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Abstract. In this paper we assess the feasibility of using formal methods, and
model checking in particular, for the certification of Unmanned Aircraft Systems
(UAS) within civil airspace. We begin by modelling a basic UAS control system
in PROMELA, and verify it against a selected subset of the CAA’s Rules of the
Air using the SPIN model checker. Next we build a more advanced UAS control
system using the autonomous agent language Gwendolen, and verify it against
the small subset of the Rules of the Air using the agent model checker AJPF. We
introduce more advanced autonomy into the UAS agent and show that this too
can be verified. Finally we compare and contrast the various approaches, discuss
the paths towards full certification, and present directions for future research.
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1 Introduction
An Unmanned Aircraft System (UAS, plural UAS) is a group of elements necessary to
enable the autonomous flight of at least one Unmanned Air Vehicle (UAV) [8]. For ex-
ample, a particular UAS may comprise a UAV, a communication link to a ground-based
pilot station and launch-and-recovery systems for the UAV. UAS are now routinely used
in military applications, their key advantages coming from their ability to be used in the
so-called “dull, dangerous and dirty” missions, e.g., long duration/persistence flights
and flights into hostile or hazardous areas (such as clouds of radioactive material) [20].
There is a growing acceptance, however, that the coming decades will see the integra-
tion of UAS into civil airspace for a variety of similar applications: security surveil-
lance, motorway patrols, law enforcement support, etc. [21,15]. However, in order for
this integration to take place in a meaningful way, UAS must be capable of routinely fly-
ing through “non-segregated” airspace. Today, for most useful civil applications, UAS
can fly in UK civil airspace but in what is known as segregated airspace, that is, airspace
which is for the exclusive use of the specific user. For routine UAS operations, this will
not be an acceptable solution if the demand for UAS usage increases as is envisaged.
The UK projects ASTRAEA and ASTRAEA II and the FAA’s Unmanned Aircraft Pro-
gram Office (UAPO) are tasked with meeting this regulatory challenge, but a summary
of the issues is considered pertinent. Guidance on the UK policy for operating UAS is



given in [8]. The overarching principle is that, “UAS operating in the UK must meet
at least the same safety and operational standards as manned aircraft.” A UAS manu-
facturer must therefore provide evidence to the relevant regulatory authority that this is
indeed the case.

For manned aircraft, there is a well understood route for manufacturers to demon-
strate that their vehicle and its component systems meet the relevant safety standards
(see, for example, [12]). However, the manufacturer does not have to concern itself
with certification of the pilot: it is assumed that a suitably qualified crew will operate
the aircraft. For a UAS, however, the human operator may be out of the control loop
and therefore the manufacturer must demonstrate that any autonomous capabilities of
the aircraft, in lieu of an on-board human pilot, do not compromise the safety of the air-
craft or other airspace users. The acceptable means to achieve this end, i.e., regulatory
requirements, have yet to be formalised even by the regulators.

In this paper, we investigate the potential usefulness of model checking in providing
formal evidence for the certification of UAS. The work described here develops a new
approach and describes a study examining the feasibility of using formal methods tools
to prove compliance of an autonomous UAS control system with respect to a small
subset of the “Rules of the Air” [7]. Demonstrating that the decisions made by the
autonomous UAS are consistent with those that would be made by a human pilot (in
accordance with the Rules of the Air), could provide powerful evidence to a regulator
that the UAS would not compromise the safety of other airspace users. Thus, the work
described herein may be a first step in answering the question as to whether or not
formal verification tools have the potential to contribute to this overall ambition.

This is but one step towards the certification of autonomous UAS in non-segregated
UK airspace, yet it allows us to show how a route to full certification might be relieved
of some of the burden of analysis/testing required at present. This can save time and
increase reliability, but might come at the cost of an increased level of expertise required
of the analysts involved in the certification process. In particular, we focus on using
formal methods to verify the high-level “decision-making” aspects of autonomous UAS
control which may eventually complement or replace human decision-making for UAS.
The model checking approaches we describe could help to establish the robustness of a
given decision-making system, and when combined with existing approaches to aircraft
software engineering, could provide a route to certification of autonomous UAS.

1.1 Approach

Since the route to airframe and automatic flight control system certification is already
established, the main, and possibly the only, difference between a UAS and a human-
piloted aircraft is the core autonomous control system, plus all of the systems that are
directly associated with it, e.g., power supplies, etc. Thus, a vital part of certification
would be to show that this core autonomous control (in the form of an “intelligent”
agent) would make the same decisions as a human pilot/controller should make (this
is, after all, one of the piloting skills that a human pilot must obtain to be awarded a
licence). In general, analysing human behaviour is, of course, very difficult. However,
in the specific case of aircraft certification, pilots should abide by the Rules of the Air.
Thus, our approach here is to verify that all of the choices that the agent makes conform
to these Rules. It should be recognised that demonstrating that an autonomous agent’s



decisions will conform to the Rules of the Air is not the same as providing sufficient
evidence for certification. However, demonstrating that this is the case will provide one
piece of evidence that will support any application for certification of a system.

To show how this might be done, we chose a small subset of the Rules of the Air
and encoded these in a formal logic. (“The Rules of the Air Regulations 2007,” is large:
around 15,000 words plus accompanying images [7].) We modelled a UAS control sys-
tem as an executable agent model (initially using PROMELA [13], but later in a higher-
level agent language [1]), and applied model checking to verify that the UAS agent
satisfied the selected subset of the Rules of the Air.

Fig. 1. An approach to certification via the Rules of the Air. (Image: SSgt. R. Ramon, USAF.)

Our approach is summarised in Fig. 1. Clearly, the closer the UAS design/model is
to the actual UAS control system implementation and the closer the logical specification
is to the actual meaning of the “Rules of the Air”, the more useful model checking will
be in generating analytical evidence for certification. Ideally, the UAS model/design
should be a description of all the decisions/choices the UAS can possibly make. For
the purposes of this study, we assume that standard verification and validation (V&V)
techniques for high integrity software have been used to ensure that the UAS control
system does actually correspond to this design/model. Ideally, we would also like to
capture all of the Rules of the Air in a precise, logical form. However, there are several
problems with this. First, the Rules of the Air are neither precise nor unambiguous —
thus it is very hard to formalise their exact meaning without making the formulation
very large. Next, the number of rules is too large to tackle them all within this study.
Finally, some of the rules implicitly use quite complex notions, such as “likelihood”,
“knowledge”, “the other pilot’s intention”, “expectation”, and so on (see below for some
examples). While extending our formalisation to such aspects will be tackled in the
second half of this study, our initial step is to select a small number of rules that are
clear, unambiguous, and relevant to UAS.

1.2 Paper Structure

In Section 2 we describe the software tools to be used for UAS agent verification and
describe how the small subset of the Rules of the Air for verification was chosen. Then,
in Section 3 we model a basic UAS agent in PROMELA, and verify it against a small
subset of the Rules of the Air using the SPIN model checker. The concept of an “agent”
is a popular and widespread one, allowing us to capture the core aspects of autonomous
systems making informed and rational decisions [27]. Indeed, such agents are typically



at the heart of the hybrid control systems prevalent within UAS. We will say more about
the “agent” concept later but, initially, we simply equate “agent” with “process”. Thus,
we model the UAS’s choices/decisions as a single process in PROMELA, and use SPIN
to show that the UAS agent satisfies the selected subset of the Rules of the Air.

In Section 4 we construct a UAS control system based on a rational agent model.
This is written using the autonomous agent language Gwendolen [10], and we show
that it can be verified against the same Rules of the Air using the agent model checker
AJPF [2,11]. We introduce more advanced autonomous behaviour into the UAS agent,
and verify that this acts in accordance with the subset of the Rules of the Air.

There are two main reasons for using a rational agent model. The first was to al-
low more “intelligence” in the UAS agent itself. This extended the agent’s choices to
take into account not only the UAS’s situation but also the agent’s beliefs about the
intentions of other UAS/aircraft. The second reason is to consider more than the literal
meaning of the Rules of the Air. Specifically, we noticed that there is often an implicit
assumption within these rules. For example, “in situation A do B” might have an im-
plicit assumption that the pilot will assess whether doing B in this particular situation
would be dangerous or not. Really such rules should be: “in situation A do B, unless the
UAS believes that doing B will be likely to lead to some serious problem”. In piloting
parlance, the agent needs to demonstrate airmanship. Thus, in Section 4 we show how
we might “tease” out such aspects into formal specifications involving intentions/beliefs
that could then be checked through our verification system.

Finally, in Section 5 we compare the different approaches to UAS agent modelling
and verification, and we present directions for future research.

2 Model Checking
Model checking is a variety of formal verification in which a logical property is exhaus-
tively evaluated against all executions of a system [9]. Typically, the logical property is
expressed within a temporal logic. This allows us to refer to properties that occur now,
in the next moment, and at selected moments in the future. As well as classical logic
operators, temporal logic also provides operators such as ‘2’, meaning “at all future
moments”. Thus, “2(x⇒ y)” means that at all future moments within the execution, if
x is true then y must be true. This is distinct from “x⇒2y” which means that, if x is
true then y must be true at all future moments.

In the model checker we first utilise, called SPIN [13], the program to be checked is
written in the PROMELA programming language. The SPIN model checker then exhaus-
tively checks our required temporal formula against all possible executions of the pro-
gram. If successful, this means that no matter how the program executes, the required
property will still be true. However, if the model checker finds a specific execution that
violates the required property, it identifies this to the user.

Although we begin by using the PROMELA language and SPIN for verification, we
later use a more sophisticated language, Gwendolen [10], a high-level agent-based pro-
gramming language, to develop more advanced UAS control. We check the Gwendolen
program against the same logical requirements, but as SPIN only checks PROMELA
programs, we must use a different model checker called AJPF [2,11] to establish cor-
rectness of the Gwendolen program with respect to the logical properties.



2.1 Selecting Rules of the Air for Model Checking

We chose a small subset of just three Rules of the Air [7] which were relevant for a
straightforward flight of a powered UAS vehicle (e.g., taxiing to take-off, navigation,
sense-and-avoid, and landing). It was also desirable to choose rules which might po-
tentially come into conflict, as this would present a greater challenge for engineering
and verification of the UAS. We also had to leave out certain rules concerning specific
heights and distances, as we did not intend to describe such detailed information within
our UAS model. In addition we wanted to focus on two key scenarios for UAS engi-
neering: (i) “sense-and-avoid”, where the UAS must detect objects that it may collide
with and take evasive action; and (ii) partial autonomy, where the UAS proceeds au-
tonomously but checks with a human for permission to perform certain actions. Both
are essential abilities of autonomous UAS [21]. Thus, the rules chosen were as follows:

1. Sense and Avoid: “. . . when two aircraft are approaching head-on, or approxi-
mately so, in the air and there is danger of collision, each shall alter its course
to the right.” (Section 2.4.10)

2. Navigation in Aerodrome Airspace: “[An aircraft in the vicinity of an aerodrome
must] make all turns to the left unless [told otherwise].” (Section 2.4.12(1)(b))

3. Air Traffic Control (ATC) Clearance: “An aircraft shall not taxi on the apron or
the manoeuvring area of an aerodrome without [permission].” (Section 2.7.40)

The first rule is relevant for the sense-and-avoid scenarios (see (i) above), and the third
rule is relevant for partial autonomy (see (ii) above). The second rule is interesting
because it may conflict with the first rule under certain circumstances, e.g., where an
object is approaching head-on and the UAS has decided to make a turn. In this case, the
UAS vehicle may turn left or right depending on which rule (1 or 2) it chooses to obey.

Simplification was necessary to encode the above “rules” so that they could be
model checked. For instance, in the second rule, there are a number of factors which
could “tell” the UAS vehicle to make a turn to the right, such as the pattern of traffic at
an aerodrome, ground signals, or an air traffic controller. We chose to model all of these
under the umbrella term “told otherwise”, and not to model these factors separately.

3 Reactive UAS Agents
Through consultations with researchers from the Autonomous Systems Research Group
at BAE Systems (Warton, UK) we have modelled fragments of a typical UAS agent rel-
evant to our selected scenario. Here, it is assumed that the UAS agent will be composed
of a set of rules concerning the successful completion of the mission and the safe flight
of the aircraft. Each rule has a condition which must be satisfied for that rule to be
applied, and a consequence of applying that rule. For example, a rule might look like:

IF aircraft_approaching_head_on THEN turn_right

This would be the part of the agent designed to deal with the “Sense and Avoid” scenario
described in Section 2.1. Clearly there would be many other rules in the agent to deal
with other situations, such as running low on fuel, take off, landing, etc. The idea is that
the complete set of rules would enable the flight of the UAS, so that the UAS would
respond appropriately in every situation. Another such rule could be:



IF ATC_clearance_rcvd THEN set_flight_phase_taxi; taxi_to_runway_and_wait

This rule would specify that when the UAS receives clearance from the ATC, it will
set its flight phase to “taxi” and start taxiing to the runway where it will wait for take-
off clearance. In general, this kind of agent is known as a reactive agent, as it reacts
to situations without reasoning about them. (In later sections we will also consider a
practical reasoning, or rational, agent for controlling a UAS.)

Fig. 2. UAS Models in PROMELA and Gwendolen. Arrows represent information flow.

3.1 Modelling a Reactive UAS Agent in PROMELA

A simple model of a partial UAS control system has been written using PROMELA,
the process modelling language for the SPIN model checker [13]. The UAS is divided
into a number of components: the Executive, the Sensor Unit (SU) and the Navigation
Manager (NM). In Fig. 2, the role of the Executive is to direct the flight of the UAS
based on information it receives about the environment from the SU and the NM. The
NM is an independent autonomous software entity (i.e., an agent) on-board the UAS
which detects when the UAS is off-course and needs to change its heading; it sends
messages to the Executive to this effect. When the UAS’s heading is correct, the NM
tells the Executive so that it can maintain course. The SU is another agent on-board the
UAS whose job it is to look for potential collisions with other airborne objects. When it
senses another aircraft, it alerts the Executive; the SU then notifies the Executive when
the detected object is no longer a threat. Another essential part of the model is the ATC.
The Executive communicates with the ATC in order to request clearance to taxi on the
airfield. The ATC may either grant or deny such clearance. Thus, our simple reactive
UAS models sense-and-avoid scenarios as well as navigation and ATC clearance.

In PROMELA, we model the Executive, the SU, the NM and the ATC as processes,
which communicate using message-passing channels (see Fig. 2). For simplicity we
specify the NM and the SU as non-deterministic processes which periodically (and
arbitrarily) choose to create navigation and sensory alerts. The Executive process has a
variable, called state, which has different values to represent the different parts of the
UAS’s mission: WaitingAtRamp (start of mission), TaxiingToRunwayHold-
Position, TakingOff, EmergencyAvoid, etc.

Each step in the process is modelled by a different value of the state variable.
Once the UAS model becomes “airborne”, the Executive may receive messages from



both the SU and the NM. If the Executive receives a message from the SU saying that
there is an object approaching head-on, then it changes state to “Emergency Avoid” and
alters the course of the UAS to the right (by updating a variable direction). When
the SU tells the NM that the object approaching head-on has passed, the Executive will
continue on the heading and in the state it was in before the alert, e.g., if it was changing
heading and turning left then it will go back to this behaviour. At any point the Executive
may receive a message from the NM advising it to alter its heading, maintain its current
heading or, eventually, land.

Certain elements of a real-life UAS are not modelled here. We do not model the
“real world” environment of the UAS explicitly; rather we use the SU to send sensory
alerts on a non-deterministic basis. Likewise, the NM does not really navigate, as there
is no “real world” in the model to navigate through, and so it sends navigation alerts
on a non-deterministic basis. Also, we do not model the flight control systems of the
UAS or any aspects of the vehicle itself, as without a “real world” model these are
unnecessary. However, we make these simplifications without loss of accuracy in the
verification process: our aim is verify the behaviour of the Executive, to ensure that it
adheres to the “Rules of the Air” according to the information it possesses about the
current situation, and so using the SPIN model checker we can ascertain whether the
Executive behaves in the desired manner.

3.2 Model Checking the Rules of the Air in SPIN

As we have a system capturing selected behaviour within a UAS, together with elements
of its environment (e.g., ATC), we can check its compliance with the Rules of the Air
identified in Section 2.1 using the SPIN model checker. The temporal logic form of
these three rules are as follows.

1. Sense and Avoid: 2(objectIsApproaching =⇒ {direction = Right})
2. Navigation in Aerodrome Airspace:

2
[(

changeHeading ∧ ¬objectIsApproaching
∧nearAerodrome ∧ ¬toldOtherwise

)
=⇒ ¬{direction = Right}

]
3. ATC Clearance: 2({state = TaxiingToRunwayHoldPosition} =⇒ haveATCTaxiClearance)

The UAS agent model was found to satisfy all three properties.

4 Rational UAS Agents
The reactive UAS agent model presented so far, written in PROMELA, is quite basic in
terms of autonomy. The UAS follows a series of reflexive responses to environmental
changes, e.g., a message has come from ATC saying taxi clearance has been given, so
update the UAS state to “Taxiing.” It may be desirable to encode more complex au-
tonomous behaviours based on ideas from intelligent agent theory, such as the Beliefs–
Desires–Intentions (BDI) framework for autonomous agents [22]. As suggested by the
name, agents comprise beliefs (i.e., their information about the world), desires (i.e.,
their long term aims), and intentions (i.e., the things the agent is doing to try to achieve
its desires). Such approaches offer a natural way of specifying, engineering and de-
bugging high-level autonomous behaviour [27]. Another advantage is model checking



autonomous behaviour: we can see the state of the agent’s beliefs, desires and intentions
at the point a particular logical property is violated.

To model BDI agents we use a BDI agent language as PROMELA is not designed for
this purpose. To use PROMELA in this way, beliefs, desires and intentions would have to
be constructed from the native PROMELA constructs such as processes, variables, etc.
In contrast, BDI agent languages have these features “built-in”. Therefore the software
engineer is more able to focus on the behaviours of the autonomous system when using
a BDI agent language than when using PROMELA. Likewise, the SPIN model checker
used to verify PROMELA programs does not contain any operators concerning agents’
beliefs, desires or intentions, whereas agent model checkers let us specify different
agents’ beliefs, desires and intentions within the property being checked.

Gwendolen [10] is a BDI agent programming language designed specifically for
agent verification. Gwendolen agents consist of beliefs, goals, intentions and plans.
(Goals are desires which are being actively pursued.) Each plan consists of a triggering
event, a guard and a number of “deeds” which are executed if the plan is triggered and
the guard is satisfied. A Gwendolen agent begins with sets of initial beliefs and goals,
and a set of plans. The agent selects a subset of plans based on its beliefs about the
current situation and its current goals, i.e., what it wants to achieve.

We have constructed a model of a UAS agent written in Gwendolen. Our UAS agent
consists of 44 different plans, several of which are shown below. The UAS is similar in
behaviour to the agents written in PROMELA: it taxies, holds, lines up and takes off, and
once airborne it performs simple navigation and sense/avoid actions. Finally, it lands.
The UAS agent believes initially that it is waiting at the ramp at the beginning of its
mission, and that it has no forward direction. It has an initial goal (here, “!p” means a
goal to perform some action) — to run the “startup procedure” — and a set of plans.
For instance, the first plan says that if a belief that normal flight is underway is added
(the trigger, +normalFlight), the agent will delete the last message from the sensor unit
(−su(S)) and will undertake an action to send a message to the sensor unit requesting
information (send(su, poll)). The “{. . .}” in this case is a guard condition on the plan.
Here ‘>’ always evaluates to “True”.

Agent: exec
Initial Beliefs: waitingAtRamp, direction(none)
Initial Goals: !pstartup
Plans:
+normalFlight: {>} ← −su(S), send(su , poll );
+!p pollAgents : {>} ← −su(S), send(su , poll );
+su(S ): {>} ← −nm(N), send(nm,poll );
+nm(N): {B su(S ), ¬G makeDecision(S,N) } ← +!p makeDecision(S,N);
+nm(X,N): {B su(X,S ), ¬G makeDecision(S,N) } ← +!p makeDecision(S,N);
+!p makeDecision(objAppr,headingOk) : {B normalFlight} ← +!p handleObjAppr;
+!p makeDecision(objAppr,changeHeading) : {B normalFlight} ← +!p handleObjAppr;
+!p handleObjAppr : {B normalFlight , B direction (D)}← −normalFlight, lock ,
−direction (D), + direction ( right ), unlock, +emergencyAvoid, +objectIsApproaching ,
+!p pollAgents;

The chief difference between the Gwendolen and PROMELA models is that the Execu-
tive’s behaviours are specified in terms of beliefs, desires and intentions, which provide



a richer language for describing autonomous behaviour. For instance, “the UAS is taxi-
ing”, “the UAS wants to taxi”, “the UAS believes it is taxiing”, and “the UAS intends
to taxi”, are all distinct for a BDI agent. Furthermore it is possible to reason about other
agents’ beliefs, such as “the UAS believes that the ATC believes the UAS is taxiing”,
allowing for richer interactions between different parts of the model than is found with
similar processes in PROMELA.

The trade-off is that whilst BDI agent software is more representative of natural-
world intelligent systems and provides improved expressiveness for describing autonom-
ous systems, the added complexity of the agent programs makes subsequent model
checking much slower. In general, we talk in terms of minutes and hours for verifying
UAS agent programs, as opposed to milliseconds for the simpler PROMELA programs.

In our implementation the architecture of the Gwendolen UAS model is slightly dif-
ferent from the PROMELA model. Firstly, we modelled the Executive as a Gwendolen
agent, but the ATC, NM and SU were modelled within the agent’s Java environment.
The reason for this was that it makes intuitive sense; the Executive is the autonomous
part of the model on which we focus our model checking efforts, and therefore is pro-
grammed in Gwendolen, a language for autonomous agents. Also, a future objective
is to be able to connect the Executive to simulated sensors and navigation systems
within a networked simulation environment, and replacing the Java simulated environ-
ment with a networked simulated environment was simpler than connecting Gwendolen
agent models of the SU, NM and ATC to the networked simulation environment. In
model checking terms there is little difference; the simulated SU, NM and ATC in Java
perform the same function as the corresponding processes in PROMELA, and enable the
full state space of the Executive to be explored.

4.1 Model Checking Reasoning UAS Agents

Agents are often written in agent programming languages, so we need an agent model
checker to verify agent programs [4]. We use AJPF (for Agent JPF), which works by
providing a Java interface for BDI agent programming languages called the Agent In-
frastructure Layer (AIL) [17]. Interpreters for agent programming languages are writ-
ten using the AIL, and the resulting Java program can then be verified via AJPF [2,11].
AJPF is, in turn, built on JPF, the Java PathFinder model checker developed at NASA
Ames Research Center [25,16]. For example, an agent program written in Gwendolen
is executed by an interpreter written in Java and using the AIL. Temporal properties can
then be checked against the model using AJPF. We verified our UAS agent model using
this method. For consistency we used the same subset of the Rules of the Air earlier
used for the PROMELA UAS model. The properties verified are as follows.

1. Sense and Avoid: 2(B(exec,objectIsApproaching) =⇒ B(exec,direction(right)))
2. Navigation in Aerodrome Airspace:

2(B(exec,changeHeading)∧B(exec,nearAerodrome)∧¬B(exec, toldOtherwise)
=⇒¬B(exec,direction(right)))

3. ATC Clearance: 2(B(exec, taxiing) =⇒ B(exec, taxiClearanceGiven))

Here we use the belief operator ‘B’ to specify beliefs about the agents being verified,
e.g., property 1 translates as, “It is always the case that if the agent ‘exec’ believes that
an object is approaching, then it also believes that its direction is to the right.”



In order to test the usefulness of our UAS model, we introduced a minor error into
the code to simulate a typical software engineering error. Normally, when the UAS has
discovered that there is an object approaching head-on and that it should also change
heading it prioritises the former, as avoiding a potential collision takes precedence over
navigation. However, our error caused the UAS to have no such priority. The net effect
on the UAS behaviour is that it would start to turn right to avoid the object, but would
then turn left to navigate (as it was within aerodrome airspace). Specifically, the errant
code was as follows:

+!p makeDecision(objAppr,changeHeading){ B¬normalFlight(X) }← +!p handleObjAppr(X),
+!p handleChangeHeading(X);

The model checker found the fault when we verified the “Sense and Avoid” property.

4.2 Model Checking More Advanced Autonomy in UAS Agents

The UAS agent model constructed so far will always turn right when an object is ap-
proaching head-on. This is in accordance with the Rules of the Air. However there may
be occasions when it is advantageous (or indeed necessary) for the UAS agent to dis-
obey certain Rules of the Air in order to maintain a safe situation. For instance, consider
the case where an object is approaching head-on, and the UAS agent “knows” it should
turn to the right. However, the approaching aircraft may indicate that its intention is to
turn to the left (e.g., by initiating a roll to the left, manifested by its left wing dropping).
At this point a rational pilot would assume that the other aircraft is going to turn left,
and would realise that turning right would greatly increase the possibility of a collision.
Turning left would be the more rational action to take. Likewise, if the other aircraft’s
intention is to turn right, the rational action is to turn right. If the intention is unknown,
then the rational action is to follow the Rules of the Air, i.e., turn right.

We added several plans to our UAS agent model in order to make the agent adopt
this more advanced autonomous behaviour. The sensor unit was re-written, so that in-
stead of sending an “object approaching head-on” message, it now sends information
about intentions, e.g., “object approaching head-on and its intention is to go left.” The
UAS was then enhanced to take into account beliefs about the other object’s intentions
when making a decision about which way to go when an object is approaching head-on:

+!pmakeDecision(objectApproaching(intentionTurnLeft),changeHeading) :
B normalFlight(X) <- +intention(turnLeft),+!phandleObjAppr(X)

In other words, “When the Executive has to decide between an object approaching head
on (and intending to turn left) and a directive from the navigation manager to change
heading, and the Executive believes it is in normal flight mode, it will add the belief
that the object’s intention is to turn left, and will add as a goal to handle the object
approaching by taking evasive action.” Adding such advanced autonomy will cause the
UAS agent to disobey the Rule of the Air concerning turning right when an object is
approaching head-on in the name of safety. The reason is that there will be times when
there is an object approaching head-on, but the UAS turns left because it has detected
the intention of the object is to turn left. For this reason we must modify the properties
being checked. For instance the rule in Section 4.1 concerning turning right when there
is an object approaching head-on becomes:



2(B(exec,objectIsApproaching)∧B(exec, intention(right)) =⇒B(exec,direction(right)))

In other words, “It is always the case that if the Executive believes there is an object
approaching head on and the intention of the object is to turn right, then the UAS turns
right.” We verified similar properties for the cases where the intention is to turn left and
where the intention is unknown, finding that the agent satisfied all three cases, as well
as the “Navigation in Aerodrome Airspace” and “ATC Clearance” properties.

It is important to note that, in practice, there is no conflict between this advanced
autonomous behaviour and the Rules of the Air, as the advanced behaviour is similar to
what would be expected of a human pilot. All Rules of the Air are subject to interpre-
tation, i.e., the previously mentioned airmanship; there are times when the strict Rules
of the Air must be disobeyed in order to maintain safe operations.

5 Conclusions
We have constructed basic agent models of Unmanned Aircraft Systems for two dif-
ferent model checking platforms: PROMELA / SPIN for standard model checking and
Gwendolen / AJPF for agent model checking. In each case we tested our UAS model
against a small subset of the Rules of the Air corresponding to the following cases:

1. Sense and Avoid;
2. Navigation in Aerodrome Airspace; and
3. Air Traffic Control Clearance.

These rules were chosen as interesting cases of UAS autonomy: “Sense and Avoid”
and “human in the loop” cases (rules 1 and 3 respectively) are essential for UAS en-
gineering [21]. In addition, rules 1 and 2 are interesting because they are potentially
conflicting, presenting an interesting challenge for engineering and verification.

The model we constructed in SPIN / PROMELA was very fast in terms of verifi-
cation, requiring only milliseconds and megabytes to model-check a Rule of the Air.
However, its low-level process-modelling and state-transition systems presented prob-
lems when it came to modelling more advanced autonomy, as this is something for
which those verification systems were not designed. Agent languages in the BDI tradi-
tion (Gwendolen being one such example) allow faster and more accurate engineering
of autonomous systems, but this comes at a price: in our example, the time required for
verification of a single Rule of the Air property increased to minutes and hours.

The models and temporal requirements we have used are relatively straightforward.
However, since most of the elements within the UAS control system are likely to be
similarly simple and since quite a number of Rules of the Air are similarly straight-
forward, then our preliminary results suggest that it is indeed feasible to use formal
methods (and model checking in particular) to establish UAS compliance with at least
some of the Rules of the Air. The areas where the models/designs might be more sophis-
ticated and where the Rules of the Air go beyond a straightforward representation are
considered in the subsequent section of future work. We are confident that this approach
can move us towards acceptable certification for autonomous UAS.

A possible disadvantage of our approach, from the perspective of certification of
airworthiness, is that for an existing UAS agent (written in a compiled language such
as SPARK Ada) any models written in PROMELA or Gwendolen may not be accurate,



so that the verification process will not lead to useful evidence for certification. A well-
known way to avoid this problem is to specify the agent architecture using a process
modelling language, and then use a formal software development methodology to ac-
curately implement the specification. Alternatively, in the case of AJPF, implementation
may not even be necessary as the result of the verification process is code executable
within a Java virtual machine — the agent is effectively already implemented.

Another possible difficulty is in justifying the abstractions made during the mod-
elling process. Applying our approach to a given autonomous UAS control system re-
quires modelling the system, e.g., using PROMELA or the Gwendolen agent language.
The conclusions drawn from model checking are only as useful as our confidence in
the model itself; therefore model validation is important when applying our approach
to implemented autonomous UAS systems. For similar reasons, the properties used for
model checking would need to be validated with respect to required standards of be-
haviour.

5.1 Impact

Two principal questions for UAS manufacturers are whether Formal Methods has any-
thing to offer autonomous UAS, and if so, what kind of approaches should be used
and in what manner? These are the questions that we have started to answer but the
answer is by no means complete; the construction of the models described in the paper
has shown that the SPIN and Agent JPF model checkers are well-suited to the task of
specifying and analysing autonomous UAS behaviour. Furthermore, the paper demon-
strates that these models can be checked to be in accordance with a small subset of the
Rules of the Air, a statutory document specifying many of the requirements of pilots
and aircraft in UK airspace. Therefore the paper has demonstrated that Formal Meth-
ods could indeed be useful for providing evidence to regulatory authorities that a given
autonomous UAS is airworthy and presents no additional risks beyond those currently
encountered by traditional manned aircraft. This is a small but crucial first step on the
road to certification, which is likely to require intensive investigation by both academic
and industrial researchers over the coming years. This work has begun to show how
the problem of verifying that an autonomous computer system is equivalent to a human
might be tackled.

5.2 Related and Future Work

This paper has focused on the problem of engineering and certification of autonomous
UAS, with the emphasis on verification of high-level decision making. However there is
a wealth of literature in the field of control engineering concerning automatic flight con-
trol systems (e.g., autopilot, autoland) designed to assist the safe operation of manned
vehicles [18]. In addition there is much in the literature concerning Airborne Collision
Avoidance Systems (ACAS) which have tackled the sense-and-avoid problem, primar-
ily in the arena of manned aircraft [26]. In this paper we attempted to formalise Rules
of the Air (written in natural language) to derive properties describing the desired be-
haviour of autonomous UAS. These properties could then be checked against a model of
an autonomous UAS control system. Deriving formal specifications from requirements
written in natural language has also been examined elsewhere, e.g., [19].



There have been several uses of formal methods in UAS. For example: Sward used
SPARK Ada to prove correctness of UAV cooperative software [24]; Chaudemar et al.
use the Event-B formalism to describe safety architectures for autonomous UAVs [6];
Jeyaraman et al. use Kripke models to model multi-UAV teams and use SPIN to ver-
ify safety and reachability properties amongst others [14]; Sirigineedi et al. use Kripke
models to model UAV cooperative search missions, and use the SMV model checker
to show that the UAVs do not violate key safety properties [23]. Formal methods have
also been applied to autonomous systems in the aerospace domain: Pike et al. describe
an approach to V&V of UAVs using lightweight domain-specific languages; Brat et
al. use the PolySpace C++ Verifier and the assume–guarantee framework to verify au-
tonomous systems for space applications [5]; while Bordini et al. proposed the use of
model checkers to verify human–robot teamwork in space [3]. Importantly, none of
these use formal verification to establish that an autonomous systems is “equivalent”
(even to a limited extent) to a human pilot, as we do here.

In this paper we have only modelled a very basic UAS. Adding functionality would
add complexity to the model and likely increase verification time, although quantify-
ing this is difficult without having a more complete model to hand. For a complete
test of UAS airworthiness we also need to verify the UAS subsystems with which our
“Executive” communicates: various avionics systems including sensors, actuators and
automatic flight control systems would all need to be certified separately and together,
presumably using existing methods such as SPARK Ada.

However, an obvious next step is to expand the functionality of the UAS as we
have described it, and test whether it is possible to verify it against increasingly large
subsets of the Rules of the Air. Another interesting avenue would be to obtain “real-life”
UAS source code, or an abstract state transition system describing the behaviour of an
already-operational UAS, and generate a model of its control system in order to verify
different aspects of its airworthiness.

A key area for future research is in the management of complexity: as the complex-
ity of the model of autonomous UAS behaviour increases, so will the time and space
required for verification by the model checker. However it is possible that novel abstrac-
tions, modelling techniques and advances in computer technology and model checking
software will mitigate this problem.

An immediate aim is to use the formally verified Executive agent within a virtual
prototype of an autonomous UAS, including agent(s), UAV, complex flight control sys-
tem, sensors and ground control station, and test whether Monte Carlo methods can be
used to quantify UAS behaviour and provide evidence for certification.
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