is not included.

→ Harder to formalize concurrency properties such as mutual exclusion.

12

Expressive power of CFMs

Theorem [Büchi 1960, Elgot 1961, Trakhtenbrot 1962]

If there is only one process,

CFMs (= finite automata) = MSO[C,≤].

With ≥ 2 processes, CFMs are not closed under complement.

[Bollig, Leucker 2006]But:

Theorem [Bollig, Leucker 2006]

Over finite MSCs, CFM = EMSO[C,→].

Theorem [Bollig, Kuske 2008]

Over infinite MSCs, CFM = EMSO∞[C,→].

Note: here the happened-before relation ≤ is not included.

→ Harder to formalize concurrency properties such as mutual exclusion.

12

Expressive power of CFMs

Theorem [Büchi 1960, Elgot 1961, Trakhtenbrot 1962]

If there is only one process,

CFMs (= finite automata) = MSO[C,≤].

With ≥ 2 processes, CFMs are not closed under complement.

[Bollig, Leucker 2006]But:

Theorem [Bollig, Leucker 2006]

Over finite MSCs, CFM = EMSO[C,→].

∃X0 . . . ∃Xn.ϕ with ϕ ∈ FO[C,→]

Theorem [Bollig, Kuske 2008]

Over infinite MSCs, CFM = EMSO∞[C,→].

Note: here the happened-before relation ≤ is not included.

→ Harder to formalize concurrency properties such as mutual exclusion.

12

Expressive power of CFMs

Theorem [Büchi 1960, Elgot 1961, Trakhtenbrot 1962]

If there is only one process,

CFMs (= finite automata) = MSO[C,≤].

With ≥ 2 processes, CFMs are not closed under complement.

[Bollig, Leucker 2006]But:

Theorem [Bollig, Leucker 2006]

Over finite MSCs, CFM = EMSO[C,→].

Theorem [Bollig, Kuske 2008]

Over infinite MSCs, CFM = EMSO∞[C,→].

Note: here the happened-before relation ≤ is not included.

→ Harder to formalize concurrency properties such as mutual exclusion.

12

Expressive power of CFMs

Theorem [Büchi 1960, Elgot 1961, Trakhtenbrot 1962]

If there is only one process,

CFMs (= finite automata) = MSO[C,≤].

With ≥ 2 processes, CFMs are not closed under complement.

[Bollig, Leucker 2006]But:

Theorem [Bollig, Leucker 2006]

Over finite MSCs, CFM = EMSO[C,→].

Theorem [Bollig, Kuske 2008]

Over infinite MSCs, CFM = EMSO∞[C,→].

Note: here the happened-before relation ≤ is not included.

→ Harder to formalize concurrency properties such as mutual exclusion.
12

Expressive power of CFMs

The equivalence with MSO[C,≤] is recovered if we assume

that the channels are of bounded size.

Theorem

CFM = MSO[C,≤] over

• finite, universally bounded MSCs

[Henriksen,Mukund,Narayan Kumar,Sohoni,Thiagarajan 2005]

• infinite, universally bounded MSCs [Kuske 2003]

• finite, existentially bounded MSCs

[Genest, Kuske, Muscholl 2006]

Remark: model-checking is undecidable in general, but

decidable when restricted to bounded MSCs.

13

Expressive power of CFMs

The equivalence with MSO[C,≤] is recovered if we assume

that the channels are of bounded size.

Theorem

CFM = MSO[C,≤] over

• finite, universally bounded MSCs

[Henriksen,Mukund,Narayan Kumar,Sohoni,Thiagarajan 2005]

• infinite, universally bounded MSCs [Kuske 2003]

• finite, existentially bounded MSCs

[Genest, Kuske, Muscholl 2006]

Remark: model-checking is undecidable in general, but

decidable when restricted to bounded MSCs.

13

Expressive power of CFMs

What happens for formulas with the happened-before relation,

over unbounded channels?

Theorem [Bollig,F.,Gastin 2018 & 2020]

Over finite and infinite MSCs, CFM = EMSO[C,≤].

Other consequence: new, direct proof for the bounded case:

Theorem [Bollig,F.,Gastin 2020]

Over finite and infinite existentially bounded MSCs,

CFM = MSO[C,≤].

14

Expressive power of CFMs

What happens for formulas with the happened-before relation,

over unbounded channels?

Theorem [Bollig,F.,Gastin 2018 & 2020]

Over finite and infinite MSCs, CFM = EMSO[C,≤].

Other consequence: new, direct proof for the bounded case:

Theorem [Bollig,F.,Gastin 2020]

Over finite and infinite existentially bounded MSCs,

CFM = MSO[C,≤].

14

Expressive power of CFMs

What happens for formulas with the happened-before relation,

over unbounded channels?

Theorem [Bollig,F.,Gastin 2018 & 2020]

Over finite and infinite MSCs, CFM = EMSO[C,≤].

Other consequence: new, direct proof for the bounded case:

Theorem [Bollig,F.,Gastin 2020]

Over finite and infinite existentially bounded MSCs,

CFM = MSO[C,≤].

14

Expressive power of CFMs

What happens for formulas with the happened-before relation,

over unbounded channels?

Theorem [Bollig,F.,Gastin 2018 & 2020]

Over finite and infinite MSCs, CFM = EMSO[C,≤].

Other consequence: new, direct proof for the bounded case:

Theorem [Bollig,F.,Gastin 2020]

Over finite and infinite existentially bounded MSCs,

CFM = MSO[C,≤].

14

Some proof ideas

Remarks

• CFM ⊆ EMSO[C,≤] already known

• EMSO[C,≤] ⊆ CFM follows from FO[C,≤] ⊆ CFM and

closure under projection

• FO[C,≤] = FO[C,≤proc]

Goal: FO[C,≤proc] ⊆ CFM

Difficulty: CFMs are not closed under complement.

Idea: Use fragments of star-free PDL as intermediate steps.

15

Some proof ideas

Remarks

• CFM ⊆ EMSO[C,≤] already known

• EMSO[C,≤] ⊆ CFM follows from FO[C,≤] ⊆ CFM and

closure under projection

• FO[C,≤] = FO[C,≤proc]

Goal: FO[C,≤proc] ⊆ CFM

Difficulty: CFMs are not closed under complement.

Idea: Use fragments of star-free PDL as intermediate steps.

15

Some proof ideas

Remarks

• CFM ⊆ EMSO[C,≤] already known

• EMSO[C,≤] ⊆ CFM follows from FO[C,≤] ⊆ CFM and

closure under projection

• FO[C,≤] = FO[C,≤proc]

Goal: FO[C,≤proc] ⊆ CFM

Difficulty: CFMs are not closed under complement.

Idea: Use fragments of star-free PDL as intermediate steps.

15

Some proof ideas

Remarks

• CFM ⊆ EMSO[C,≤] already known

• EMSO[C,≤] ⊆ CFM follows from FO[C,≤] ⊆ CFM and

closure under projection

• FO[C,≤] = FO[C,≤proc]

Goal: FO[C,≤proc] ⊆ CFM

Difficulty: CFMs are not closed under complement.

Idea: Use fragments of star-free PDL as intermediate steps.

15

Some proof ideas

Remarks

• CFM ⊆ EMSO[C,≤] already known

• EMSO[C,≤] ⊆ CFM follows from FO[C,≤] ⊆ CFM and

closure under projection

• FO[C,≤] = FO[C,≤proc]

Goal: FO[C,≤proc] ⊆ CFM

Difficulty: CFMs are not closed under complement.

Idea: Use fragments of star-free PDL as intermediate steps.

15

Some proof ideas

Remarks

• CFM ⊆ EMSO[C,≤] already known

• EMSO[C,≤] ⊆ CFM follows from FO[C,≤] ⊆ CFM and

closure under projection

• FO[C,≤] = FO[C,≤proc]

Goal: FO[C,≤proc] ⊆ CFM

Difficulty: CFMs are not closed under complement.

Idea: Use fragments of star-free PDL as intermediate steps.

15

Some proof ideas

Remarks

• CFM ⊆ EMSO[C,≤] already known

• EMSO[C,≤] ⊆ CFM follows from FO[C,≤] ⊆ CFM and

closure under projection

• FO[C,≤] = FO[C,≤proc]

Goal: FO[C,≤proc] ⊆ CFM

Difficulty: CFMs are not closed under complement.

Idea: Use fragments of star-free PDL as intermediate steps.

15

A fragment of PDLsf without explicit complements

PDLsf[
ϕ−→, Loop]

State formulas:

ϕ ::= P | p | ϕ ∨ ϕ | ¬ϕ | 〈π〉ϕ

| Loop(π)

Path formulas:

π ::=→ | Cp,q | {ϕ}? | π−1 | π · π | π ∪ π | πc

| > | ϕ−→

• Loop(π): e ∈ JLoop(π)K if (e, e) ∈ JπK
• > is the universal relation

• ϕ−→: similar to Until
ϕ ϕ ϕ

Negation occurs only at the level of state formulas (as in LTL)

16

A fragment of PDLsf without explicit complements

PDLsf[
ϕ−→, Loop]

State formulas:

ϕ ::= P | p | ϕ ∨ ϕ | ¬ϕ | 〈π〉ϕ

| Loop(π)

Path formulas:

π ::=→ | Cp,q | {ϕ}? | π−1 | π · π | π ∪ π | πc

| > | ϕ−→

• Loop(π): e ∈ JLoop(π)K if (e, e) ∈ JπK
• > is the universal relation

• ϕ−→: similar to Until
ϕ ϕ ϕ

Negation occurs only at the level of state formulas (as in LTL)

16

A fragment of PDLsf without explicit complements

PDLsf[
ϕ−→, Loop]

State formulas:

ϕ ::= P | p | ϕ ∨ ϕ | ¬ϕ | 〈π〉ϕ | Loop(π)

Path formulas:

π ::=→ | Cp,q | {ϕ}? | π−1 | π · π | π ∪ π | πc

| > | ϕ−→

• Loop(π): e ∈ JLoop(π)K if (e, e) ∈ JπK
• > is the universal relation

• ϕ−→: similar to Until
ϕ ϕ ϕ

Negation occurs only at the level of state formulas (as in LTL)

16

A fragment of PDLsf without explicit complements

PDLsf[
ϕ−→, Loop]

State formulas:

ϕ ::= P | p | ϕ ∨ ϕ | ¬ϕ | 〈π〉ϕ | Loop(π)

Path formulas:

π ::=→ | Cp,q | {ϕ}? | π−1 | π · π | π ∪ π | πc | > | ϕ−→

• Loop(π): e ∈ JLoop(π)K if (e, e) ∈ JπK
• > is the universal relation

• ϕ−→: similar to Until
ϕ ϕ ϕ

Negation occurs only at the level of state formulas (as in LTL)

16

A fragment of PDLsf without explicit complements

PDLsf[
ϕ−→, Loop]

State formulas:

ϕ ::= P | p | ϕ ∨ ϕ | ¬ϕ | 〈π〉ϕ | Loop(π)

Path formulas:

π ::=→ | Cp,q | {ϕ}? | π−1 | π · π | π ∪ π | πc | > | ϕ−→

• Loop(π): e ∈ JLoop(π)K if (e, e) ∈ JπK

• > is the universal relation

• ϕ−→: similar to Until
ϕ ϕ ϕ

Negation occurs only at the level of state formulas (as in LTL)

16

A fragment of PDLsf without explicit complements

PDLsf[
ϕ−→, Loop]

State formulas:

ϕ ::= P | p | ϕ ∨ ϕ | ¬ϕ | 〈π〉ϕ | Loop(π)

Path formulas:

π ::=→ | Cp,q | {ϕ}? | π−1 | π · π | π ∪ π | πc | > | ϕ−→

• Loop(π): e ∈ JLoop(π)K if (e, e) ∈ JπK
• > is the universal relation

• ϕ−→: similar to Until
ϕ ϕ ϕ

Negation occurs only at the level of state formulas (as in LTL)

16

A fragment of PDLsf without explicit complements

PDLsf[
ϕ−→, Loop]

State formulas:

ϕ ::= P | p | ϕ ∨ ϕ | ¬ϕ | 〈π〉ϕ | Loop(π)

Path formulas:

π ::=→ | Cp,q | {ϕ}? | π−1 | π · π | π ∪ π | πc | > | ϕ−→

• Loop(π): e ∈ JLoop(π)K if (e, e) ∈ JπK
• > is the universal relation

• ϕ−→: similar to Until
ϕ ϕ ϕ

Negation occurs only at the level of state formulas (as in LTL)

16

A fragment of PDLsf without explicit complements

PDLsf[
ϕ−→, Loop]

State formulas:

ϕ ::= P | p | ϕ ∨ ϕ | ¬ϕ | 〈π〉ϕ | Loop(π)

Path formulas:

π ::=→ | Cp,q | {ϕ}? | π−1 | π · π | π ∪ π | πc | > | ϕ−→

• Loop(π): e ∈ JLoop(π)K if (e, e) ∈ JπK
• > is the universal relation

• ϕ−→: similar to Until
ϕ ϕ ϕ

Negation occurs only at the level of state formulas (as in LTL)

16

A fragment of PDLsf without explicit complements

PDLsf[
ϕ−→, Loop]

State formulas:

ϕ ::= P | p | ϕ ∨ ϕ | ¬ϕ | 〈π〉ϕ | Loop(π)

Path formulas:

π ::=→ | Cp,q | {ϕ}? | π−1 | π · π | π ∪ π | πc | > | ϕ−→

• Loop(π): e ∈ JLoop(π)K if (e, e) ∈ JπK
• > is the universal relation

• ϕ−→: similar to Until
ϕ ϕ ϕ

Negation occurs only at the level of state formulas (as in LTL)

16

Translation from first-order logic to CFMs

ϕ ∈ FO[C,≤]

ϕ′ ∈ PDLsf [
ϕ−→, Loop] with ϕ ≡ ϕ′

translation into star-free PDL

(non-elementary)

ϕ′′ ∈ PDLsf [
ϕ−→] with ϕ′′ ≡ ϕ′ up to projection

removal of Loop formulas

(Ptime)

CFM A with L(A) = L(ϕ)

similar to LTL → finite automata

(Pspace)

ψ = ∃X1 . . . ∃Xn.ϕ

∈ EMSO[C,≤]

projection

17

Translation from first-order logic to CFMs

ϕ ∈ FO[C,≤]

ϕ′ ∈ PDLsf [
ϕ−→, Loop] with ϕ ≡ ϕ′

translation into star-free PDL

(non-elementary)

ϕ′′ ∈ PDLsf [
ϕ−→] with ϕ′′ ≡ ϕ′ up to projection

removal of Loop formulas

(Ptime)

CFM A with L(A) = L(ϕ)

similar to LTL → finite automata

(Pspace)

ψ = ∃X1 . . . ∃Xn.ϕ

∈ EMSO[C,≤]

projection

17

Translation from first-order logic to CFMs

ϕ ∈ FO[C,≤]

ϕ′ ∈ PDLsf [
ϕ−→, Loop] with ϕ ≡ ϕ′

translation into star-free PDL

(non-elementary)

ϕ′′ ∈ PDLsf [
ϕ−→] with ϕ′′ ≡ ϕ′ up to projection

removal of Loop formulas

(Ptime)

CFM A with L(A) = L(ϕ)

similar to LTL → finite automata

(Pspace)

ψ = ∃X1 . . . ∃Xn.ϕ

∈ EMSO[C,≤]

projection

17

Translation from first-order logic to CFMs

ϕ ∈ FO[C,≤]

ϕ′ ∈ PDLsf [
ϕ−→, Loop] with ϕ ≡ ϕ′

translation into star-free PDL

(non-elementary)

ϕ′′ ∈ PDLsf [
ϕ−→] with ϕ′′ ≡ ϕ′ up to projection

removal of Loop formulas

(Ptime)

CFM A with L(A) = L(ϕ)

similar to LTL → finite automata

(Pspace)

ψ = ∃X1 . . . ∃Xn.ϕ

∈ EMSO[C,≤]

projection

17

Translation from first-order logic to CFMs

ϕ ∈ FO[C,≤]

ϕ′ ∈ PDLsf [
ϕ−→, Loop] with ϕ ≡ ϕ′

translation into star-free PDL

(non-elementary)

ϕ′′ ∈ PDLsf [
ϕ−→] with ϕ′′ ≡ ϕ′ up to projection

removal of Loop formulas

(Ptime)

CFM A with L(A) = L(ϕ)

similar to LTL → finite automata

(Pspace)

ψ = ∃X1 . . . ∃Xn.ϕ

∈ EMSO[C,≤]

projection
17

EMSO
Communicating

automata

Logic-automata connections

FO FO3

over interval-preserving

structures

The 3-variable property

Star-free

PDL

Part I

Star-free PDL

Part II

A Büchi theorem for

message-passing systems

Part III

Sufficient conditions for

the 3-variable property

The 3-variable property for

interval-preserving structures

Reminder

Theorem

Over MSCs, FO and PDLsf have the same expressive power.

Theorem

PDLsf and FO3 have the same expressive power.

formulas with at

most 3 variables

→ MSCs have the 3-variable property.

18

Reminder

Theorem

Over MSCs, FO and PDLsf have the same expressive power.

Theorem

PDLsf and FO3 have the same expressive power.

formulas with at

most 3 variables

→ MSCs have the 3-variable property.

18

Reminder

Theorem

Over MSCs, FO and PDLsf have the same expressive power.

Theorem

PDLsf and FO3 have the same expressive power.

formulas with at

most 3 variables

→ MSCs have the 3-variable property.

18

Reminder

Theorem

Over MSCs, FO and PDLsf have the same expressive power.

Theorem

PDLsf and FO3 have the same expressive power.

formulas with at

most 3 variables

→ MSCs have the 3-variable property.

18

The k-variable property

• Over arbitrary structures, strict hierarchy

FO1 (FO2 (FO3 (FO4 (· · ·

∃x1.∃x2.∃x3.∃x4.
∧

1≤i<j≤4 xi 6= xj
x1

x2
x3

x4

• For some classes of models, the hierarchy collapses:

∃x.∃y.
(
x < y ∧ ∃x. (y < x ∧ ∃y. x < y)

)

xx y< y x< x y<

Over linear orders, FO = FO3.

19

The k-variable property

• Over arbitrary structures, strict hierarchy

FO1 (FO2 (FO3 (FO4 (· · ·

∃x1.∃x2.∃x3.∃x4.
∧

1≤i<j≤4 xi 6= xj
x1

x2
x3

x4

• For some classes of models, the hierarchy collapses:

∃x.∃y.
(
x < y ∧ ∃x. (y < x ∧ ∃y. x < y)

)

xx y< y x< x y<

Over linear orders, FO = FO3.

19

The k-variable property

• Over arbitrary structures, strict hierarchy

FO1 (FO2 (FO3 (FO4 (· · ·

∃x1.∃x2.∃x3.∃x4.
∧

1≤i<j≤4 xi 6= xj
x1

x2
x3

x4

• For some classes of models, the hierarchy collapses:

∃x.∃y.
(
x < y ∧ ∃x. (y < x ∧ ∃y. x < y)

)

xx y< y x< x y<

Over linear orders, FO = FO3.

19

The k-variable property

• Over arbitrary structures, strict hierarchy

FO1 (FO2 (FO3 (FO4 (· · ·

∃x1.∃x2.∃x3.∃x4.
∧

1≤i<j≤4 xi 6= xj
x1

x2
x3

x4

• For some classes of models, the hierarchy collapses:

∃x.∃y.
(
x < y ∧ ∃x. (y < x ∧ ∃y. x < y)

)

xx y< y x< x y<

Over linear orders, FO = FO3.

19

The k-variable property

• Over arbitrary structures, strict hierarchy

FO1 (FO2 (FO3 (FO4 (· · ·

∃x1.∃x2.∃x3.∃x4.
∧

1≤i<j≤4 xi 6= xj
x1

x2
x3

x4

• For some classes of models, the hierarchy collapses:

∃x.∃y.
(
x < y ∧ ∃x. (y < x ∧ ∃y. x < y)

)
x

x y< y x< x y<

Over linear orders, FO = FO3.

19

The k-variable property

• Over arbitrary structures, strict hierarchy

FO1 (FO2 (FO3 (FO4 (· · ·

∃x1.∃x2.∃x3.∃x4.
∧

1≤i<j≤4 xi 6= xj
x1

x2
x3

x4

• For some classes of models, the hierarchy collapses:

∃x.∃y.
(
x < y ∧ ∃x. (y < x ∧ ∃y. x < y)

)

x

x y<

y x< x y<

Over linear orders, FO = FO3.

19

The k-variable property

• Over arbitrary structures, strict hierarchy

FO1 (FO2 (FO3 (FO4 (· · ·

∃x1.∃x2.∃x3.∃x4.
∧

1≤i<j≤4 xi 6= xj
x1

x2
x3

x4

• For some classes of models, the hierarchy collapses:

∃x.∃y.
(
x < y ∧ ∃x. (y < x ∧ ∃y. x < y)

)

xx y<

y x<

x y<

Over linear orders, FO = FO3.

19

The k-variable property

• Over arbitrary structures, strict hierarchy

FO1 (FO2 (FO3 (FO4 (· · ·

∃x1.∃x2.∃x3.∃x4.
∧

1≤i<j≤4 xi 6= xj
x1

x2
x3

x4

• For some classes of models, the hierarchy collapses:

∃x.∃y.
(
x < y ∧ ∃x. (y < x ∧ ∃y. x < y)

)

xx y< y x<

x y<

Over linear orders, FO = FO3.

19

The k-variable property

• Over arbitrary structures, strict hierarchy

FO1 (FO2 (FO3 (FO4 (· · ·

∃x1.∃x2.∃x3.∃x4.
∧

1≤i<j≤4 xi 6= xj
x1

x2
x3

x4

• For some classes of models, the hierarchy collapses:

∃x.∃y.
(
x < y ∧ ∃x. (y < x ∧ ∃y. x < y)

)

xx y< y x<

x y<

Over linear orders, FO = FO3. 19

Examples

Over linear orders,

FO = FO3

[Immerman-Kozen’89]

3

Over words,

FO = FO3

[Kamp’68]

3

What happens if we have additional binary relations?

Over ordered graphs,

∀k,FO 6= FOk

[Rossman’08]

7

Over MSCs,

FO = FO3

[Bollig-F.-Gastin’18]

3

Over Mazurkiewicz traces,

FO = FO3

[Gastin-Mukund’02]

3

Over (R, <,+1),

FO = FO3

[AHRW’15]

3

What do the positive results have in common?

20

Examples

Over linear orders,

FO = FO3

[Immerman-Kozen’89]

3

Over words,

FO = FO3

[Kamp’68]

3

What happens if we have additional binary relations?

Over ordered graphs,

∀k,FO 6= FOk

[Rossman’08]

7

Over MSCs,

FO = FO3

[Bollig-F.-Gastin’18]

3

Over Mazurkiewicz traces,

FO = FO3

[Gastin-Mukund’02]

3

Over (R, <,+1),

FO = FO3

[AHRW’15]

3

What do the positive results have in common?

20

Examples

Over linear orders,

FO = FO3

[Immerman-Kozen’89]

3

Over words,

FO = FO3

[Kamp’68]

3

What happens if we have additional binary relations?

Over ordered graphs,

∀k,FO 6= FOk

[Rossman’08]

7

Over MSCs,

FO = FO3

[Bollig-F.-Gastin’18]

3

Over Mazurkiewicz traces,

FO = FO3

[Gastin-Mukund’02]

3

Over (R, <,+1),

FO = FO3

[AHRW’15]

3

What do the positive results have in common?

20

Examples

Over linear orders,

FO = FO3

[Immerman-Kozen’89]

3

Over words,

FO = FO3

[Kamp’68]

3

What happens if we have additional binary relations?

Over ordered graphs,

∀k,FO 6= FOk

[Rossman’08]

7

Over MSCs,

FO = FO3

[Bollig-F.-Gastin’18]

3

Over Mazurkiewicz traces,

FO = FO3

[Gastin-Mukund’02]

3

Over (R, <,+1),

FO = FO3

[AHRW’15]

3

What do the positive results have in common?

20

Examples

Over linear orders,

FO = FO3

[Immerman-Kozen’89]

3

Over words,

FO = FO3

[Kamp’68]

3

What happens if we have additional binary relations?

Over ordered graphs,

∀k,FO 6= FOk

[Rossman’08]

7

Over MSCs,

FO = FO3

[Bollig-F.-Gastin’18]

3

Over Mazurkiewicz traces,

FO = FO3

[Gastin-Mukund’02]

3

Over (R, <,+1),

FO = FO3

[AHRW’15]

3

What do the positive results have in common?

20

Examples

Over linear orders,

FO = FO3

[Immerman-Kozen’89]

3

Over words,

FO = FO3

[Kamp’68]

3

What happens if we have additional binary relations?

Over ordered graphs,

∀k,FO 6= FOk

[Rossman’08]

7

Over MSCs,

FO = FO3

[Bollig-F.-Gastin’18]

3

Over Mazurkiewicz traces,

FO = FO3

[Gastin-Mukund’02]

3

Over (R, <,+1),

FO = FO3

[AHRW’15]

3

What do the positive results have in common?

20

Examples

Over linear orders,

FO = FO3

[Immerman-Kozen’89]

3

Over words,

FO = FO3

[Kamp’68]

3

What happens if we have additional binary relations?

Over ordered graphs,

∀k,FO 6= FOk

[Rossman’08]

7

Over MSCs,

FO = FO3

[Bollig-F.-Gastin’18]

3

Over Mazurkiewicz traces,

FO = FO3

[Gastin-Mukund’02]

3

Over (R, <,+1),

FO = FO3

[AHRW’15]

3

What do the positive results have in common? 20

Generalisation

Theorem [F. 2019]

FO = PDLsf = FO3 over structures with

• one linear order ≤
• relations R1, R2 . . . defined by monotone partial functions

• arbitrary unary predicates p, q, . . .

Applications

1. Linear orders: finite or infinite words, R, Q, ordinals...

2. (R,≤,+1), (R,≤, (+q)q∈Q) . . .

3. (R,≤) + polynomial functions (new)

4. MSCs (new)

5. Mazurkiewicz traces, pomsets without auto-concurrency

21

Generalisation

Theorem [F. 2019]

FO = PDLsf = FO3 over structures with

• one linear order ≤
• relations R1, R2 . . . defined by monotone partial functions

• arbitrary unary predicates p, q, . . .

Applications

1. Linear orders: finite or infinite words, R, Q, ordinals...

2. (R,≤,+1), (R,≤, (+q)q∈Q) . . .

3. (R,≤) + polynomial functions (new)

4. MSCs (new)

5. Mazurkiewicz traces, pomsets without auto-concurrency

21

Generalisation

Theorem [F. 2019]

FO = PDLsf = FO3 over structures with

• one linear order ≤
• relations R1, R2 . . . defined by monotone partial functions

• arbitrary unary predicates p, q, . . .

Applications

1. Linear orders: finite or infinite words, R, Q, ordinals...

2. (R,≤,+1), (R,≤, (+q)q∈Q) . . .

3. (R,≤) + polynomial functions (new)

4. MSCs (new)

5. Mazurkiewicz traces, pomsets without auto-concurrency

21

Generalisation

Theorem [F. 2019]

FO = PDLsf = FO3 over structures with

• one linear order ≤
• relations R1, R2 . . . defined by monotone partial functions

• arbitrary unary predicates p, q, . . .

Applications

1. Linear orders: finite or infinite words, R, Q, ordinals...

2. (R,≤,+1), (R,≤, (+q)q∈Q) . . .

3. (R,≤) + polynomial functions (new)

4. MSCs (new)

5. Mazurkiewicz traces, pomsets without auto-concurrency

21

Generalisation

Theorem [F. 2019]

FO = PDLsf = FO3 over structures with

• one linear order ≤
• relations R1, R2 . . . defined by monotone partial functions

• arbitrary unary predicates p, q, . . .

Applications

1. Linear orders: finite or infinite words, R, Q, ordinals...

2. (R,≤,+1), (R,≤, (+q)q∈Q) . . .

3. (R,≤) + polynomial functions (new)

4. MSCs (new)

5. Mazurkiewicz traces, pomsets without auto-concurrency

21

Generalisation

Theorem [F. 2019]

FO = PDLsf = FO3 over structures with

• one linear order ≤
• relations R1, R2 . . . defined by monotone partial functions

• arbitrary unary predicates p, q, . . .

Applications

1. Linear orders: finite or infinite words, R, Q, ordinals...

2. (R,≤,+1), (R,≤, (+q)q∈Q) . . .

3. (R,≤) + polynomial functions (new)

4. MSCs (new)

5. Mazurkiewicz traces, pomsets without auto-concurrency

21

Application to MSCs

a a c a a a a a

a a a a a a a a a a

a b b a a c a a a

p

q

r

• Process order ≤proc

can be extended to a linear order v

• Message relations Cp,q

FIFO → monotone

22

Application to MSCs

a a c a a a a a

a a a a a a a a a a

a b b a a c a a a

p

q

r

• Process order ≤proc

can be extended to a linear order v

• Message relations Cp,q

FIFO → monotone

22

Application to MSCs

a a c a a a a a

a a a a a a a a a a

a b b a a c a a a

p

q

r

• Process order ≤proc

can be extended to a linear order v

• Message relations Cp,q

FIFO → monotone

22

Application to MSCs

a a c a a a a a

a a a a a a a a a a

a b b a a c a a a

p

q

r

• Process order ≤proc

can be extended to a linear order v

• Message relations Cp,q

FIFO → monotone

22

Application to MSCs

a a c a a a a a

a a a a a a a a a a

a b b a a c a a a

p

q

r

• Process order ≤proc can be extended to a linear order v
• Message relations Cp,q

FIFO → monotone

22

Application to MSCs

a a c a a a a a

a a a a a a a a a a

a b b a a c a a a

p

q

r

• Process order ≤proc can be extended to a linear order v
• Message relations Cp,q FIFO → monotone

22

Generalisation

Theorem [F. 2019]

FO = PDLsf = FO3 over structures with

• one linear order ≤
• relations R1, R2 . . . defined by monotone partial functions

• arbitrary unary predicates p, q, . . .

Applications

1. Linear orders with partial monotone functions (new)

2. Linear orders: finite or infinite words, R, Q, ordinals...

3. (R,≤,+1), (R,≤, (+q)q∈Q) . . .

4. (R,≤) + polynomial functions (new)

5. MSCs (new)

6. Mazurkiewicz traces, pomsets without auto-concurrency

23

Generalisation

Theorem [F. 2019]

FO = PDLsf = FO3 over structures with

• one linear order ≤
• interval-preserving binary relations R1, R2, . . .

• arbitrary unary predicates p, q, . . .

Applications

1. Linear orders with partial monotone functions (new)

2. Linear orders: finite or infinite words, R, Q, ordinals...

3. (R,≤,+1), (R,≤, (+q)q∈Q) . . .

4. (R,≤) + polynomial functions (new)

5. MSCs (new)

6. Mazurkiewicz traces, pomsets without auto-concurrency

23

Generalisation

Theorem [F. 2019]

FO = PDLsf = FO3 over structures with

• one linear order ≤
• interval-preserving binary relations R1, R2, . . .

• arbitrary unary predicates p, q, . . .

Applications

1. Linear orders with partial monotone functions (new)

2. Linear orders: finite or infinite words, R, Q, ordinals...

3. (R,≤,+1), (R,≤, (+q)q∈Q) . . .

4. (R,≤) + polynomial functions (new)

5. MSCs (new)

6. Mazurkiewicz traces, pomsets without auto-concurrency 23

How does the interval-preserving assumption help?

ϕ(x1, x2, x3) = ∃y.R1(x1, y) ∧R2(x2, y) ∧R3(x3, y)

≡
(
∃y.R1(x1, y) ∧R2(x2, y) ∧

∃x.R3(x, y)

)
∧(

∃y.R1(x1, y) ∧R3(x3, y) ∧

∃x.R2(x, y)

)
∧(

∃y.R2(x2, y) ∧R2(x3, y) ∧

∃x.R1(x, y)

)
R1(x1)

R2(x2)

R3(x3)

y

Equivalent FO3 formula?

24

How does the interval-preserving assumption help?

ϕ(x1, x2, x3) = ∃y.R1(x1, y) ∧R2(x2, y) ∧R3(x3, y)

≡
(
∃y.R1(x1, y) ∧R2(x2, y) ∧

∃x.R3(x, y)

)
∧(

∃y.R1(x1, y) ∧R3(x3, y) ∧

∃x.R2(x, y)

)
∧(

∃y.R2(x2, y) ∧R2(x3, y) ∧

∃x.R1(x, y)

)

yx1

x2

x3

R1

R2

R3

R1(x1)

R2(x2)

R3(x3)

y

Equivalent FO3 formula?

24

How does the interval-preserving assumption help?

ϕ(x1, x2, x3) = ∃y.R1(x1, y) ∧R2(x2, y) ∧R3(x3, y)

≡
(
∃y.R1(x1, y) ∧R2(x2, y) ∧

∃x.R3(x, y)

)
∧(

∃y.R1(x1, y) ∧R3(x3, y) ∧

∃x.R2(x, y)

)
∧(

∃y.R2(x2, y) ∧R2(x3, y) ∧

∃x.R1(x, y)

)

yx1

x2

x3

R1

R2

R3

R1(x1)

R2(x2)

R3(x3)

y

Equivalent FO3 formula?

24

How does the interval-preserving assumption help?

ϕ(x1, x2, x3) = ∃y.R1(x1, y) ∧R2(x2, y) ∧R3(x3, y)

≡
(
∃y.R1(x1, y) ∧R2(x2, y) ∧

∃x.R3(x, y)

)
∧(

∃y.R1(x1, y) ∧R3(x3, y) ∧

∃x.R2(x, y)

)
∧(

∃y.R2(x2, y) ∧R2(x3, y) ∧

∃x.R1(x, y)

)

R1(x1)

R2(x2)

R3(x3)

y

Equivalent FO3 formula?

24

How does the interval-preserving assumption help?

ϕ(x1, x2, x3) = ∃y.R1(x1, y) ∧R2(x2, y) ∧R3(x3, y)

≡
(
∃y.R1(x1, y) ∧R2(x2, y) ∧

∃x.R3(x, y)

)
∧(

∃y.R1(x1, y) ∧R3(x3, y) ∧

∃x.R2(x, y)

)
∧(

∃y.R2(x2, y) ∧R2(x3, y) ∧

∃x.R1(x, y)

)

R1(x1)

R2(x2)

R3(x3)

y

Equivalent FO3 formula?

24

How does the interval-preserving assumption help?

ϕ(x1, x2, x3) = ∃y.R1(x1, y) ∧R2(x2, y) ∧R3(x3, y)

≡
(
∃y.R1(x1, y) ∧R2(x2, y) ∧

∃x.R3(x, y)

)
∧(

∃y.R1(x1, y) ∧R3(x3, y) ∧

∃x.R2(x, y)

)
∧(

∃y.R2(x2, y) ∧R2(x3, y) ∧

∃x.R1(x, y)

)
R1(x1)

R2(x2)

R3(x3)

y

Equivalent FO3 formula?

24

How does the interval-preserving assumption help?

ϕ(x1, x2, x3) = ∃y.R1(x1, y) ∧R2(x2, y) ∧R3(x3, y)

≡
(
∃y.R1(x1, y) ∧R2(x2, y) ∧ ∃x.R3(x, y)

)
∧(

∃y.R1(x1, y) ∧R3(x3, y) ∧ ∃x.R2(x, y)
)
∧(

∃y.R2(x2, y) ∧R2(x3, y) ∧ ∃x.R1(x, y)
)

R1(x1)

R2(x2)

R3(x3)

y

Equivalent FO3 formula?

24

How does the interval-preserving assumption help?

ϕ(x1, x2, x3) = ∃y.R1(x1, y) ∧R2(x2, y) ∧R3(x3, y)

≡
(
∃x3. R1(x1, x3) ∧R2(x2, x3) ∧ ∃x1. R3(x1, x3)

)
∧(

∃x2. R1(x1, x2) ∧R3(x3, x2) ∧ ∃x1. R2(x1, x2)
)
∧(

∃x1. R2(x2, x1) ∧R2(x3, x1) ∧ ∃x2. R1(x2, x1)
)

R1(x1)

R2(x2)

R3(x3)

y

Equivalent FO3 formula?

24

Interval-preserving fragment of star-free PDL

Goal: inductive translation from FO to PDLsf ≡ FO3.

Invariant: use only interval-preserving relations

State formulas:

ϕ ::= P | ϕ ∨ ϕ | ¬ϕ | 〈π〉ϕ

Path formulas:

π ::= ≤ | R | {ϕ}? | π−1 | π · π | π ∪ π | πc

PDLsf

π ::= ≤ | R | {ϕ}? | π−1 | π · π | π ∩ π |
(≤ · π · ≤)c | (≤ · π · ≥)c |
(≥ · π · ≤)c | (≥ · π · ≥)c

PDLint
sf

Lemma: ∀π ∈ PDLint
sf , JπK is interval-preserving.

25

Interval-preserving fragment of star-free PDL

Goal: inductive translation from FO to PDLsf ≡ FO3.

Invariant: use only interval-preserving relations

State formulas:

ϕ ::= P | ϕ ∨ ϕ | ¬ϕ | 〈π〉ϕ

Path formulas:

π ::= ≤ | R | {ϕ}? | π−1 | π · π | π ∪ π | πc

PDLsf

π ::= ≤ | R | {ϕ}? | π−1 | π · π | π ∩ π |
(≤ · π · ≤)c | (≤ · π · ≥)c |
(≥ · π · ≤)c | (≥ · π · ≥)c

PDLint
sf

Lemma: ∀π ∈ PDLint
sf , JπK is interval-preserving.

25

Interval-preserving fragment of star-free PDL

Goal: inductive translation from FO to PDLsf ≡ FO3.

Invariant: use only interval-preserving relations

State formulas:

ϕ ::= P | ϕ ∨ ϕ | ¬ϕ | 〈π〉ϕ

Path formulas:

π ::= ≤ | R | {ϕ}? | π−1 | π · π | π ∪ π | πc

PDLsf

π ::= ≤ | R | {ϕ}? | π−1 | π · π | π ∩ π |
(≤ · π · ≤)c | (≤ · π · ≥)c |
(≥ · π · ≤)c | (≥ · π · ≥)c

PDLint
sf

Lemma: ∀π ∈ PDLint
sf , JπK is interval-preserving.

25

Interval-preserving fragment of star-free PDL

Goal: inductive translation from FO to PDLsf ≡ FO3.

Invariant: use only interval-preserving relations

State formulas:

ϕ ::= P | ϕ ∨ ϕ | ¬ϕ | 〈π〉ϕ

Path formulas:

π ::= ≤ | R | {ϕ}? | π−1 | π · π | π ∪ π | πc

PDLsf

π ::= ≤ | R | {ϕ}? | π−1 | π · π | π ∩ π |
(≤ · π · ≤)c | (≤ · π · ≥)c |
(≥ · π · ≤)c | (≥ · π · ≥)c

PDLint
sf

Lemma: ∀π ∈ PDLint
sf , JπK is interval-preserving.

25

Equivalences over interval-preserving structures

FO PDLint
sf

FO3 PDLsf

?

26

Equivalences over interval-preserving structures

FO PDLint
sf

FO3 PDLsf

def.def.

?

26

Equivalences over interval-preserving structures

FO PDLint
sf

FO3 PDLsf

def.

trivial

induction

def.

?

• State formula ϕ ∈ PDLsf ϕFO(x) ∈ FO

• Path formula π ∈ PDLsf πFO(x, y) ∈ FO

26

Equivalences over interval-preserving structures

FO PDLint
sf

FO3 PDLsf

def.

trivial

induction

def.

?

26

Equivalences over interval-preserving structures

FO PDLint
sf

?

(Induction) Any FO formula Φ(x1, . . . , xn) is equivalent to a

finite positive boolean combination of formulas of the form

πFO(xi, xj), where π ∈ PDLint
sf .

•

26

Equivalences over interval-preserving structures

FO PDLint
sf

?

(Induction) Any FO formula Φ(x1, . . . , xn) is equivalent to a

finite positive boolean combination of formulas of the form

πFO(xi, xj), where π ∈ PDLint
sf .

• Atomic formulas, disjunction: easy

26

Equivalences over interval-preserving structures

FO PDLint
sf

?

(Induction) Any FO formula Φ(x1, . . . , xn) is equivalent to a

finite positive boolean combination of formulas of the form

πFO(xi, xj), where π ∈ PDLint
sf .

• Negation: Express πc using

(≤ · π · ≤)c, (≤ · π · ≥)c, (≥ · π · ≤)c, (≥ · π · ≥)c.

26

Equivalences over interval-preserving structures

FO PDLint
sf

?

(Induction) Any FO formula Φ(x1, . . . , xn) is equivalent to a

finite positive boolean combination of formulas of the form

πFO(xi, xj), where π ∈ PDLint
sf .

• Existential quantification: Similar to the example before.

∃x.
∧

i π
FO
i (xi, x)︸ ︷︷ ︸

intersection of n intervals

≡
∧

i,j(πi · {ϕ}? · π
−1
j)FO(xi, xj)︸ ︷︷ ︸

pairwise intersections

26

Equivalences over interval-preserving structures

FO PDLint
sf

?

(Induction) Any FO formula Φ(x1, . . . , xn) is equivalent to a

finite positive boolean combination of formulas of the form

πFO(xi, xj), where π ∈ PDLint
sf .

• Existential quantification: Similar to the example before.

∃x.
∧

i π
FO
i (xi, x)

︸ ︷︷ ︸
intersection of n intervals

≡
∧

i,j(πi · {ϕ}? · π
−1
j)FO(xi, xj)︸ ︷︷ ︸

pairwise intersections

26

Equivalences over interval-preserving structures

FO PDLint
sf

?

(Induction) Any FO formula Φ(x1, . . . , xn) is equivalent to a

finite positive boolean combination of formulas of the form

πFO(xi, xj), where π ∈ PDLint
sf .

• Existential quantification: Similar to the example before.

∃x.
∧

i π
FO
i (xi, x)︸ ︷︷ ︸

intersection of n intervals

≡
∧

i,j(πi · {ϕ}? · π
−1
j)FO(xi, xj)︸ ︷︷ ︸

pairwise intersections

26

Equivalences over interval-preserving structures

FO PDLint
sf

?

(Induction) Any FO formula Φ(x1, . . . , xn) is equivalent to a

finite positive boolean combination of formulas of the form

πFO(xi, xj), where π ∈ PDLint
sf .

• Existential quantification: Similar to the example before.

∃x.
∧

i π
FO
i (xi, x)︸ ︷︷ ︸

intersection of n intervals

≡
∧

i,j(πi · {ϕ}? · π
−1
j)FO(xi, xj)︸ ︷︷ ︸

pairwise intersections

xi xj

∃x

ϕ
πi

πj

26

Equivalences over interval-preserving structures

FO PDLint
sf

?

(Induction) Any FO formula Φ(x1, . . . , xn) is equivalent to a

finite positive boolean combination of formulas of the form

πFO(xi, xj), where π ∈ PDLint
sf .

• Existential quantification: Similar to the example before.

∃x.
∧

i π
FO
i (xi, x)︸ ︷︷ ︸

intersection of n intervals

≡
∧

i,j(πi · {ϕ}? · π
−1
j)FO(xi, xj)︸ ︷︷ ︸

pairwise intersections

xi xj

∃x

ϕ
πi

πj

26

Conclusion

Contributions

Translation from first-order logic to CFMs.

• A new Büchi theorem: CFM = EMSO[≤,C], even with

unbounded channels.

• New proof that over existentially-bounded MSCs,

CFM = MSO[≤,C].

FO = FO3 over interval-preserving structures.

• New, unifying proof of several known results, including

linear orders, (R, <,+1), and Mazurkiewicz traces.

• New applications: polynomial functions, linear orders with

monotone functions, MSCs, . . .

27

Contributions

Translation from first-order logic to CFMs.

• A new Büchi theorem: CFM = EMSO[≤,C], even with

unbounded channels.

• New proof that over existentially-bounded MSCs,

CFM = MSO[≤,C].

FO = FO3 over interval-preserving structures.

• New, unifying proof of several known results, including

linear orders, (R, <,+1), and Mazurkiewicz traces.

• New applications: polynomial functions, linear orders with

monotone functions, MSCs, . . .

27

Contributions

Translation from first-order logic to CFMs.

• A new Büchi theorem: CFM = EMSO[≤,C], even with

unbounded channels.

• New proof that over existentially-bounded MSCs,

CFM = MSO[≤,C].

FO = FO3 over interval-preserving structures.

• New, unifying proof of several known results, including

linear orders, (R, <,+1), and Mazurkiewicz traces.

• New applications: polynomial functions, linear orders with

monotone functions, MSCs, . . .

27

Contributions

Translation from first-order logic to CFMs.

• A new Büchi theorem: CFM = EMSO[≤,C], even with

unbounded channels.

• New proof that over existentially-bounded MSCs,

CFM = MSO[≤,C].

FO = FO3 over interval-preserving structures.

• New, unifying proof of several known results, including

linear orders, (R, <,+1), and Mazurkiewicz traces.

• New applications: polynomial functions, linear orders with

monotone functions, MSCs, . . .

27

Contributions

Translation from first-order logic to CFMs.

• A new Büchi theorem: CFM = EMSO[≤,C], even with

unbounded channels.

• New proof that over existentially-bounded MSCs,

CFM = MSO[≤,C].

FO = FO3 over interval-preserving structures.

• New, unifying proof of several known results, including

linear orders, (R, <,+1), and Mazurkiewicz traces.

• New applications: polynomial functions, linear orders with

monotone functions, MSCs, . . .

27

Contributions

Translation from first-order logic to CFMs.

• A new Büchi theorem: CFM = EMSO[≤,C], even with

unbounded channels.

• New proof that over existentially-bounded MSCs,

CFM = MSO[≤,C].

FO = FO3 over interval-preserving structures.

• New, unifying proof of several known results, including

linear orders, (R, <,+1), and Mazurkiewicz traces.

• New applications: polynomial functions, linear orders with

monotone functions, MSCs, . . .

27

Contributions

Star-free PDL: an interesting specification language

and a key technical tool.

• Natural variant of PDL, equivalent to FO3.

• 2-dimensional temporal logic expressively complete over

interval-preserving structures.

• (Fragments of) PDLsf serve as intermediate steps to go

• from FO to FO3 over interval-preserving structures.

• from FO to CFMs.

• Over MSCs: expressively complete fragment closer to LTL

and with a Pspace translation into CFMs.

28

Contributions

Star-free PDL: an interesting specification language

and a key technical tool.

• Natural variant of PDL, equivalent to FO3.

• 2-dimensional temporal logic expressively complete over

interval-preserving structures.

• (Fragments of) PDLsf serve as intermediate steps to go

• from FO to FO3 over interval-preserving structures.

• from FO to CFMs.

• Over MSCs: expressively complete fragment closer to LTL

and with a Pspace translation into CFMs.

28

Contributions

Star-free PDL: an interesting specification language

and a key technical tool.

• Natural variant of PDL, equivalent to FO3.

• 2-dimensional temporal logic expressively complete over

interval-preserving structures.

• (Fragments of) PDLsf serve as intermediate steps to go

• from FO to FO3 over interval-preserving structures.

• from FO to CFMs.

• Over MSCs: expressively complete fragment closer to LTL

and with a Pspace translation into CFMs.

28

Contributions

Star-free PDL: an interesting specification language

and a key technical tool.

• Natural variant of PDL, equivalent to FO3.

• 2-dimensional temporal logic expressively complete over

interval-preserving structures.

• (Fragments of) PDLsf serve as intermediate steps to go

• from FO to FO3 over interval-preserving structures.

• from FO to CFMs.

• Over MSCs: expressively complete fragment closer to LTL

and with a Pspace translation into CFMs.

28

Contributions

Star-free PDL: an interesting specification language

and a key technical tool.

• Natural variant of PDL, equivalent to FO3.

• 2-dimensional temporal logic expressively complete over

interval-preserving structures.

• (Fragments of) PDLsf serve as intermediate steps to go

• from FO to FO3 over interval-preserving structures.

• from FO to CFMs.

• Over MSCs: expressively complete fragment closer to LTL

and with a Pspace translation into CFMs.

28

Perspectives

Continue a unified approach to expressivity problems:

what makes a result work, and how can we extend it?

• Can we find a sufficient condition for the 3-variable

property generalizing both interval-preserving structures

and classes of trees for which similar results are known?

• What are necessary conditions for the 3-variable property?

• Over which classes of structures are EMSO and automata

equivalent?

• What are sufficient conditions for the existence of an

expressively complete (1-dimensional) temporal logic?

29

Perspectives

Continue a unified approach to expressivity problems:

what makes a result work, and how can we extend it?

• Can we find a sufficient condition for the 3-variable

property generalizing both interval-preserving structures

and classes of trees for which similar results are known?

• What are necessary conditions for the 3-variable property?

• Over which classes of structures are EMSO and automata

equivalent?

• What are sufficient conditions for the existence of an

expressively complete (1-dimensional) temporal logic?

29

Perspectives

Continue a unified approach to expressivity problems:

what makes a result work, and how can we extend it?

• Can we find a sufficient condition for the 3-variable

property generalizing both interval-preserving structures

and classes of trees for which similar results are known?

• What are necessary conditions for the 3-variable property?

• Over which classes of structures are EMSO and automata

equivalent?

• What are sufficient conditions for the existence of an

expressively complete (1-dimensional) temporal logic?

29

Perspectives

Continue a unified approach to expressivity problems:

what makes a result work, and how can we extend it?

• Can we find a sufficient condition for the 3-variable

property generalizing both interval-preserving structures

and classes of trees for which similar results are known?

• What are necessary conditions for the 3-variable property?

• Over which classes of structures are EMSO and automata

equivalent?

• What are sufficient conditions for the existence of an

expressively complete (1-dimensional) temporal logic?

29

Perspectives

Continue a unified approach to expressivity problems:

what makes a result work, and how can we extend it?

• Can we find a sufficient condition for the 3-variable

property generalizing both interval-preserving structures

and classes of trees for which similar results are known?

• What are necessary conditions for the 3-variable property?

• Over which classes of structures are EMSO and automata

equivalent?

• What are sufficient conditions for the existence of an

expressively complete (1-dimensional) temporal logic?

29

Perspectives

Specific questions for MSCs.

• Can every formula of CPDL, with operations (·, ∗,+, −1),

be translated into an equivalent CFM?
Known: YES with (·, c,+,−1) or (·, ∗,+), NO with (·, ∗,+,∩,−1)

[Bollig, Kuske, Meinecke 2010]

• Is there a 1-dimensional temporal logic over MSC that is

expressively complete for first-order logic?

30

Perspectives

Specific questions for MSCs.

• Can every formula of CPDL, with operations (·, ∗,+, −1),

be translated into an equivalent CFM?
Known: YES with (·, c,+,−1) or (·, ∗,+), NO with (·, ∗,+,∩,−1)

[Bollig, Kuske, Meinecke 2010]

• Is there a 1-dimensional temporal logic over MSC that is

expressively complete for first-order logic?

30

Perspectives

Specific questions for MSCs.

• Can every formula of CPDL, with operations (·, ∗,+, −1),

be translated into an equivalent CFM?
Known: YES with (·, c,+,−1) or (·, ∗,+), NO with (·, ∗,+,∩,−1)

[Bollig, Kuske, Meinecke 2010]

• Is there a 1-dimensional temporal logic over MSC that is

expressively complete for first-order logic?

30

	Introduction
	Star-free PDL
	A Büchi theorem for message-passing systems
	The 3-variable property for interval-preserving structures
	Conclusion

