
Ethical Choice in Unforeseen Circumstances

Louise Dennis, Michael Fisher, Marija Slavkovik, and Matt Webster

University of Liverpool,UK,
{L.A.Dennis,MFisher,Marija,M.Webster}@liverpool.ac.uk

Abstract. For autonomous systems to be allowed to share environments
with people, their manufacturers need to guarantee that the system be-
haves within acceptable legal, but also ethical, limits. Formal verification
has been used to test if a system behaves within specified legal limits.
This paper proposes an ethical extension to a rational agent controlling
an Unmanned Aircraft(UA). The resulting agent is able to distinguish
among possible plans and execute the most ethical choice it has. We
implement a prototype and verify that when an agent does behave un-
ethically, it does so because none more ethical possibility is available.

1 Introduction

Autonomous systems are increasingly required in various practical applications,
including unmanned aircraft, driverless cars, healthcare robots, manufacturing
robots, etc. If such autonomous systems are to operate in human-shared envi-
ronments, we (as a society) must be able to trust that their behaviour complies
with acceptable legal, ethical and social limits. Determining the trustworthiness
of technology in this respect is usually delegated to a regulatory body, such as
the Federal Aviation Administration (USA) or the [Road] Vehicle Certification
Authority (UK). The process is known as certification, and is used to determine
the safety and reliability of safety-critical technology, including aircraft, road
vehicles, nuclear power plants, pharmaceuticals, etc. In [25,24] formal verifica-
tion is used to assess whether or not an autonomous system for an unmanned
aircraft (UA) follows the specified “Rules of the Air” (ROA) that a pilot should
follow [5]. The stated aim is to provide evidence contributing to certification.
But what of the unwritten limits of behaviour expected from human pilots?

For non-autonomous systems, such as cars or manned aircraft, it is assumed
that the operator of the system will satisfy the ethical standards of society,
e.g., the pilot of a civilian aircraft does not intend to use the aircraft to commit
murder, and will, if necessary, disregard legal restrictions for ethical reasons,
e.g., the pilot will disregard the Rules of the Air in order to preserve human
life. These assumptions are an unavoidable result of the opaqueness of human
behaviour; it is extremely difficult to pre-determine the behaviour of a human
being. However, autonomous systems are far more transparent, and can be en-
gineered to meet requirements. Typically these requirements are technical (“an
aircraft must be able to fly at 10,000 feet”) or legal (“a car must have visible reg-
istration markings”), but in the case of autonomous systems some requirements

may be ethical (e.g., “an autonomous unmanned aircraft will never choose to do
something dangerous unless it has no other option”). Such ethical requirements
may prove essential for an autonomous system to be certificated by a regulatory
body, since ethical autonomy is obviously desirable.

Ethics is a branch of philosophy concerned with establishing and analysing
concepts of right and wrong. Machine ethics is a relatively new research area,
whose objective is the creation of a machine capable of following its own ethical
concerns when making decisions about its actions [2]. Typically machine ethics
is concerned with a machine’s ability to resolve ethical dilemmas and defining
concepts of ethical machine behaviour [3,16]. Scholars disagree about which eth-
ical theory should be the basis of machine ethics, but two, act utilitarianism [8]
and deontological ethics [18], are generally considered the best suited; see [2] for
a discussion. Autonomous agents able to form ethical behaviour rules and solve
ethical dilemmas based on these rules are constructed in [3,16].

We are here interested in enabling an agent, that governs a UA, to follow a
pre-determined code of ethical conduct in selecting a plan of action. We consider
the question of how the ethics should be implemented and used to certify the
autonomous system for operation. Our aim is to develop a pragmatic process for
introducing ethical considerations into autonomous decision making, specifically
to handle situations outside the anticipated normal operation of the vehicle. Our
key motivation is the issue of certification, hence our goal is that this process
should make the resulting decision-making amenable to analysis and/or veri-
fication. Specifically, we aim to use model checking [6] to provide evidence to
strengthen certification arguments, and advance the safe and ethical integration
of autonomous systems in society.

In Section 2 we provide background on agents and autonomous systems. In
Section 3, we present a theoretical framework for ethical behaviour in rational
agents. In Section 4 we show how this theoretical framework has been imple-
mented in the form of Ethan, an ethical rational agent programming language
developed using the MCAPL agent framework [13], and we give examples of
ethical agents for UAs programmed in Ethan. In Section 5 we give some pre-
liminary results concerning the formal verification of ethical rational agents using
the MCAPL agent model checker [13] and describe how formal verification might
be used to strengthen an argument for the certification of an autonomous sys-
tem. Finally, in Section 6 we offer conclusions and directions for future research.

2 Background

Agent Architectures for Autonomous Systems. It is increasingly the case,
particularly in autonomous vehicles, that the autonomous control architecture
is of hybrid form comprising discrete and continuous parts. The discrete part is
often represented by a rational agent taking the high-level decisions, providing
explanations of its choices, and invoking lower-level continuous procedures [15].
The lower-level procedures appear in non-autonomous systems as well, and are
familiar to certification authorities. As such, we can focus analysis on the deci-
sions the rational agent makes, given the beliefs and goals it has [25].

BDI Languages. The predominant view of rational agency is that encapsulated
within the BDI model [17]. “BDI” stands for Beliefs, Desires, and Intentions.
Beliefs represent the agent’s (possibly incomplete, possibly incorrect) informa-
tion about itself, other agents, and its environment; desires represent the agent’s
long-term aims; while intentions represent the aims that the agent is actively
pursuing. There are many different agent programming languages and agent
platforms based, at least in part, on the BDI approach. An overview of particu-
lar languages for programming rational agents in a BDI-like way can be found in
[9]. Agents programmed in these languages commonly contain a set of beliefs, a
set of goals (i.e., desires), and a set of plans. Plans determine how an agent acts
based on its beliefs and goals. As a result of executing a plan, the beliefs and
goals of an agent may change as the agent performs actions in its environment.
It is important to note that, in a typical BDI programming language, plans are
supplied by a programmer not by an independent planning mechanism.

3 Reasoning about Ethics

Turilli [22] argues that there is an important difference between how people and
agents may be bound by ethical concerns – individuals are normatively con-
strained by ethical concerns that they may choose to disregard under the threat
of specified punitive measures and, given a machine’s insensitivity to punitive
measures, ethical concerns for machines are constraints, prohibiting the actions
before they are executed. This is the approach taken in [4], who introduce an eth-
ical governor component to an autonomous system used in military operations
of UAs. The governor conducts an evaluation of the ethical appropriateness of a
plan prior to its execution, prohibiting plans deemed unethical.

Our approach uses similar ideas, but the ethical “governor” is effectively
embedded within the agent and acts before a plan is chosen. Our governor’s
role is to choose the most ethical plan available, allowing unethical actions to
occur only when the agent does not have a more ethical choice. We thus consider
ethical concerns to be soft constraints, which the agent is allowed to violate under
certain conditions. We refer to such ethical soft constraints as ethical concerns.
To specify when ethical constraints can be violated we define an ethical policy,
which is an order over a set of ethical concerns. We do not consider to what
degree a concern is violated, only that it is violated. The UA agent can compare
possible plans based upon which ethical concerns are upheld. It can then attempt
to execute those plans which are most ethical with respect to the ethical policy.

Our implementation of ethical principles ordered by gravity of infringement
resembles the contrary-to-duty (CTD) imperatives that occur in deontic reason-
ing. These imperatives inform an agent of its duties when it neglects (other)
obligations [10]. The difference between CTD imperatives and our ethical prin-
ciples is that a lower “ranked” CTD imperative is only activated after a higher
ranked imperative is violated, so two differently ranked imperatives are not si-
multaneously in force, whereas all ethical principles are in force simultaneously.

The Ethics of Plans. It is comparatively easy to specify abstract ethical
concerns, divorced from specific scenarios, which are robust and applicable in a

variety of circumstances. In moral philosophy, concerns of this type are referred
to as formal. Formal concerns are made concrete in, or by, each context in which
they are applied. Namely, they are transformed into substantive concerns. This
step is necessary as the agent needs to be informed how formal concerns may
be violated in a given situation, e.g., moving ten metres to the left may risk
violating the concern “do not harm people” when the UA is on the ground yet
may be ethically harmless when the UA is in the air.

Our first assumption is that the UA agent operates only in civilian contexts.
We establish a (small) list of relevant formal ethical concerns as exemplars in
order to show the method in action. The list contains: do not harm people (f1),
do not harm animals (f2), do not damage self (f3), and do not damage property
(f4). The (formal) ethical policy is given by comparing the concerns in terms of
how unethical it is to violate them. We propose the order f4 Í f3 Í f2 Í f1,
with fi Í fj meaning that it is more ethical to violate fi than fj . A substantive
ethical policy is thus a context-dependent refinement of the formal ethical policy.

In our prototype, each flight phase (e.g., landing, taxiing, take-off) of a UA
constitutes one context c. Since all contexts are known, and the UA can only be
in one context at a time, the substantive concerns can be represented directly,
omitting the formal-substantive relations. We represent directly the substantive
ethical policy as a total order over substantive concerns Epc, φ, iq, where c is the
context, φ is a concrete observable outcome that in context c constitutes breach-
ing of some formal concern f and i is an integer s.t. i ě 1, that denotes the rank
of φ in the policy. For example, if φ1 constitutes breaching f1 in c, and φ2, φ3, and
φ4 each constitute breaching f2, f3 and f4 respectively in c, the substantive eth-
ical policy would be represented as: Epc, φ1, 4q,Epc, φ2, 3q,Epc, φ3, 2q,Epc, φ4, 1q.

To be able to reason about plans in terms of ethics we need a plan selection
procedure that uses the substantive policy. We favour plans that violate the
fewest concerns, both in number and in gravity. We propose that the plans are
ordered using Á which results in a total order over plans.

Definition 1 (Plan order Á). Let p1 and p2 be two plans, and let S1 and S2 be
the sets of concerns violated by each plan respectively. Recall that for a concern
Epc, φ, iq, the smaller the number i, the more ethical it is to violate φ. We say
that p1 is more ethical than p2, i.e., p1 ą p2, when:

1. there is a Epc, φ, iq P S2 such that i ą j for every Epc, φ1, jq P S2, or,
2. there are fewer Epc, φ, iq P S1, of the same rank i, than there are
Epc, φ1, iq P S2, and for each concern in S1 with a rank k, such that
k ą i, there is exactly one concern in S2 of the same rank k.

If neither (1) nor (2) are satisfied, the plans are equally ethical, denoted p1 „ p2.
The pi Á pj can be read as “choosing pj is at least as unethical as choosing pi.”

Reasoning about plans and preference-based planning has been considered before
in the BDI agent literature. However, to the best of our knowledge, preference-
based planning has not been applied to ethical reasoning. For example, in [23]
plan selection is considered in terms of agents’ desires. However, the desires are
not ranked, so selecting the most desirable plan is done by summing up the

number of desires each plan satisfies. In [20] the agent can reason about plans
by selecting the plan that can satisfy the most goals. Goals are ranked and the
plan selection functions much as our plan ordering above.

For an overview of preference-based planning in BDI agents one can consider
[7]. Preference-based planning is outside of the scope of this work, however, and
for now the above-described plan order is sufficient for plan selection.

Ethics in BDI Languages. We integrate ethical reasoning into BDI languages
via their plan selection mechanism. We assume that an agent’s existing plans
are ethical by default and, indeed, have been formally verified to always match
the “Rules of the Air” (ROA). Problems may arise when either:

1. no plan is available, or,
2. a plan is available, has been attempted, but does not appear to be working.

We assume that the agent has access to some external planning mechanism
that can generate new plans. There is a long tradition of AI research into plan
generation systems such as [19,14,11], which are good candidates for integration
with BDI-style languages. In our case we are particularly interested in a route
planner such as that in [21] which can generate different routes for a UA to
follow. The construction of an appropriate planner is not the focus of this work,
which looks at how a typical BDI agent would work with the output of such a
planner. We must ensure our BDI rational agent:

– detects when a plan is not succeeding — e.g., it has been executed but not
achieved its goal;

– accesses a planning system in order to get new plans annotated with sub-
stantive ethical concerns; and

– selects the most ethical plan from a set of available plans.

4 Implementation

We developed a BDI agent language, Ethan, as a prototype for our approach.
Ethan was based on the Gwendolen language. Gwendolen’s semantics are
is presented in [12], but its key components are, for each agent, a set, Σ, of
beliefs which are ground first order formulae and a set, I, of intentions that are
stacks of deeds associated with an event. Deeds include the addition or removal of
beliefs, the establishment of new goals, and the execution of primitive actions. A
Gwendolen agent may have several concurrent intentions and will, by default,
execute the first deed on each intention stack in turn. Gwendolen is event
driven and events include the acquisition of new beliefs (typically via perception),
messages and goals. A programmer supplies plans that describe how an agent
should react to events by extending the deed stack of the relevant intention.

We extended the Gwendolen language as follows:

– We introduced a new data structure, E, into Gwendolen consisting of a
set of substantive ethical concerns. Each ethical concern was associated with
a rank (described in Section 3) and a guard that specifies the context.

– We tracked the application of plans. Even if a plan was applicable it was
excluded from the list of plans available for selection if it had already been
used once while attempting to achieve the current goal.

– If no (more) plans were available for a goal we requested plans from an
external planner which annotated the plans with the substantive ethical
concerns that risked being violated by the proposed course of action.

– In selecting plans, we prioritised those that are most ethical (according to
Definition 1).

In normal operation Gwendolen agents cycle through the deeds in their inten-
tions. When a deed requires the generation of a new plan all applicable plans are
extracted from the plan library, one is selected and converted into an intention,
then the system returns to cycling though the deeds in the intentions interleaved
with checking perception and messages for new beliefs etc. For Ethan we added
the recording of selected plans. This was done by storing an identifier for the
plan together with the unifier that was used to match it to the current agent
state; this information was linked to the particular goal the plan was expected
to achieve. We extended the plan selection mechanism to select the most ethical
plan from those applicable according to Definition 1.

Set of generated
plans

not yet tried

Select

the most ethical

is
empty

?

any
remaining
intentions

?Regular plan library

Current goal library 1

Current goal library n

Current goal library n-1

...

Select new
intention

STOPGet plans from
 ethical planner

ad
d

ne
w

pl
an

 lib
ra

ry

YES NO

YES

NO

 more
planning
needed

?

YES

NO

Execute a Deed
Check

Perception etc.,

Fig. 1. Ethan’s reasoning cycle. Dotted lines show additions to Gwendolen’s cycle.

The most significant change for Ethan was altering the reasoning cycle itself
so that, if no plan were applicable, an external planner would be queried for new
plans. This query involved sending the planner the current goal, and the list of
ethical concerns relevant to the current situation in order that the planner might
note any ethical concerns that could be violated by a plan’s execution. Another
implementation option is to send the ethical policy to the planner and have it
return the plan that is most ethical at the moment. However, this means the UA
reveals its ethical policy to the planner. In some cases this can be undesirable and
we prefer to keep the policy private. We did not implement a generic planning
mechanism here but relied upon hard-coded pseudo-planners customised to the
scenarios studied. The Ethan reasoning cycle is shown in Figure 1.

We examined three ethical aviation scenarios for unmanned aircraft derived
from discussions with domain experts: a retired Royal Air Force fast-jet navigator
and a current UK private pilot licence holder.

Brake Failure During Line Up. In this scenario the UA is trying to line up
on a runway prior to take-off when its brakes fail. Ahead of the aircraft is a
second manned aircraft crossing the runway on a taxiway. To the left and right
of the runway are runway lights (which can be damaged by aircraft taxiing over
them). To the right of the runway is an airport staff member who has erred onto
the maneuvering area of the aerodrome.

The ethical concerns for this example, with the rank of each concern marked
in brackets, are: φ1 “ do not damage own aircraft p1q, φ2 “ do not collide with
airport hardware p2q, φ3 “ do not collide with people p3q, φ4 “ do not collide
with manned aircraft p4q. When the agent determines that its brakes have failed
it requests new routes from the ethical planner since its current route to line-up
is no longer valid. The ethical planner quickly produces three potential routes:

1. Turn left off the runway: this will risk damaging the unmanned aircraft
(φ1) and colliding with airport hardware (the runway lights, φ2).

2. Turn right off the runway: this will risk damaging the unmanned
aircraft (φ1) and a collision with people (φ3).

3. Continue straight on: this will risk a collision with a manned aircraft(φ4).

Code Fragment 4.1 shows abridged Ethan code for this example. We use many
syntactic conventions from BDI agent languages: +!g indicates the addition of a
goal, g; +b indicates the addition of a belief, b; and ´b indicates the removal of
a belief. Plans consist of three parts, with the pattern

trigger : guard Ð body;

The “ trigger ” is typically the addition of a goal or a belief (beliefs may be
acquired thanks to the operation of perception and as a result of internal de-
liberation); the “guard” states conditions about the agent (in this example its
beliefs) which must be true before the plan can become active; and the “body”
is a stack of “deeds” the agent performs in order to execute the plan. These
deeds typically involve the addition and deletion of goals and beliefs as well as
actions (e.g., plan(regularRoutes , all well)) which indicate code that is delegated
to non-rational parts of the systems (in this case, the route planning system). In
the above, Prolog conventions are used, and so capitalised names inside terms
indicate free variables which are instantiated by unification (typically against
the agent’s beliefs). Programs may also perform deductive reasoning on their
atomic beliefs as described in their Prolog-style belief rules, e.g:

B all well :´ „B brakesCompleteFailure

indicates that the program believes that all is well if it is not the case (i.e., “„”)
that it believes the brakes have failed (the closed world assumption is used to
deduce this negation).

In Fragment 4.1, during normal operation, the agent polls the vehicle’s sen-
sors and, if all is well, it requests that the planner supply routes for a normal
take-off. The planner does this by sending predicates naming the routes to the
agent which detects them via perception. Once the agent has a route (lines 25–
27) it then delegates the actual following of the route to the underlying control
system (enactRoute(R)). If the brakes fail after the vehicle’s sensors are polled,
all these plans become unavailable (since B all well ceases to be true). In this

case the “external planner” returns a set of routes as plans shown in Code
Fragment 4.3. We use the notation rφi1 , φi2 , . . . , φins to indicate the substantive
ethical concerns that are violated by each plan. On receiving these plans, and
assessing the ethical policy, the agent elects to turn left.

Code fragment 4.1 Code for Example 1

1: Ethical Policy :
2E(flightPhase (lineup),doNotDamageOwnAircraft,4)
3E(flightPhase (lineup),doNotCollideAirportHardware,3)
4E(flightPhase (lineup),doNotCollidePeople,2)
5E(flightPhase (lineup),doNotCollideMannedAircraft,1)
6
7: Initial Beliefs :
8flightPhase (lineup)
9
10: Belief Rules:
11B all well :´ „B brakesCompleteFailure;
12
13: Initial Goals:
14startup
15
16:Plans:
17+!startup : {J}Ð
18+!missionComplete;
19+!missionComplete :
20{B flightPhase(lineup), „B polled(veh) }Ð
21+polled(veh), poll (veh);
22+!missionComplete :
23{B polled(veh), B all well , „B route(R)}Ð
24plan(regularRoutes , all well);
25+!missionComplete :
26{B polled(veh), B all well , B route(R)}Ð
27enactRoute(R);

Code fragment 4.2 Code for Example 2

1: Ethical Policy :
2E(flightPhase (eAvoid), doNotViolateRoATurnRight, 2)
3E(flightPhase (eAvoid), doNotViolateRoA500Feet, 2)
4E(flightPhase (eAvoid), doNotCollideObjects, 3)
5E(flightPhase (eAvoid), doNotCollideAircraft , 4)
6
7: Belief Rules:
8B avoid collision :´ „B das(intruder, headOn);
9
10:Plans:
11+! avoid collision :
12{B flightPhase(eAvoid),
13„B route(eAvoid, Route)}Ð
14plan(reqEmergRoute,turnRight),
15∗route(eAvoid, R),
16enactRoute(R),
17wait ;
18
19+das(intruder, headOn) : {B flightPhase(cruise)}Ð
20´flightPhase(cruise),
21+flightPhase(eAvoid),
22+! avoid collision ;
23
24´das(intruder, headOn) : {B flightPhase(eAvoid)}Ð
25´flightPhase(eAvoid),
26+flightPhase(cruise);

Code fragment 4.3 Plans for Example 1

1+!missionComplete : {B brakesCompleteFailure}
2Ð enactRoute(turn left); [φ1 , φ2]
3+!missionComplete : {B brakesCompleteFailure}
4Ð enactRoute(turn right); [φ1 , φ3]
5+!missionComplete : {B brakesCompleteFailure}
6Ð enactRoute(continue); [φ4]

Code fragment 4.4 Plans for Example 2

1+! avoid collision : {B flightPhase(eAvoid)}
2Ð enactRoute(turn left); [φ1]
3+! avoid collision : {B flightPhase(eAvoid)}
4Ð enactRoute(emergency land); [φ2 ,φ3 ,φ4]
5+! avoid collision : {B flightPhase(eAvoid)}
6Ð enactRoute(return to base); [φ4]

Erratic Intruder Aircraft. This example is based on the assumption that
some unknown aircraft, possibly a malicious intruder, but potentially also some
ill-trained new pilot, appears on a collision course with the UA and fails to take
the anticipated evasive actions.

The UA is cruising through civil airspace when it encounters an intruder
aircraft approaching head on. Here the ROA (Rules of the Air) say that the
UA should turn right, so the agent requests a route for turning right. However,
this plan fails and the detect/avoid sensor (DAS) continues to indicate that the
intruder aircraft is approaching. At this point the agent knows that it has already
tried to turn to the right in order to avoid the intruder. Since the intruder is still
approaching its first plan has failed. The agent has no more routes (or Ethan
plans) that apply since its only plans obey the ROA and would cause the agent
to turn right again. At this point the ethical planner is invoked. The relevant
substantive ethical concerns and their ranks are as follows: φ1 “ do not violate
turn right rule (2); φ2 “ do not stay above 500 feet rule (2); φ3 “ do not collide
with objects on the ground (3); φ4 “ do not collide with aircraft (4).

The planner returns the plans shown in Code Fragment 4.4. The agent ini-
tially chooses to turn left. In our scenario the oncoming aircraft once again
matches the course change and so the agent then chooses to return to base.

An abridged version of the code for this example is shown in Code Frag-
ment 4.2. Here, ∗route(eAvoid, turnRight) causes the intention to suspend execu-
tion until the agent believes it has a route for turning right. The action wait

suspends the intention for a set time to allow the effects of actions to manifest.

Lines 19–22 are triggered when information arrives from the DAS that there
is an intruder. As a result the flight phase changes from cruise to eAvoid and a
new goal is set up to avoid a collision. The existing, ROA-compliant, plan for
this goal is to get a route for turning right, enact that route and wait a short
period to see if a collision will now be avoided. If the plan succeeds the belief
that there is an intruder will vanish, the flight phase can be changed back to
cruise, and the goal will be achieved since the agent now believes a collision has
been avoided (see the belief rule in line 8).

When the existing plan fails, the plans in Fragment 4.4 are added to the
agent’s plan library. The first of these (turn left) is attempted first. This also
fails and the agent then attempts the third plan (return to base), which succeeds.

Fuel Low. In our final scenario the agent receives a “fuel low” alert from the
Fuel subsystem which causes it to attempt to land. If it cannot locate a safe
landing site the ethical planner is invoked and returns three options (shown
with ethical concerns violated and their ranks):

1. Land in field with overhead power lines. Violates: do not cause damage
to critical infrastructure (4); do not collide with objects on ground (3);
500 feet low-flying ROA (2); do not damage own aircraft (1).

2. Land in field with people. Violates: do not collide with people (5);
500 feet low-flying ROA (2).

3. Land on an empty public road. Violates: do not cause damage to
critical infrastructure (4); 500 feet low-flying ROA (2).

The agent then chooses the most ethical — the third plan — although both the
first and third plans violate an ethical concern of severity 4, the first plan also
violates a concern of severity 3 while the third plan does not.

5 Verification

One of the reasons for selecting Gwendolen as the basis for our implementation
language, Ethan, was that it provided the potential for formally verifying eth-
ical decision-making. Gwendolen is implemented in the AJPF framework for
model checking agent programming languages [13]. AJPF comes with a property
specification language based on linear temporal logic extended with modalities
for describing the beliefs of an agent. Since this property specification language
did not explicitly reference ethics we made further adaptations to Gwendolen
in order to reason about ethics in Ethan. Specifically we enhanced Ethan to
store, as explicit beliefs, currently applicable plans, plans that had been at-
tempted on a particular goal, and the ethical concerns violated by any selected

plan. We also needed to provide belief rules in order to deduce further properties;
these are shown in Code Fragment 5.1.

Code fragment 5.1 Verification Belief Rules

1B others violate (L) :´
2„ B untried plan not violates (L);
3B untried plan not violates (L) :´ B untried plan(P),
4„ B an ethic in (P, L));
5B untried plan (P) :´ B applicable(P),
6„ B already tried (P);
7B an ethic in (P, [Eth|T]) :´ B ethics of(P, Eth);
8B an ethic in (P, [Eth|T]) :´ B an ethic in(P, T);

The belief “B others violate (L)” suc-
ceeds if all untried plans violate
a concern contained in the list L.
The beliefs about plan applicabil-
ity (B applicable (P)), plans already
tried (B already tried (P)) and the eth-
ical concerns of particular plans
(B ethics of (P, Eth)) were all inserted
into the agent’s belief base during ex-
ecution of the Ethan reasoning cycle.

A further belief (B concern(Eth)) was also inserted into the agent’s belief base
whenever a currently selected plan violated the substantive ethical concern, Eth.
With these adaptations and the rules in Fragment 5.1 we were able to formally
verify properties of the Erratic Intruder scenario in a situation where the intruder
aircraft might appear or disappear at any point (i.e., we used the model checking
to explore all possible scenarios where the plans in Code Fragment 4.4 either
succeeded or failed, thus exploring all possible orders in which these plans might
be attempted). In particular we verified the following properties, where the φi
formulae refer to the substantive ethical concerns used in Example 2. (Here ‘l’
means “always in the future” and ‘B’ means “agent believes”.)

lpB concernpφ1q Ñ B others violateprφ1, φ2, φ3, φ4sqq

lpB concernpφ2q Ñ B others violateprφ2, φ3, φ4sqq

lpB concernpφ3q Ñ B others violateprφ3, φ4sqq

lpB concernpφ4q Ñ B others violateprφ4sqq

Collectively these properties show that if the plan chosen violates some sub-
stantive ethical concern, φ, then the other available plan choices all violated
some concern that was equal to, or more severe than, φ. Further similar prop-
erties can be used to establish that the “most ethical” option is always chosen.
The verification of each property took between 21 and 25 seconds and explored
54 model states on 3.06 GHz iMac with 4 GB of memory.

This work on model checking ethical choices is preliminary. It is undesirable
to have constructs, such as beliefs and belief rules, which can potentially affect
program execution used for verification purposes alone. However adapting AJPF
with a more expressive property specification language was outside the scope of
this research. The issue of how the approach scales remains open. The work here
does demonstrate that an ethical policy can be incorporated within a BDI agent
in such a way that adherence to the policy can be formally verified and so we
can be certain the agent will always make the most ethical choices.

6 Summary

Before an autonomous system is allowed to operate in a shared environment with
people or other autonomous systems, sufficient assurances have to be provided

that it will always behave within acceptable legal, ethical and social boundaries.
We propose a method, and implement a working prototype, of an ethical exten-
sion to a rational agent governing an unmanned aircraft (UA). The agent can be
provided with a particular ethical policy it uses to distinguish among possible
plans and to select the most ethical plan for execution. We are able to prove
formally that the prototype only performs an unethical action if the rest of the
actions available to it are even less ethical.

The ethically enhanced agent is autonomous in the choice of actions, but not
in the choice of ethical concerns and policies it will follow. These are constructed
externally. The agent follows only one ethical policy at any decision-making
moment, because we assumed it can be in only one context at a time. We also
assumed that all the contexts are known to the system designer. Our approach
to ethical governance can be generalised by dropping these assumptions.

Overlapping contexts will result with multiple substantive policies, forming a
preorder (instead of a total order we have now) which will mean that ethical plans
will need to be selected differently from how they are currently. The plan selection
order Á can still be constructed as we described, but it has to be extended to
handle the case when there is no information to how certain concerns relate
to each other, and the cases when conflicts arise. E.g., consider one context c1
for which Epc1, φ1, 1q, Epc1, φ2, 2q and another overlapping context c2 for which
Epc2, φ1, 1q, Epc2, φ3, 2q. Not knowing how φ2 ethically compares to φ3, the agent
cannot judge whether a plan violating φ2 or one violating φ3 is the more ethical.

The more challenging generalisation is to handle unknown contexts. We pro-
pose to resolve this issue by representing the contexts as intelligent agents, able
to ground formal concerns into substantive concerns, provided that the context
and the agent guiding the autonomous system have a shared understanding of
the formal concerns. This may involve recent research on abstract and concrete
norms (e.g., [1]). Upon entering an unknown context, the agent would send its
formal concerns to the context agent and receive the substantive concerns that
constitute breaking the formal concern of interest within that context. By send-
ing only the formal concerns, and not the entire policy, the agent can maintain
its ethical autonomy and privacy. Issues that arise from multiple and unknown
contexts will be tackled in future work.

Acknowledgements. Work partially funded by EPSRC through the “Trustwor-
thy Robotic Assistants”, “Verifying Interoperability Requirements in Pervasive
Systems”, and “Reconfigurable Autonomy” projects, and by the ERDF/NWDA-
funded Virtual Engineering Centre.

References

1. H. Aldewereld, S. Álvarez-Napagao, F. Dignum, and J. Vázquez-Salceda. Making
Norms Concrete. In Proc. AAMAS, pages 807–814, 2010.

2. M. Anderson and S. Anderson. Machine Ethics: Creating an Ethical Intelligent
Agent. AI Magazine, 28(4):15–26, 2007.

3. S. Anderson and M. Anderson. A Prima Facie Duty Approach to Machine Ethics
and its Application to Elder Care. In Human-Robot Interaction in Elder Care,
2011.

4. R.C. Arkin, P. Ulam, and A.R. Wagner. Moral Decision Making in Autonomous
Systems: Enforcement, Moral Emotions, Dignity, Trust, and Deception. Proceed-
ings of the IEEE, 100(3):571 –589, 2012.

5. Civil Aviation Authority. CAP 393 Air Navigation: The Order and the Regulations.
http://www.caa.co.uk/docs/33/CAP393.pdf, 2010.

6. C Baier and J.P. Katoen. Principles of Model Checking. MIT Press, 2008.
7. J. Baier and S. McIlraith. Planning with Preferences. AI Magazine, 29(4):25–36,

2008.
8. J. Bentham. An Introduction to the Principles of Morals and Legislation. Clarendon

Press, 1781.
9. R. Bordini, M. Dastani, J. Dix, and Amal El Fallah-Seghrouchni, editors. Multi-

Agent Programming: Languages, Platforms and Applications. Springer, 2005.
10. R. M. Chisholm. Contrary-to-Du Imperatives and Deontic Logic. Analysis,

24(2):33–36, 1963.
11. A. J. Coles, A. I. Coles, M. Fox, and D. Long. Forward-chaining Partial-order

Planning. In Proc. 20th International Conference on Automated Planning and
Scheduling (ICAPS-10), May 2010.

12. L. A. Dennis and B. Farwer. Gwendolen: A BDI Language for Verifiable Agents. In
Proc. AISB Workshop on Logic and the Simulation of Interaction and Reasoning.
AISB, 2008.

13. L. A. Dennis, M. Fisher, M. Webster, and R. H. Bordini. Model Checking Agent
Programming Languages. Automated Software Engineering, 19(1):5–63, 2012.

14. M. Helmert. The Fast Downward Planning System. Journal of Artificial Intelli-
gence Research, 26:191–246, 2006.

15. N. Lincoln, S. M. Veres, L. A. Dennis, M. Fisher, and A. Lisitsa. An Agent Based
Framework for Adaptive Control and Decision Making of Autonomous Vehicles.
In Proc. IFAC Workshop on Adaptation and Learning in Control and Signal Pro-
cessing, 2010.

16. T. Powers. Prospects for a Kantian Machine. IEEE Intelligent Systems, 21(4):46
–51, 2006.

17. A. Rao and M. Georgeff. BDI Agents: from Theory to Practice. In Proc. 1st
International Conference on Multi-Agent Systems (ICMAS), pages 312–319, 1995.

18. W. D. Ross. The Right and the Good. Oxford University Press, 1930.
19. E. Sacerdoti. Planning in a Heirarchy of Abstraction Spaces. Artificial Intelligence,

5:115–135, 1974.
20. S. Sardiña and S. Shapiro. Rational Action in Agent Programs with Prioritized

Goals. In Proc. 2nd International Joint Conference on Autonomous Agents and
Multiagent Systems (AAMAS), pages 417–424. ACM, 2003.

21. K. Tulum, U. Durak, and S.K. Yder. Situation aware UAV Mission Route Planning.
In 2009 IEEE Aerospace Conference, pages 1 –12, March 2009.

22. M. Turilli. Ethical Protocols Design. Ethics and Information Technology, 9:49–62,
2007.

23. S. Visser, J. Thangarajah, and J. Harland. Reasoning about Preferences in Intel-
ligent Agent Systems. Proceedings of the 22nd International Joint Conference on
Artificial Intelligence, 2011.

24. M. Webster, N. Cameron, M. Jump, and M. Fisher. Towards Certification of
Autonomous Unmanned Aircraft using Formal Model Checking and Simulation.
In Proc. Infotech@Aerospace [AIAA 2012-2573], 2012.

25. M. Webster, M. Fisher, N. Cameron, and M. Jump. Formal Methods and the Cer-
tification of Autonomous Unmanned Aircraft Systems. In Proc. 30th International
Conference on Computer Safety, Reliability and Security (SAFECOMP), volume
6894 of LNCS, pages 228–242. Springer, 2011.

http://www.caa.co.uk/docs/33/CAP393.pdf

	 Ethical Choice in Unforeseen Circumstances

