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Abstract—Autonomous systems are increasingly being used in
safety- and mission-critical domains, including aviation, manufac-
turing, healthcare and the automotive industry. Systems for such
domains are often verified with respect to essential requirements
set by a regulator, as part of a process called certification. In
principle, autonomous systems can be deployed if they can be
certified for use. However, certification is especially challenging
as the condition of both the system and its environment will
surely change, limiting the effective use of the system. In this
paper we discuss the technological and regulatory background
for such systems, and introduce an architectural framework
that supports verifiably-correct dynamic self-certification by the
system, potentially allowing deployed systems to operate more
safely and effectively.

Index Terms—autonomy, verification, certification, software

I. INTRODUCTION

Autonomous systems can be broadly defined as computer

systems that decide for themselves what to do [51]. Such

systems are increasingly being used, and proposed for use, in

safety- and mission-critical domains, including aviation [45],

automotive [22], manufacturing [29] and healthcare [9], [34].

Systems for such domains are often verified with respect

to essential requirements set by a regulator, as part of a

process called certification [15], [22]. Although routes to the

certification of autonomous systems are being developed [13],

[15], [22], [27], [28], this only covers part of the problem.

Once we have certified our robot, driverless car, unmanned

aircraft, etc., then we can deploy it [29]. However, we know

that a key aspect of both these autonomous systems, and

the environments in which they are deployed, is that the

system/environment will undoubtedly change beyond the con-

ditions at the time of certification. Consequently, assumptions

and assessments made at the time of deployment will likely

now be different.

So, elements of both the system itself and its assumptions

about the environment will certainly change. As this is outside

the behavioural envelope anticipated when certifying the sys-

tem, what do we do? In some cases it might be necessary recall

the system and re-certify for the new situation, but it might

also be that the changes do not affect the safety/reliability of

the system and so it could, if allowed, continue working.

But how should the system decide whether to continue or

stop (because re-certification is needed)? It is here that an
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autonomous system can carry out self-certification in order

to decide between these options. In using the term ‘self-

certification’ we are neither referring to system security in

self-certifying file systems nor to physical health in human

self-assessment. However, our use of the term is much closer

to the second of these.

Once we have some autonomous system, such as a vehicle

or a robot, that has been certified for use then we have some

human-controlled process/documentation (such as assurance

arguments supported by safety cases) capturing why the system

has been certified. Consequently, once the certification process

has been completed (and approved by the regulator) we have

some idea of the limits within which the system can reliably

(and safely) operate. Thus, our use of ‘self-certification’ cap-

tures

techniques and procedures to assess whether the system
remains within the bounds under which it was certified.

Note that, at this stage, we are not considering how to move

the system back in to a ‘certified’ mode if something has

failed [16] but just to ensure we can assess and detect when

the system either leaves, or is in danger of leaving, certified

bounds. While we do not expect the system to be able to re-

certify itself, it should be able to detect when it is in danger of

leaving certified bounds and undertake some remedial activity

to ensure that the problems do not get any worse.

Clearly, if a system is to be able to undertake this form of

self-certification, it needs at least an up-to-date description of

its own workings and a precise description of what constitutes

the certified (or safe) boundaries of system behaviour. As we

will see in this paper, these two aspects are provided by a ‘self

model’ and a ‘safety model’, respectively. We here describe

a software architecture for autonomous systems that supports

self-certification whereby the system can decide whether it

should/can keep going.

II. BACKGROUND

A. Autonomous Systems

We define Autonomy here to be the ability of a system to

make its own decisions and to act on its own, and
to do both without direct human intervention.

However, even within this, there are many variations con-

cerning where (and how) decisions are made and actions are

invoked. We can identify some of these variations as follows.
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1) Automatic: involves a number of fixed, and prescribed,

activities; there may be options, but these are generally fixed

in advance and follow a rigid cycle.

2) Adaptive: improves system performance/activity based

on feedback from the environment — typically developed us-

ing tight continuous control and optimisation, e.g. a feedback

control system. Usually very efficient, but driven fundamen-

tally by environmental interactions.

3) Autonomous: decisions are made based on system’s

(view of its) current situation at the time of decision —

the environment still taken into account, but internal moti-

vations/beliefs are crucial. This moves much closer to human-

level decisions as, based on its current views about the environ-

ment and itself, the system here decides whether to continue

with adaptive processes, or to step away from the environment

(perhaps because its sensors are deemed inaccurate) and take

a different decision.

A simplistic example highlighting the differences might be

as follows. If we keep seeing the same situation time and

time again, an adaptive system will make the same decisions

every time, perhaps just learning to recognise the situation

much more efficiently. An autonomous system, however, could

choose to take a different, divergent, decision after having seen

the same situation a number of times.

B. Semi-Autonomous Systems

Within a truly autonomous system we can envisage a

distinct software component, let us call it an ‘agent’ [51],

that makes all the high-level decisions that a human opera-

tor/driver/pilot used to make:

Autonomous Robotic System

Agent

(In this diagram and the two that follow, arrows x → y
indicate that x is in overall control.) At the other extreme

we have a remote-controlled system wherein a human opera-

tor/pilot/driver makes all the key decisions:

Robotic System

In practice, however, autonomous systems rarely fall clearly

into these extremes. It is much more common for the human

and the system to jointly be responsible for system behaviours.

This leads us on to more nuanced and sophisticated issues

concerning shared autonomy and, if these responsibilities can

change over time, then further to issues of variable autonomy:

Semi-Autonomous Robotic System

Agent
Shared/Variable

Autonomy

Not surprisingly there are many ways to categorise these,

potentially dynamic, levels of autonomy. One, called ‘PACT’,

is widely used in aerospace systems [7] and categorises levels

of autonomy from 0 (no autonomy) to 5 (full autonomy):

0: ‘No Autonomy’

→ Whole task done by human except for actual operation
1: ‘Advice only if requested’

→ Human asks system to suggest options and human
selects

2: ‘Advice’ → System suggests options to human
3: ‘Advice, and if authorised, action’

→ System suggests options and proposes one of them
4: ‘Action unless revoked’

4a: System chooses action and performs it if human
approves (‘consent’)

4b: System chooses action and performs it unless human
disapproves (‘exception’)

5: ‘Full Autonomy’

5a: System chooses action, performs it and informs hu-
man

5b: System does everything autonomously
We are primarily concerned with the higher-levels of autonomy

where there will likely be no human operator able to quickly

and directly make decisions.

C. Verification and Validation

Increasingly, the key problem in autonomous systems is not

just to construct an autonomous system, be it vehicle or robot,

but to construct it in such a way that it is (verifiably) safe,

reliable, and hence trustworthy.

1) Verification: The aim of Verification is to ensure that

our system matches its requirements. These requirements may

be informal, in which case it is hard to assess if, or how, our

system does indeed correspond to them, or the requirements

may be explicitly formal. The formal variety is often given

in a clear, precise language with unambiguous semantics.

Formal Verification takes this further, not only having precise

formal requirements in a mathematical form, but carrying out a

comprehensive mathematical analysis of the system to ‘prove’

whether it corresponds to the formal specification of these

requirements [15]. Formal verification is particularly used for

systems that are safety, business, or mission critical, and where

errors can have severe consequences.

There are many varieties of formal verification, the most

popular being model checking [4], [14], whereby the formal

specification is checked (usually automatically) against all
possible executions of the system. Verification, via model

checking, is widely used especially for the analysis of crit-

ical systems. However, its use in autonomous software is
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relatively recent [8], [42], while application to the verifi-

cation of practical autonomous systems is still at a very

early stage [25]. Though these approaches are typically used

before deployment, related techniques provide the basis for

run-time monitoring and compliance testing. Such run-time

verification [23], [43] is important in assessing how complex

systems evolve, and ensuring that unacceptable behaviours are

detected and mitigated.

2) Validation: Validation is the process of confirming that

the final system has the intended behaviour once it is active in

its target environment, and is often concerned with satisfying

external stake-holders. For example, does our system match

safety standards or legal rules set by regulators [10], [41]?

Does our system perform acceptably from a customer point

of view, and how well do users feel that it works [34]? The

are many approaches to carrying out validation, incorporating

diverse aspects, but typically involving the assessment of

accuracy, repeatability, usability, resilience, etc.

In our context, Verification and Validation (V&V) necessitates

a range of techniques [13], from formal safety verification,

through testing, to in-situ evaluation and monitoring, and it

is often difficult to delineate these phases. For example, since

autonomous systems typically interact with the ‘real world’,

we must ensure that verification is extended to this interaction.

Yet it is impossible to accurately model the real-world, with

its uncertain and continuous dynamics, in a finite way and so

exploration of all possibilities via techniques such as model-

checking is infeasible [21]. This leads to several options. We

can try to abstract from the complexity of the real world and

provide a finite description of this abstraction that we can

then use in formal verification; this abstraction is likely to be

incorrect in some way and will need refinement [1]. A practical

alternative is to use sophisticated testing methods, appealing

to Monte-Carlo techniques and dynamic test refinement in

order to systematically ‘cover’ a wide range of practical

situations [3], [27], [28]. Such requirements-based testing is

regularly used in systems design. A further option is to monitor
the system as it runs, detecting if it ever performs unacceptable

behaviours. A key issue in V&V is maintaining consistency

between these various models [49], which remains an open

question.

D. Certification

We begin with Regulations:

rules, policies and laws set out by some acknowledged
authority to ensure the safe design and operation of
systems.

Once we have these, then Certification can be defined as

the determination by an independent body that checks
whether the systems are in conformity or compliant with
the above regulations.

It is important to note that certification represents a legal,

rather than scientific, assessment and usually involves external
review, typically by some Regulator. Certification processes,

and regulators, usually (though not exclusively) appeal to

Standards:

documents (usually produced by a panel of experts)
providing guidance on the proving of compliance.

There are very many standards for different types of systems,

for example

• ISO 61508: General safety standard
• ISO 10218: Safety requirements for industrial robots
• ISO 15066: Collaborative robots
• ISO 26262: Automotive
• RTCA DO-178B/C: Aerospace/UAVs . . . etc. . .

However standards, and regulators, generally ignore the issue

of autonomy. There are a few exceptions with some standards

addressing autonomy, for example [11]

BS 8611 Guide to the Ethical Design and Applica-
tion of Robots and Robotic Systems

and new standards, such as the IEEE ethically aligned design
standards (P7000, P7001, P7002, etc.), are being developed in

this direction.

1) Problems with Autonomy: It is important to note that,

when a system is certified, it does not guarantee it is safe

— it just guarantees that, legally, it can be considered ‘safe

enough’ and that the risk in deployment is acceptable.

A general problem is that current certification approaches often

assume that

• there is a finite set of hazards/failures that the system will

encounter,

• these can be identified beforehand,

• this finite set will not change over the life of the system,

• . . . and so a risk/mitigation based approach can be used,

many of which may not be true for complex autonomous

systems. For example, [38] highlights the problems with

certified designs:

• The full consequences may be dependent on the situation
the system finds itself in. These situations may be close
to infinite and the consequent safety case analysis is
invariably in-exhaustive.

• If the system is being applied in a manner that is
unanticipated by the designer, the safety analysis is likely
to break down completely.

• For safety critical systems, the probability of occurrence
may have to be very low — for catastrophic failures
typically less than 10−9 per flight hour in aviation.
Probability of occurrence may be difficult to quantify,
particularly over the lifetime of the system. So, how does
one prove a level of assurance in such a case?

Crucially, standards/regulations have little to say about intel-

ligent software making complex decisions about safety, and

even ethics [2], [11], [18], [30], [37], [50] — yet this is a

fundamental part of (semi) autonomous robotic systems. This

leads us to the view that greater autonomy requires much

stronger V&V techniques, particularly formal verification.
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E. Broader Issues with Autonomy

Once the key decision-making process is taken away from

humans, how can we be sure what autonomous systems will

do? Do we know that they are safe? Can we trust them? These

questions are currently impossible to answer. Yet, without

these answers, increased autonomy will not be accepted by

engineers, allowed by regulators, or trusted by the public. This

is especially the case as robots, autonomous vehicles, etc., are

increasingly being deployed in safety-critical situations. The

key aspect is not just that the system makes decisions, but that

it makes the right decisions and has good reasons for making

them [6], [44]. Once this decision-making is explicit, then we

can use V&V techniques to try to ensure that our autonomous

system will indeed make the decisions that the stake-holders

consider to be safe, legal, and ethical.

Autonomous Robotic System

Safety 
Model

Self 
Model

Task
Model

Interaction
Model

Agent

Fig. 1. Key Architectural Components within an Autonomous System

III. ARCHITECTURE

Our approach is that these autonomous systems contain an

agent for autonomous decision-making, together with a range

of models capturing key aspects, see Fig. 1.

A. Agents

Identifying the core ‘agent’ in the system, wherein key

decisions are made, is an important first step [25]. However,

more complex issues concerning the dynamic nature of respon-

sibility moving between human and machine (and back again)

— variable autonomy — will later need to be addressed.

We are particularly keen to identify a rational agent [25],

[52] as the focus of autonomous decision-making since this

not only makes decisions and invokes actions but must be

able to explain why it chooses one option over another. This

not only supports explainability [53] and scrutability [12] but,

by being able to formally verify these rational agents [19], we

can prove that the correct, even safe and ethical [18], decisions

will always be taken [17], [48].

B. The Role of Models

Within our system there are several models. Many of the

agent’s decisions will involve assessing these models, and

many of the sub-processes will be driven by information from

the models. These models can become quite complicated but,

in their simplest form, contain elements described in Fig. 2.

We now describe activities involving these models in more

detail.

Autonomous Robotic System

Safety 
Model

Self 
Model

Task
Model

Interaction
Model

HRI, Remote 
Control, Situation 
Awareness, etc

Run Time
Safety 

Monitors
Autonomous Systems 

Architecture
Robot Tasks,
Risk Analysis, 

Schedule, etc….

Agent

Fig. 2. Key Processes Utilising Models within the Architecture

C. Interaction Model

The Interaction Model describes the form of, and require-

ments for, interaction with operators, humans, and other ex-

ternal entities (e.g., inspectors). This encompasses not only

how to interact but what information to provide, for example

in order to explain the robot’s decisions or actions. There is a

variety of mechanisms for this, ranging from a simple menu of

straightforward interactions, through trust/expectation models,

up to full mental models. So, our interaction model contains a

model of Human-Robot Interaction (HRI) in order to explain

decisions made by the system beyond the agent. A recognition

of the impact that the human has on the system, which is not

only person dependent, but crucially environment dependent.

Within this framework the human-interaction component

can be understood as an agent–agent interaction paradigm.

Where the autonomous system ‘agent’ is capable of making

high-level decisions much as a human-agent is, and is in turn

able to engage with the a human user of the system in order

to adjust its decisions. The introduction of a human-agent

into an autonomous agent loop poses many issues for the

essential need for that loop to be verifiably safe, reliable and

trustworthy.

A system does not work in isolation, and whether au-

tonomous or semi-autonomous will be impacted by its human

user. In the case of a semi-autonomous system the human

decisions must be taken into account when considering what

a system will do (e.g., non-human agents may be verifiable

outside of machine learning algorithms, but human-agents are

not). In autonomous systems it is important to consider the

broader issues that go beyond a semi-autonomous system with

a human in the loop, such as those addressed earlier. A fully

autonomous system must be explicit with its decision making,

and must be trusted.

D. Safety Model

The Safety Model is derived from the system certification

process which, through techniques such as safety cases and

fault identification, identifies safety aspects. For example, in

aerospace, the certification process requires that a rigorous

safety assessment is applied during the build process. There are

several methods of safety analysis and these are documented

in ARP 4761 [5]. This Safety Model describes issues which

might affect the (certified) safety of the system. In particular,
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any safety case for the system will highlight the assumptions,

expectations, and mitigations, relevant to ensuring acceptable

system safety. We can extract these into a model that captures

all these elements and that the autonomous system can inter-

rogate to assess if a particular situation violates safety bounds.

The safety model in particular is required to cover how

the system is operating, what are the safety requirements

of the operational environment it is encountering and what

responses is the system either proposing or conducting. To

do this requires a considerable awareness of the operational

environment (assuming it is complex) and an awareness of the

consequences of its actions in how that affects the environment

and other possible entities in that environment. Thus, it is

required to understand when to take appropriate action if the

environment (including other entities) has changed affecting

safety, and to assess the impact of its actions regarding safety,

both now and for the future to understand any impact of

inaction.

E. Self Model

The Self Model describes the components, architecture, and

effectiveness of the system itself. This will comprise the

architecture for the system, together with a clear description

(ideally formal) of the expected behaviour of the compo-

nents within [17], [20]. This provides a strong form of self-

awareness useful for health management and reconfigurability

but, here, is especially useful for self-certification (in combina-

tion with the Safety Model). Here, prognostic techniques [32],

[39] will be important in updating and maintaining this Self

Model.

For example, a Self Model for a robotic system might

include the central agent, robot arms, sensors, control sys-

tems, actuators, process tooling, power supplies, or planning

systems. For each one of these subsystems there would be a

formal description of the expected behaviour that the agent

can use to monitor the various subsystems. For example, the

agent might know that a particular sensor should monitor the

environment and provide an update 20 times each second.

If this rate drops to 10 times per second, for example, the

agent could determine that this sensor has malfunctioned. The

agent might then take the necessary steps to remedy this,

including notifying the human operator, adjusting the mission

parameters, disregarding the sensor’s output or relying on

other sensor systems in future. A related, but often harder,

problem is when the updates are provided at the required rate

but the data is incorrect (for example because the sensor has

decalibrated). If the agent has a representation of the form

of data expected within its Self Model, then it might again

recognise the problem and undertake remedial action.

Principles from prognostics [20] will be essential for the

agent in determining the ongoing health status of the various

robot subsystems. For example, to successfully perform a

task, the robot system needs to deliver the position and

orientation accuracy of the robot’s tools, the trajectory of the

arm, the correct speed, force, and torque. Robot subsystems

will degrade over time (due to wear-and-tear and use in harsh

conditions [40]) and this can lead to a decrease in inspection

quality and efficiency. One of the objectives of prognostics

systems in robotic inspection is to predict the remaining useful

life (RUL) of the robot system or its individual components

as they degrade from an initial state to a failure state.

F. Task Model

The Task Model describes the goals, tasks, and schedules

for the robotic system’s activities. It is useful for planning,

typically in combination with the Safety and Self models.

For example, within the ORCA project1 which is concerned

with the autonomous inspection of offshore assets (oil rigs,

wind turbines, pipelines, etc.) the Task Model will incorporate

inspections that must be carried out, prognostic procedures

that can be employed, etc., and will be used as the basis

for planning the asset inspection tasks while maintaining the

safety of the vehicle (and, indeed, asset). Typically, such plan-

ning/scheduling activities take into account the Task Model

(what must be done), the Safety Model (what boundaries there

are), and the Self Model (how capable the autonomous system

is in carry out these tasks).

Autonomous Robotic System

Safety 
Model

Self 
Model

Task
Model

Interaction
Model

HRI, Remote 
Control, Situation 
Awareness, etc

Runtime
Safety 

Monitors
Autonomous Systems 

Architecture
Robot Tasks,
Risk Analysis, 

Schedule, etc….

Verifiable
HRI

Verifiable
Safeguards

Verifiable &
Reconfigurable
 Architecture

Verifiable
Planning & 

Activity

Agent

Fig. 3. Verifiability of Processes based on Internal Models

IV. SELF-CERTIFICATION

From a regulatory point of view, self-certification refers

to the ability of a manufacturer to certify that their product

conforms with regulations [47]. We extend this term naturally

to cover autonomous systems, which can monitor themselves

to ensure their continuing adherence to regulatory standards.

Note that ‘self-’ here refers to both the autonomous system and
the manufacturer, as such systems will effectively perform the

act of self-certification on behalf of the manufacturer.

Within our architecture, we bring together

1) the Safety Model, providing a description of when safe

behaviour might be threatened; and

2) the Self Model, providing a description of current system

competencies.

3) the Task Model, providing a description of the tasks to

be completed by the system.

4) the Interaction Model, providing a description of the way

in which the system can interact with its user(s).

1https://orcahub.org
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All of these are under the control of the ‘agent’ at the heart of

the autonomous system. This provides mechanisms for self-

certification as systems will have:

1) a clear view of current system capabilities/health;

2) a well-defined set of tasks for the system to achieve;

3) a set of requirements for the way the system must

interact with the user;

4) a set of system monitors recognising if/when original

certification may be violated; and

5) an agent able to assess (1) and (2) and decide on

appropriate actions.

A. Example

Let us consider the case of a simple autonomous unmanned

aircraft system (UAS). The UAS’s Interaction Model demands

that it should relay its current flight status to the user (via a

ground control station) at least once per second, formulated as

the following formula in a bounded linear temporal logic [46]:

�♦≤1send(flightStatus, user) (1)

This formula states that it is always the case (�) that within
one second (♦≤1) the UAS should send its flight status to the

user (‘send(flightStatus, user)’). Within the Self Model there

is a logical description of the abilities of each subsystem,

including the antenna. For example, the Self model might

contain the following logical formula:

working(antenna) ⇐⇒ (send(x, user) ∧ receive(y, user))

This simply states that the antenna is working if, and only if
(⇐⇒) the system can send information to, and (∧) receive

information from, the user. Suppose that the UAS’s health

monitoring systems indicate that the radio antenna used to

transmit information has been damaged. This information is

used to update the Self Model so that the rational agent

in charge of the UAS becomes aware of the malfunction.

The rational agent updates its belief base with the belief

B¬working(antenna). A runtime monitor associated with the

Safety Model then determines that ¬working(antenna) in

fact implies that ¬send(x, user) which in turn means that

requirement 1 can never hold and has therefore been violated.

The runtime monitor responds by sending a message to the

rational agent to inform it that there has been a safety-critical

communication failure.

The rational agent can then assess the severity of the failure,

in terms of safety violations. For example, it may be that

the antenna’s failure is actually only in terms of receiving

information and that by only using the send functionality,

the safety constraint can actually be satisfied. Alternatively

the rational agent, through its Self Model, might be able to

examine its other capabilities and so find another way to safely

continue the mission by compensating for the malfunction.

This might involve some software reconfiguration to rectify

these failures [16]. In the worst case, for example in the case

of an irreparable and unrecoverable failure, the only available

course of action might be to conduct an emergency landing.

In all these cases, the agent will use the Interaction Model

to designate the levels and modes of interaction with human

agents.

B. Generating Certification Monitors

A key aspect of this self-certification is having a set of

runtime monitors that capture safety requirements and assump-

tions [36]. These are generated from the initial system certi-

fication and the constraints captured in the Safety Model. Our

initial approach will be to generate such monitors ‘by hand’,

since automatically extracting these from large, informal doc-

uments such as safety cases will likely be extremely complex.

In extraction these monitors the Engineering challenge is to

faithfully capture all the key safety constraints whilst ensuring

that the monitors do not place a large computational burden

on the system.

V. VERIFICATION

Verification, of various forms, is important for all the

different types of model shown in Fig. 3.

A. Validating the Interaction Model

For the Interaction Model we cannot feasibly carry out any

formal verification activities, but might carry out some testing

and, more importantly, user validation activities. To validate

the interaction model an understanding of the user and the

specific environment in which the semi/autonomous system

is to be deployed needs to be provided. Depending on the

complexity and detail of the Interaction Model, a wide range

of potential HCI/HRI validation techniques might be applied,

e.g [9], [31].

B. Verifying Safety Monitors

A runtime safety monitor is a software component that

consumes events from the system, compares them to the

system’s expected behaviour, and then takes some action if

the events differ. The action can be to log the deviating event,

flag the event to the user, or initiate mitigating behaviour.

Monitoring the system’s runtime behaviour can mitigate the

problems of the reality gap — the difference between the

behaviour of a simulated system and how it behaves when

deployed on a real robot.

The monitored properties can be extracted from the Safety
Model (which may include safety concerns from safety cases)

and formalised. A runtime monitor for these properties can

then be built that is amenable to formal verification [35]. This

process provides confidence that the monitor checks for the

correct properties and behaves as expected. Using verifiable

monitors like this can often be easier to verify than the

entire system, because they are simpler. Despite this, they can

be effective in enforcing claims in a safety case, checking

assumptions and context of safety cases or certification at

runtime, and improving traceability of the system’s safety

requirements to the monitor. This approach can also be used

for runtime ‘health’ monitoring of the system’s physical com-

ponents, which can then suggest or initiate mitigating action.

There are several challenges involved in using this approach.

Firstly, it must be amenable to whatever certification processes
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are required by regulators. Secondly, the organisation of the

Safety Model (or safety cases, etc.) must be clear enough so

that the properties can be easily extracted. The key questions

being: will there be enough detail, and will the information

always be located in the same place? Finally, for automation

of this approach, there are questions about the safety case

or Safety Model that contains the properties that we want

to model. Key questions here include: what notation, what

(electronic) format, and what tools are being used?

C. Formal Description of Self Model

In order to assess a robot’s Self Model we need to be able

to formally describe its architecture. The specification of each

software component can then be verified with respect to the

system’s requirements. When a component is changed, due to

repairs or reconfiguration for example, the system can be re-

verified including the specification of the new component. A

challenge here is linking the specification and verification of

the system in the abstract with the contents of the components.

A related challenge is ensuring that the deployment of

the system’s architecture is correct. Robotic systems often

use a middleware framework to interface with the hardware

(for example, ROS or GenoM) but these are usually only

assumed to be correct. These middlewares (including ROS)

often use a node-based, publisher–subscriber model; which we

can take advantage of to develop a high-level (meta) model

that captures a wide range of middlewares. This can be used to

verify the deployment of the robotic system onto a middleware

framework. Further, specifically with ROS, this work can

start to provide a formal description of how ROS works,

independently of either of the two supported implementations.

D. Verifying the Task Model

For the Task Model we can formally verify the planning pro-

cess such that any plan produced balances the risk/capabilities

(from Safety and Self models) with its goals, such as asset

inspection. This may be based on standard plan description

languages, such as PDDL [26], and mechanisms for verifying

(sometimes formally) planning processes [33].

E. Verifying the Whole System

In Section IV-A we showed how an autonomous system

for a UAS might handle an antenna failure using runtime

monitors and the Interaction, Self, Task and Safety models.

In this particular case, our system identified the problem

and identified a safe course of action. However, we may

formally verify that the autonomous system will always handle

subsystem failures safely by creating an environment model

in which different subsystems may fail at any given time.

This environment model stimulates a model of the autonomous

system to explore various ways in which the system might fail.

Combining these models with a model checker [24] allows us

to analyse every state in this system to determine that the

autonomous system will always maintain safe operations.

F. Simulation and Testing

As the system must inhabit the real-world, we need to

extensively test it’s behaviour, in all the above aspects, in more

realistic environments. Real physical testing is often difficult

and expensive, and therefore comprehensive simulation-based

testing is vital and will be needed as evidence within certifi-

cation processes [48].

VI. CONCLUDING REMARKS

We have proposed an architecture for autonomous systems

comprising a core agent ‘decision-maker’ together with a

range of models. Key processes invoked by the agent will

utilise and update these models, assessing the safety and reli-

ability of the system as it proceeds. The continuous updating

of the models, for example through prognostic techniques,

will allow for flexible deployment in complex and evolving

environments. Furthermore, the insistence of transparency and,

crucially, verifiability for all/most of these processes will

provide strong evidence for the trustworthiness of the self-

certification aspects.

Of course, as regulations concerning autonomous systems

are currently under-developed, there still remains the question

of exactly what constitutes a ‘certified’ autonomous sys-

tem/vehicle. However, our framework is general enough that

this should not adversely impact either the form of our models

or the verifiability of the requirements. This remains separate

work and we continue to engage with standards bodies and

regulators to develop effective routes to certification for sys-

tems with this new aspect of ‘autonomy’.

In future work we aim to develop and deploy such sys-

tems, particularly where robots/vehicles replace humans in

hazardous environments. This is surely not completed work,

but sets out a framework for the development of systems,

the evolution of regulations, and the increased reliability of

autonomous robotic systems.
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