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Explicit Definitions

Fix a DL L and signature a Σ.

An explicit definition in L(Σ) of a concept name A under an

ontology O is an L(Σ)-concept C such that O |= A ≡ C.

→ Existence? Size?
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(Projective) Beth Definability Property

Projective Beth Definibility Property

A DL L has the PBDP if for all L-ontologies O, concept

names A, and signatures Σ ⊆ sig(O),

A is implicitly definable

from Σ under O
⇐⇒ A is explicitely L(Σ)-

definable under O

3



(Projective) Beth Definability Property

Projective Beth Definibility Property

A DL L has the PBDP if for all L-ontologies O, concept

names A, and signatures Σ ⊆ sig(O),

A is implicitly definable

from Σ under O
⇐⇒ A is explicitely L(Σ)-

definable under O
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(Projective) Beth Definability Property

Projective Beth Definibility Property

A DL L has the PBDP if for all L-ontologies O, concept

names A, and signatures Σ ⊆ sig(O),

A is implicitly definable

from Σ under O
⇐⇒ A is explicitely L(Σ)-

definable under O

A is implicitely definable from Σ under O if

(I |= O and J |= O and I|Σ = J |Σ) implies AI = AJ

→ If L has PBDP, then L-explicit definition existence reduces

to subsumption checking
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⇐⇒ A is explicitely L(Σ)-

definable under O

• ALC(S)(I)(F) has the PBDP
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• EL(H) has the PBDP [Lutz, Seylan, Wolter 2019]
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(Projective) Beth Definability Property

Projective Beth Definibility Property

A DL L has the PBDP if for all L-ontologies O, concept

names A, and signatures Σ ⊆ sig(O),

A is implicitly definable

from Σ under O
⇐⇒ A is explicitely L(Σ)-

definable under O

• ALCO does not have the PBDP

[ten Cate, Conradie, Marx, Venema 2006]

• ALCH does not have PBDP

[ten Cate, Franconi, Seylan 2013]

• ELO does not have the PBDP

[Artale, Mazzullo, Ozaki, Wolter 2021] 3



Craig Interpolation Property

An L-interpolant for C1 v C2 under ontologies O1 and O2 is a

concept D such that

• sig(D) ⊆ sig(O1, C1) ∩ sig(O2, C2)

• O1 ∪ O2 |= C1 v D

• O1 ∪ O2 |= D v C2

Remark: explicit definitions → interpolants

OΣ = O where X /∈ Σ is replaced with X ′

Assume O,OΣ |= A ≡ A′

Explicit definition for

A in L(Σ) under O ⇐⇒ L-interpolant for A v A′

under O,OΣ
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Craig Interpolation Property
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A DL L has the CI if for all L-ontologies O1,O2 and

L-concepts C1, C2 such that O1 ∪ O2 |= C1 v C2, there

exists an L-interpolant for C1 v C2 under O1,O2.

Remark

CIP ⇒ PBDP

• ALC(S)(I)(F) has the CIP
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Main Questions

• Which description logics enjoy the PBDP/CIP?

• For those who do not, what is the complexity of deciding

interpolant or explicit definition existence?

• Bounds on the size of interpolants/explicit definitions?

→ focus on extensions of EL
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Failure of Projective Beth Definability Property

Theorem

ELO, ELu, EL++ with (a) a single role inclusion r ◦ s v s

or (b) a single transitivity inclusion s ◦ s and role hierarchies

r1 v r2, ELI, ELIu, Horn-ALC and Horn-ALCI do not

enjoy the CIP nor PBDP.

Reminder: EL, ELH enjoy the CIP and PBDP.
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EL++ and EL++
u

A v ∃r. E E v ∃ s .B ∃ s .B v A r ◦ s v s

Σ = {s, E}
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O |= ∀x.(A(x)↔ ∃y.E(y) ∧ ∀z.(s(y, z)→ s(x, z)))
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ELIandELIu

A v B D u ∃r−.A v E B v ∃r.C
C v D B u ∃r.(C u E) v A Σ = {B,D,E, r}

O |= A ≡ B u ∀r.(D → E)

A,

B

C,

D,E

B

D,E

C,

D
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Decision Problem and Size of Interpolants (1/2)

Theorem

Let L ∈ {ELu, ELO, ELOu, EL++, EL++
u }.

• L-interpolant existence and L-explicit definition existence

are in Ptime.

• If an interpolant or explicit definition exists, then there is

one of at most exponential size. This bound is optimal.

Proof techniques.

• There is an interpolant for O1 ∪ O2 |= C1 v C2 iff C2 is

true at the root of the Σ-reduct of the canonical model

for O1 ∪ O2 and C1.

• Bound the size of a derivation tree for C2.
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Decision Problem and Size of Interpolants (2/2)

Theorem

Let L ∈ {ELI, ELIu, ELIO, ELIOu}.
• L-interpolant existence and L-explicit definition existence

are Exptime-complete.

• If an interpolant or explicit definition exists, then there is

one of at most double exponential size (optimal bound).

Proof techniques (without nominals)

• Tree automaton for concepts D such that

O1 ∪ O2 |= C1 v D (based on canonical models).

• Tree automaton for concepts D such that

O1 ∪ O2 |= D v C2 (based on derivation trees).

• Check intersection.
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Conclusion

• Most Horn description logics do not enjoy the Craig

interpolation nor the projective Beth definability property.

• Interpolant existence or explicit definition existence is not

harder than subsumption (not the case for more

expressive DLs):

• Ptime for {ELu, ELO, ELOu, EL++, EL++
u }

• Exptime for {ELI, ELIu, ELIO, ELIOu}

• Optimal bounds on the size of interpolants and explicit

definitions (exponential/double exponential).

Future work:

• Extensions of ELI with role inclusions

• Decision problem for Horn-ALC
• Algorithms to compute interpolant/explicit definitions
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