Interpolants and Explicit Definitions in Horn Description Logics

Marie Fortin, Boris Konev, Frank Wolter

DL 2021, Bratislava

University of Liverpool

Fix a DL \mathcal{L} and signature a Σ .

An explicit definition in $\mathcal{L}(\Sigma)$ of a concept name A under an ontology \mathcal{O} is an $\mathcal{L}(\Sigma)$ -concept C such that $\mathcal{O} \models A \equiv C$.

 \rightarrow Existence? Size?

Projective Beth Definibility Property

A DL \mathcal{L} has the PBDP if for all \mathcal{L} -ontologies \mathcal{O} , concept names A, and signatures $\Sigma \subseteq sig(\mathcal{O})$,

$$\begin{array}{l} A \text{ is explicitely } \mathcal{L}(\Sigma)\text{-} \\ \\ \text{definable under } \mathcal{O} \end{array}$$

Projective Beth Definibility Property

A DL \mathcal{L} has the PBDP if for all \mathcal{L} -ontologies \mathcal{O} , concept names A, and signatures $\Sigma \subseteq sig(\mathcal{O})$,

 $A \text{ is implicitely definable from } \Sigma \text{ under } \mathcal{O} \text{ if}$ $(\mathcal{I} \models \mathcal{O} \text{ and } \mathcal{J} \models \mathcal{O} \text{ and } \mathcal{I}|_{\Sigma} = \mathcal{J}|_{\Sigma}) \text{ implies } A^{\mathcal{I}} = A^{\mathcal{J}}$

Projective Beth Definibility Property

A DL \mathcal{L} has the PBDP if for all \mathcal{L} -ontologies \mathcal{O} , concept names A, and signatures $\Sigma \subseteq sig(\mathcal{O})$,

 \to If ${\cal L}$ has PBDP, then ${\cal L}\text{-explicit}$ definition existence reduces to subsumption checking

Projective Beth Definibility Property

A DL \mathcal{L} has the PBDP if for all \mathcal{L} -ontologies \mathcal{O} , concept names A, and signatures $\Sigma \subseteq sig(\mathcal{O})$,

 \iff

 $\begin{array}{l} A \text{ is implicitly definable} \\ \text{from } \Sigma \text{ under } \mathcal{O} \end{array}$

$$\left[\begin{array}{c} A \text{ is explicitely } \mathcal{L}(\Sigma) \text{-} \\ \text{definable under } \mathcal{O} \end{array}\right]$$

• $\mathcal{ALC}(\mathcal{S})(\mathcal{I})(\mathcal{F})$ has the PBDP

[ten Cate, Franconi, Seylan 2013]

Projective Beth Definibility Property

A DL \mathcal{L} has the PBDP if for all \mathcal{L} -ontologies \mathcal{O} , concept names A, and signatures $\Sigma \subseteq sig(\mathcal{O})$,

 \Leftrightarrow

 $\begin{array}{l} A \text{ is implicitly definable} \\ \text{from } \Sigma \text{ under } \mathcal{O} \end{array}$

$$\begin{array}{|c|c|c|} A \text{ is explicitely } \mathcal{L}(\Sigma)-\\ & \text{definable under } \mathcal{O} \end{array}$$

• $\mathcal{ALC}(\mathcal{S})(\mathcal{I})(\mathcal{F})$ has the PBDP

[ten Cate, Franconi, Seylan 2013]

• $\mathcal{EL}(\mathcal{H})$ has the PBDP [Lutz, Seylan, Wolter 2019] [Konev, Lutz, Ponomaryov, Wolter 2010]

Projective Beth Definibility Property

A DL \mathcal{L} has the PBDP if for all \mathcal{L} -ontologies \mathcal{O} , concept names A, and signatures $\Sigma \subseteq sig(\mathcal{O})$,

 $\begin{array}{l} A \text{ is implicitly definable} \\ \text{from } \Sigma \text{ under } \mathcal{O} \end{array}$

$$\Rightarrow \begin{vmatrix} A & \text{is ex} \\ define$$

A is explicitely
$$\mathcal{L}(\Sigma)$$
-
definable under \mathcal{O}

• \mathcal{ALCO} does **not** have the PBDP

[ten Cate, Conradie, Marx, Venema 2006]

• \mathcal{ALCH} does **not** have PBDP

[ten Cate, Franconi, Seylan 2013]

• \mathcal{ELO} does **not** have the PBDP

[Artale, Mazzullo, Ozaki, Wolter 2021] ³

An \mathcal{L} -interpolant for $C_1 \sqsubseteq C_2$ under ontologies \mathcal{O}_1 and \mathcal{O}_2 is a concept D such that

- $\operatorname{sig}(D) \subseteq \operatorname{sig}(\mathcal{O}_1, C_1) \cap \operatorname{sig}(\mathcal{O}_2, C_2)$
- $\mathcal{O}_1 \cup \mathcal{O}_2 \models C_1 \sqsubseteq D$
- $\mathcal{O}_1 \cup \mathcal{O}_2 \models D \sqsubseteq C_2$

An \mathcal{L} -interpolant for $C_1 \sqsubseteq C_2$ under ontologies \mathcal{O}_1 and \mathcal{O}_2 is a concept D such that

- $\operatorname{sig}(D) \subseteq \operatorname{sig}(\mathcal{O}_1, C_1) \cap \operatorname{sig}(\mathcal{O}_2, C_2)$
- $\mathcal{O}_1 \cup \mathcal{O}_2 \models C_1 \sqsubseteq D$
- $\mathcal{O}_1 \cup \mathcal{O}_2 \models D \sqsubseteq C_2$

Remark: explicit definitions \rightarrow interpolants

 \iff

 $\mathcal{O}_{\Sigma} = \mathcal{O}$ where $X \notin \Sigma$ is replaced with X'Assume $\mathcal{O}, \mathcal{O}_{\Sigma} \models A \equiv A'$

Explicit definition for A in $\mathcal{L}(\Sigma)$ under \mathcal{O}

 $\mathcal{L}\text{-interpolant for } A \sqsubseteq A' \\ \text{under } \mathcal{O}, \mathcal{O}_{\Sigma}$

Craig Interpolation Property

A DL \mathcal{L} has the Cl if for all \mathcal{L} -ontologies $\mathcal{O}_1, \mathcal{O}_2$ and \mathcal{L} -concepts C_1, C_2 such that $\mathcal{O}_1 \cup \mathcal{O}_2 \models C_1 \sqsubseteq C_2$, there exists an \mathcal{L} -interpolant for $C_1 \sqsubseteq C_2$ under $\mathcal{O}_1, \mathcal{O}_2$.

Craig Interpolation Property

A DL \mathcal{L} has the CI if for all \mathcal{L} -ontologies $\mathcal{O}_1, \mathcal{O}_2$ and \mathcal{L} -concepts C_1, C_2 such that $\mathcal{O}_1 \cup \mathcal{O}_2 \models C_1 \sqsubseteq C_2$, there exists an \mathcal{L} -interpolant for $C_1 \sqsubseteq C_2$ under $\mathcal{O}_1, \mathcal{O}_2$.

Remark

 $\mathsf{CIP} \Rightarrow \mathsf{PBDP}$

Craig Interpolation Property

A DL \mathcal{L} has the Cl if for all \mathcal{L} -ontologies $\mathcal{O}_1, \mathcal{O}_2$ and \mathcal{L} -concepts C_1, C_2 such that $\mathcal{O}_1 \cup \mathcal{O}_2 \models C_1 \sqsubseteq C_2$, there exists an \mathcal{L} -interpolant for $C_1 \sqsubseteq C_2$ under $\mathcal{O}_1, \mathcal{O}_2$.

Remark

 $CIP \Rightarrow PBDP$

• $\mathcal{ALC}(\mathcal{S})(\mathcal{I})(\mathcal{F})$ has the CIP

[ten Cate, Franconi, Seylan 2013]

• $\mathcal{EL}(\mathcal{H})$ has the CIP [Lutz, Seylan, Wolter 2019] [Konev, Lutz, Ponomaryov, Wolter 2010]

Main Questions

• Which description logics enjoy the PBDP/CIP?

- Which description logics enjoy the PBDP/CIP?
- For those who do not, what is the complexity of deciding interpolant or explicit definition existence?

- Which description logics enjoy the PBDP/CIP?
- For those who do not, what is the complexity of deciding interpolant or explicit definition existence?
- Bounds on the size of interpolants/explicit definitions?

- Which description logics enjoy the PBDP/CIP?
- For those who do not, what is the complexity of deciding interpolant or explicit definition existence?
- Bounds on the size of interpolants/explicit definitions?
- \rightarrow focus on extensions of \mathcal{EL}

Theorem

 \mathcal{ELO} , \mathcal{EL}_u , \mathcal{EL}^{++} with (a) a single role inclusion $r \circ s \sqsubseteq s$ or (b) a single transitivity inclusion $s \circ s$ and role hierarchies $r_1 \sqsubseteq r_2$, \mathcal{ELI} , \mathcal{ELI}_u , Horn- \mathcal{ALC} and Horn- \mathcal{ALCI} do not enjoy the CIP nor PBDP.

Theorem

 \mathcal{ELO} , \mathcal{EL}_u , \mathcal{EL}^{++} with (a) a single role inclusion $r \circ s \sqsubseteq s$ or (b) a single transitivity inclusion $s \circ s$ and role hierarchies $r_1 \sqsubseteq r_2$, \mathcal{ELI} , \mathcal{ELI}_u , Horn- \mathcal{ALC} and Horn- \mathcal{ALCI} do not enjoy the CIP nor PBDP.

Reminder: \mathcal{EL} , \mathcal{ELH} enjoy the CIP and PBDP.

 \mathcal{EL}^{++} and \mathcal{EL}^{++}_u

 $A \sqsubseteq \exists r. E \qquad E \sqsubseteq \exists s. B \qquad \exists s. B \sqsubseteq A \qquad r \circ s \sqsubseteq s$

 $\Sigma = \{s, E\}$

 \mathcal{EL}^{++} and \mathcal{EL}^{++}_u

A

 \mathcal{EL}^{++} and \mathcal{EL}^{++}_u

 $A \sqsubseteq \exists r. E \qquad E \sqsubseteq \exists s. B \qquad \exists s. B \sqsubseteq A \qquad r \circ s \sqsubseteq s$ $\Sigma = \{s, E\}$

 \mathcal{EL}^{++} and \mathcal{EL}^{++}_u

 $A \sqsubseteq \exists r. E \qquad E \sqsubseteq \exists s. B \qquad \exists s. B \sqsubseteq A \qquad r \circ s \sqsubseteq s$ $\Sigma = \{s, E\}$

 \mathcal{EL}^{++} and \mathcal{EL}^{++}_u

 $A \sqsubseteq \exists r. E \qquad E \sqsubseteq \exists s. B \qquad \exists s. B \sqsubseteq A \qquad r \circ s \sqsubseteq s$ $\Sigma = \{s, E\}$

 $\underline{\mathcal{EL}}^{++}$ and \mathcal{EL}^{++}_u

 $A \sqsubseteq \exists r. E \qquad E \sqsubseteq \exists s. B \qquad \exists s. B \sqsubseteq A \qquad r \circ s \sqsubseteq s$ $\Sigma = \{s, E\}$

 \mathcal{EL}^{++} and \mathcal{EL}^{++}_u

 $A \sqsubseteq \exists r. E \qquad E \sqsubseteq \exists s. B \qquad \exists s. B \sqsubseteq A \qquad r \circ s \sqsubseteq s$

 $\Sigma = \{s, E\}$

 \mathcal{EL}^{++} and \mathcal{EL}^{++}_u

$$\mathcal{O} \models \forall x. (A(x) \leftrightarrow \exists y. E(y) \land \forall z. (s(y, z) \rightarrow s(x, z)))$$

 \mathcal{EL}^{++} and \mathcal{EL}_{u}^{++}

 $\mathcal{O} \models \forall x. (A(x) \leftrightarrow \exists y. E(y) \land \forall z. (s(y, z) \rightarrow s(x, z)))$

 \mathcal{EL}^{++} and \mathcal{EL}_{u}^{++}

 $\mathcal{O} \models \forall x. (A(x) \leftrightarrow \exists y. E(y) \land \forall z. (s(y, z) \rightarrow s(x, z)))$

 \mathcal{EL}^{++} and \mathcal{EL}^{++}_u

$$\mathcal{O} \models \forall x. (A(x) \leftrightarrow \exists y. E(y) \land \forall z. (s(y, z) \rightarrow s(x, z)))$$

$\begin{array}{ll} A \sqsubseteq B & D \sqcap \exists r^-.A \sqsubseteq E & B \sqsubseteq \exists r.C \\ C \sqsubseteq D & B \sqcap \exists r.(C \sqcap E) \sqsubseteq A & \Sigma = \{B, D, E, r\} \end{array}$

- $A \sqsubseteq B \qquad D \sqcap \exists r^-.A \sqsubseteq E \qquad B \sqsubseteq \exists r.C$
- $C \sqsubseteq D \qquad B \sqcap \exists r. (C \sqcap E) \sqsubseteq A \qquad \Sigma = \{B, D, E, r\}$
- $\mathcal{O} \models A \equiv B \sqcap \forall r. (D \to E)$

- $A \sqsubseteq B \qquad D \sqcap \exists r^-.A \sqsubseteq E \qquad B \sqsubseteq \exists r.C$
- $C \sqsubseteq D \qquad B \sqcap \exists r. (C \sqcap E) \sqsubseteq A \qquad \Sigma = \{B, D, E, r\}$

 $\mathcal{O} \models A \equiv B \sqcap \forall r. (D \to E)$

A

- $A \sqsubseteq B \qquad D \sqcap \exists r^-.A \sqsubseteq E \qquad B \sqsubseteq \exists r.C$
- $C \sqsubseteq D \qquad B \sqcap \exists r. (C \sqcap E) \sqsubseteq A \qquad \Sigma = \{B, D, E, r\}$
- $\mathcal{O} \models A \equiv B \sqcap \forall r. (D \to E)$

A, B

9

 $\begin{array}{ll} A \sqsubseteq B & D \sqcap \exists r^-.A \sqsubseteq E & B \sqsubseteq \exists r.C \\ C \sqsubseteq D & B \sqcap \exists r.(C \sqcap E) \sqsubseteq A & \Sigma = \{B, D, E, r\} \end{array}$

 $A \sqsubseteq B \qquad D \sqcap \exists r^-.A \sqsubseteq E \qquad B \sqsubseteq \exists r.C$ $C \sqsubseteq D \qquad B \sqcap \exists r.(C \sqcap E) \sqsubseteq A \qquad \Sigma = \{B, D, E, r\}$

- $A \sqsubseteq B \qquad D \sqcap \exists r^-.A \sqsubseteq E \qquad B \sqsubseteq \exists r.C$
- $C \sqsubseteq D \qquad B \sqcap \exists r. (C \sqcap E) \sqsubseteq A \qquad \Sigma = \{B, D, E, r\}$
- $\mathcal{O} \models A \equiv B \sqcap \forall r. (D \to E)$

В

- $A \sqsubseteq B \qquad D \sqcap \exists r^-.A \sqsubseteq E \qquad B \sqsubseteq \exists r.C$
- $C \sqsubseteq D \qquad B \sqcap \exists r. (C \sqcap E) \sqsubseteq A \qquad \Sigma = \{B, D, E, r\}$

- $A \sqsubseteq B \qquad D \sqcap \exists r^-.A \sqsubseteq E \qquad B \sqsubseteq \exists r.C$ $C \sqsubseteq D \qquad B \sqcap \exists r (C \sqcap E) \sqsubseteq A \qquad \sum (B \upharpoonright D \upharpoonright E)$
- $C \sqsubseteq D \qquad B \sqcap \exists r. (C \sqcap E) \sqsubseteq A \qquad \Sigma = \{B, D, E, r\}$

- $\begin{array}{ll} A \sqsubseteq B & D \sqcap \exists r^-.A \sqsubseteq E & B \sqsubseteq \exists r.C \\ C \sqsubseteq D & B \sqcap \exists r.(C \sqcap E) \sqsubseteq A & \Sigma = \{B, D, E, r\} \end{array}$
- $\Box \sqsubseteq D \qquad D \vdash \exists T.(\Box \vdash E) \sqsubseteq A \qquad \Box = \{D, D, E, T\}$

- $\begin{array}{lll} A \sqsubseteq B & D \sqcap \exists r^-.A \sqsubseteq E & B \sqsubseteq \exists r.C \\ C \sqsubseteq D & B \sqcap \exists r.(C \sqcap E) \sqsubseteq A & \Sigma = \{B, D, E, r\} \end{array}$
- $\mathcal{O} \models A \equiv B \sqcap \forall r. (D \to E)$

- $\begin{array}{ll} A \sqsubseteq B & D \sqcap \exists r^-.A \sqsubseteq E & B \sqsubseteq \exists r.C \\ C \sqsubseteq D & B \sqcap \exists r.(C \sqcap E) \sqsubseteq A & \Sigma = \{B, D, E, r\} \end{array}$
- $\mathcal{O} \models A \equiv B \sqcap \forall r. (D \to E)$

Theorem

Let $\mathcal{L} \in \{\mathcal{EL}_u, \mathcal{ELO}, \mathcal{ELO}_u, \mathcal{EL}^{++}, \mathcal{EL}_u^{++}\}.$

- *L*-interpolant existence and *L*-explicit definition existence are in **P**TIME.
- If an interpolant or explicit definition exists, then there is one of at most exponential size. This bound is optimal.

Theorem

Let $\mathcal{L} \in \{\mathcal{EL}_u, \mathcal{ELO}, \mathcal{ELO}_u, \mathcal{EL}^{++}, \mathcal{EL}_u^{++}\}.$

- *L*-interpolant existence and *L*-explicit definition existence are in **P**TIME.
- If an interpolant or explicit definition exists, then there is one of at most exponential size. This bound is optimal.

Proof techniques.

 There is an interpolant for O₁ ∪ O₂ ⊨ C₁ ⊑ C₂ iff C₂ is true at the root of the Σ-reduct of the canonical model for O₁ ∪ O₂ and C₁.

Theorem

Let $\mathcal{L} \in \{\mathcal{EL}_u, \mathcal{ELO}, \mathcal{ELO}_u, \mathcal{EL}^{++}, \mathcal{EL}_u^{++}\}.$

- *L*-interpolant existence and *L*-explicit definition existence are in **P**TIME.
- If an interpolant or explicit definition exists, then there is one of at most exponential size. This bound is optimal.

Proof techniques.

- There is an interpolant for O₁ ∪ O₂ ⊨ C₁ ⊑ C₂ iff C₂ is true at the root of the Σ-reduct of the canonical model for O₁ ∪ O₂ and C₁.
- Bound the size of a derivation tree for C_2 .

Theorem

Let $\mathcal{L} \in \{\mathcal{ELI}, \mathcal{ELI}_u, \mathcal{ELIO}, \mathcal{ELIO}_u\}.$

- *L*-interpolant existence and *L*-explicit definition existence are **EXPTIME-complete**.
- If an interpolant or explicit definition exists, then there is one of at most double exponential size (optimal bound).

Theorem

Let $\mathcal{L} \in \{\mathcal{ELI}, \mathcal{ELI}_u, \mathcal{ELIO}, \mathcal{ELIO}_u\}.$

- *L*-interpolant existence and *L*-explicit definition existence are **EXPTIME-complete**.
- If an interpolant or explicit definition exists, then there is one of at most double exponential size (optimal bound).

Proof techniques (without nominals)

• Tree automaton for concepts D such that $\mathcal{O}_1 \cup \mathcal{O}_2 \models C_1 \sqsubseteq D$ (based on canonical models).

Theorem

Let $\mathcal{L} \in \{\mathcal{ELI}, \mathcal{ELI}_u, \mathcal{ELIO}, \mathcal{ELIO}_u\}.$

- *L*-interpolant existence and *L*-explicit definition existence are **EXPTIME-complete**.
- If an interpolant or explicit definition exists, then there is one of at most double exponential size (optimal bound).

Proof techniques (without nominals)

- Tree automaton for concepts D such that
 O₁ ∪ O₂ ⊨ C₁ ⊑ D (based on canonical models).
- Tree automaton for concepts D such that
 O₁ ∪ O₂ ⊨ D ⊑ C₂ (based on derivation trees).

Theorem

Let $\mathcal{L} \in \{\mathcal{ELI}, \mathcal{ELI}_u, \mathcal{ELIO}, \mathcal{ELIO}_u\}.$

- *L*-interpolant existence and *L*-explicit definition existence are **EXPTIME-complete**.
- If an interpolant or explicit definition exists, then there is one of at most double exponential size (optimal bound).

Proof techniques (without nominals)

- Tree automaton for concepts D such that
 O₁ ∪ O₂ ⊨ C₁ ⊑ D (based on canonical models).
- Tree automaton for concepts D such that
 O₁ ∪ O₂ ⊨ D ⊑ C₂ (based on derivation trees).
- Check intersection.

 Most Horn description logics do not enjoy the Craig interpolation nor the projective Beth definability property.

- Most Horn description logics do not enjoy the Craig interpolation nor the projective Beth definability property.
- Interpolant existence or explicit definition existence is not harder than subsumption (not the case for more expressive DLs):

- Most Horn description logics do not enjoy the Craig interpolation nor the projective Beth definability property.
- Interpolant existence or explicit definition existence is not harder than subsumption (not the case for more expressive DLs):
 - **PTIME** for $\{\mathcal{EL}_u, \mathcal{ELO}, \mathcal{ELO}_u, \mathcal{EL}^{++}, \mathcal{EL}_u^{++}\}$

- Most Horn description logics do not enjoy the Craig interpolation nor the projective Beth definability property.
- Interpolant existence or explicit definition existence is not harder than subsumption (not the case for more expressive DLs):
 - PTIME for $\{\mathcal{EL}_u, \mathcal{ELO}, \mathcal{ELO}_u, \mathcal{EL}^{++}, \mathcal{EL}_u^{++}\}$
 - **EXPTIME** for $\{\mathcal{ELI}, \mathcal{ELI}_u, \mathcal{ELIO}, \mathcal{ELIO}_u\}$

- Most Horn description logics do not enjoy the Craig interpolation nor the projective Beth definability property.
- Interpolant existence or explicit definition existence is not harder than subsumption (not the case for more expressive DLs):
 - PTIME for $\{\mathcal{EL}_u, \mathcal{ELO}, \mathcal{ELO}_u, \mathcal{EL}^{++}, \mathcal{EL}_u^{++}\}$
 - **EXPTIME** for $\{\mathcal{ELI}, \mathcal{ELI}_u, \mathcal{ELIO}, \mathcal{ELIO}_u\}$
- Optimal bounds on the size of interpolants and explicit definitions (exponential/double exponential).

- Most Horn description logics do not enjoy the Craig interpolation nor the projective Beth definability property.
- Interpolant existence or explicit definition existence is not harder than subsumption (not the case for more expressive DLs):
 - PTIME for $\{\mathcal{EL}_u, \mathcal{ELO}, \mathcal{ELO}_u, \mathcal{EL}^{++}, \mathcal{EL}_u^{++}\}$
 - **EXPTIME** for $\{\mathcal{ELI}, \mathcal{ELI}_u, \mathcal{ELIO}, \mathcal{ELIO}_u\}$
- Optimal bounds on the size of interpolants and explicit definitions (exponential/double exponential).

Future work:

• Extensions of \mathcal{ELI} with role inclusions

- Most Horn description logics do not enjoy the Craig interpolation nor the projective Beth definability property.
- Interpolant existence or explicit definition existence is not harder than subsumption (not the case for more expressive DLs):
 - PTIME for $\{\mathcal{EL}_u, \mathcal{ELO}, \mathcal{ELO}_u, \mathcal{EL}^{++}, \mathcal{EL}_u^{++}\}$
 - **EXPTIME** for $\{\mathcal{ELI}, \mathcal{ELI}_u, \mathcal{ELIO}, \mathcal{ELIO}_u\}$
- Optimal bounds on the size of interpolants and explicit definitions (exponential/double exponential).

Future work:

- \bullet Extensions of \mathcal{ELI} with role inclusions
- Decision problem for Horn- \mathcal{ALC}

- Most Horn description logics do not enjoy the Craig interpolation nor the projective Beth definability property.
- Interpolant existence or explicit definition existence is not harder than subsumption (not the case for more expressive DLs):
 - PTIME for $\{\mathcal{EL}_u, \mathcal{ELO}, \mathcal{ELO}_u, \mathcal{EL}^{++}, \mathcal{EL}_u^{++}\}$
 - **EXPTIME** for $\{\mathcal{ELI}, \mathcal{ELI}_u, \mathcal{ELIO}, \mathcal{ELIO}_u\}$
- Optimal bounds on the size of interpolants and explicit definitions (exponential/double exponential).

Future work:

- \bullet Extensions of \mathcal{ELI} with role inclusions
- Decision problem for Horn- \mathcal{ALC}
- Algorithms to compute interpolant/explicit definitions

Thank you!