
Autom Softw Eng
DOI 10.1007/s10515-011-0088-x

Model checking agent programming languages

Louise A. Dennis · Michael Fisher ·
Matthew P. Webster · Rafael H. Bordini

Received: 13 September 2010 / Accepted: 2 May 2011
© Springer Science+Business Media, LLC 2011

Abstract In this paper we describe a verification system for multi-agent programs.
This is the first comprehensive approach to the verification of programs developed
using programming languages based on the BDI (belief-desire-intention) model of
agency. In particular, we have developed a specific layer of abstraction, sitting be-
tween the underlying verification system and the agent programming language, that
maps the semantics of agent programs into the relevant model-checking framework.
Crucially, this abstraction layer is both flexible and extensible; not only can a vari-
ety of different agent programming languages be implemented and verified, but even
heterogeneous multi-agent programs can be captured semantically. In addition to de-
scribing this layer, and the semantic mapping inherent within it, we describe how the
underlying model-checker is driven and how agent properties are checked. We also
present several examples showing how the system can be used. As this is the first
system of its kind, it is relatively slow, so we also indicate further work that needs to
be tackled to improve performance.

Keywords Multi-agent systems · Agent programming languages · BDI formal
verification · Model checking · Java PathFinder

L.A. Dennis (�) · M. Fisher
Department of Computer Science, University of Liverpool, Liverpool L69 3BX, UK
e-mail: l.a.dennis@liverpool.ac.uk

M. Fisher
e-mail: mfisher@liverpool.ac.uk

M.P. Webster
Virtual Engineering Centre, Daresbury Laboratory, Warrington WA4 4AD, UK
e-mail: matt@liverpool.ac.uk

R.H. Bordini
Institute of Informatics, Federal University of Rio Grande do Sul, PO Box 15064,
91501-970 Porto Alegre, RS, Brazil
e-mail: R.Bordini@inf.ufrgs.br

mailto:l.a.dennis@liverpool.ac.uk
mailto:mfisher@liverpool.ac.uk
mailto:matt@liverpool.ac.uk
mailto:R.Bordini@inf.ufrgs.br

Autom Softw Eng

1 Introduction

Since the introduction of the agent-based systems concept in the 1980s (Bond and
Gasser 1988; Bratman et al. 1988; Davis and Smith 1983; Cohen and Levesque 1990;
Durfee et al. 1989; Shoham 1993) the field has seen significant growth and increas-
ing research maturity. This is true not only within academia but also for industrial
applications, where the agent metaphor has been shown to be useful in capturing
many practical situations, particularly those involving complex systems comprising
flexible, autonomous, and distributed components (Klügl et al. 2005).

The large number of agent platforms now available (Bordini et al. 2005a) has
meant that the industrial uptake of this technology is continually growing. In software
development, we have seen significant commercialisation of multi-agent systems
technology, e.g., in the form of a Java-based ontology development and multi-agent
toolkit (Himoff et al. 2005). Similarly, building effective and user-friendly transporta-
tion systems is increasingly tackled using AI methodologies and multi-agent technol-
ogy in particular (Klügl et al. 2005). Other application areas have seen the emergence
of agent frameworks, financed by industry, and designed to cope specifically with in-
dustrial requirements (Hirsch et al. 2008), and such technology has been successfully
introduced in many companies (e.g., goal-oriented, autonomic process navigation;
Rimassa and Burmeister 2007). An early survey of applications of agent technol-
ogy in industrial systems control can be found in Jennings and Wooldridge (1998).
Other areas in which agents are actively used include air-traffic control (Ljunberg
and Lucas 1992), autonomous spacecraft control (Muscettola et al. 1998), and health
care (Moreno and Garbay 2003). Clearly, many of these are areas for which we must
demand software dependability and security.

As agent-based solutions are used in increasingly complex and critical areas, there
is clearly a need to analyse, comprehensively, the behaviour of such systems. Not
surprisingly, therefore, the area of formal verification techniques tailored specifi-
cally for agent-based systems is now attracting a great deal of attention (Fisher et
al. 2007). While program verification is well advanced, for example Java verification
using Java PathFinder (Visser et al. 2003; Java PathFinder 2009), the verification of
agent-oriented programs poses new challenges that have not yet been adequately ad-
dressed, particularly within the context of practical model-checking tools. Tackling
this deficiency is our long-term aim in this work.

We here consider the formal verification, via model checking, of programs writ-
ten in Agent Programming Languages (APLs). As will be described below, such
languages are significantly different from traditional programming languages and,
hence, their verification requires extended techniques. The predominant model for
agent systems is the BDI (belief-desire-intention) model (Rao and Georgeff 1992,
1995) within which agents are viewed as being rational and acting in accordance
with their beliefs and goals. As such it is important to be able to verify properties
expressed in terms of such concepts. Thus, in agent verification, we have to verify
not only what the agent does, but why it chose that course of action, what it believed
that made it choose to act in this way, and what its intentions were that led to this.
Our previous work in this area has concentrated on one particular language, AgentS-
peak (Rao 1996), whereas we here extend to any agent language that is based on the

Autom Softw Eng

BDI paradigm (Rao and Georgeff 1995) and for which a formal operational seman-
tics can be provided within our framework. In addition, we now go beyond previous
work in verifying more complex multi-agent systems. Though the performance is still
not high when a larger number of agents are considered, we show that our approach
is very flexible and, with the speed improvements envisaged, can potentially provide
an effective verification system for much larger multi-agent systems.

In essence, our framework consists of two components. The Agent Infrastructure
Layer (AIL) is a set of Java classes designed to act as a toolkit for creating inter-
preters for BDI Agent Programming languages. This toolkit is designed to make the
construction of such interpreters quick and easy once an operational semantics is pro-
vided. The second component is Agent JPF (AJPF), a version of the Java Pathfinder
(JPF) model checker (Visser et al. 2003; Java PathFinder 2009) which has been ex-
tended with a property specification language appropriate for agent programs and
some Java interfaces suitable for encapsulating multi-agent systems in an efficient
fashion.

Our aim has been to define a sufficiently general intermediate layer on which
model checking could be performed. AIL and AJPF are designed to work efficiently
together: AIL is designed to optimise model-checking time rather than execution time
and to implement the interfaces specified in AJPF.1 We are thus able to model check
the properties of any (potentially heterogeneous) multi-agent system implemented in
languages that have AIL-based interpreters. By optimising the AIL’s state represen-
tation for use with AJPF, our customised version of the JPF model checker, we avoid
the intricacies of carrying out such optimisation for each language separately, thereby
reducing the probability of introducing errors at this stage.

The work described in this paper builds on results from a number of work-
shop (Dennis et al. 2008a; Webster et al. 2009) and conference (Bordini et al.
2008) papers. It develops and updates these results and includes unpublished ap-
plications (Webster et al. 2009) developed to assess the practicality of the software.
This paper constitutes the first complete description of the final system, which is now
available on Sourceforge, at http://mcapl.sourceforge.net.

2 Background

2.1 Rational agents and multi-agent systems

The agent abstraction captures truly autonomous behaviour. As we do not con-
sider arbitrary, ‘random’ autonomy, then we assert that an autonomous system
should have some motivation for acting in the way it does. This aspect is cap-
tured by the concept of a rational agent (Bratman 1987; Cohen and Levesque 1990;
Rao and Georgeff 1992). The key aspect of a rational agent is that the decisions it
makes, based on dynamic motivations, should be both “reasonable” and “justifiable”.
In detail, a BDI agent comprises beliefs that the agent has about itself and its environ-
ment, desires (or goals) representing its long-term aims, and intentions describing the

1Note that, if required, AIL can be used without AJPF and vice versa.

http://mcapl.sourceforge.net

Autom Softw Eng

agent’s immediate goals (the ones it is currently trying to achieve through acting on
the environment where it is situated). Thus, such an agent analyses data about itself
and its environment and generates, or updates, its beliefs. The agent endeavours to
tackle its long-term aims within this context, which leads to a set of immediate goals
(intentions), which are tackled through the agent’s plans (determining appropriate
courses of action to achieve goals). When several possible (conflicting) goals exist,
the agent must undertake some deliberation and decide which intention to realise in
practise as well as reasoning about how to do so.

A multi-agent system (MAS) is a system consisting of a number of rational agents
interacting with each other. Problem solving using multi-agent systems is now an es-
tablished area of software engineering. The cooperation aspect helps solve problems
that are difficult to solve by individual agents or traditional, centralised, computer
systems. Areas in which multi-agent systems have been successful include online
trading, space missions, air traffic control, disaster response, and the modelling of so-
cial structures (Klügl et al. 2005; Hirsch et al. 2008; Rimassa and Burmeister 2007;
Moreno and Garbay 2003), to name just a few.

2.2 BDI agent programming languages

There are many different agent programming languages and agent platforms based,
at least in part, on the BDI approach. Particular languages developed for pro-
gramming rational agents include AgentSpeak (Rao 1996), Jason (Bordini et al.
2005b, 2007), 3APL (Hindriks et al. 1998; Dastani et al. 2005), DRIBBLE (van
Riemsdijk et al. 2003), Jadex (Pokahr et al. 2005), GOAL (Hindriks et al. 2001;
de Boer et al. 2007), CAN (Winikoff et al. 2002), SAAPL (Winikoff 2007),
GWENDOLEN (Dennis and Farwer 2008), and METATEM (Fisher and Hepple 2009;
Fisher and Ghidini 2010). Rather than providing a framework in which the complex
logical properties of systems using just one particular agent approach can be veri-
fied, we have developed a flexible and uniform framework allowing the verification
of a wide range of agent-based programs, produced using several different high-level
agent programming languages. Specifically, our focus has been on BDI languages,
i.e., languages that generally follow the beliefs, desires, and intentions paradigm (Rao
and Georgeff 1995) of agent-oriented programming. Consequently, the architecture
presented in this paper is based upon our study of common concepts and structures
appearing in the operational semantics of various BDI programming languages (Den-
nis et al. 2008a). Agents programmed in these languages commonly contain a set of
beliefs, a set of goals, and a set of plans. Plans determine how an agent acts based on
its beliefs and goals; the sophisticated form or plan execution is the basis for practi-
cal reasoning (i.e., reasoning about actions) in such agents. As a result of executing
a plan, the beliefs and goals of an agent may change as the agent performs actions in
its environment.

In Dennis et al. (2008a), we tackled issues in the treatment of beliefs, goals, plans
as well as events, intentions, and other components central to the design of these
languages. We started by extracting the major concepts of 3APL (Dastani et al. 2005)
and the variant of AgentSpeak (Rao 1996) encapsulated by Jason (Bordini et al. 2007)
for use in our framework. However, our approach does not exclude other languages,

Autom Softw Eng

in some cases even those based on completely different agent architectures. It was
our aim to include languages that have practical relevance. Thus, we did not want to
restrict ourselves to (abstract) programming languages that could not be considered
for serious software development projects.

2.3 Agent verification

The main approaches to detailed systems analysis can be broadly categorised as test-
ing (Hierons et al. 2009), model checking (Clarke et al. 1999), and theorem prov-
ing (Owre and Shankar 2008).

Testing is fast, but generally non-exhaustive, and thus cannot guarantee that a
property holds throughout a given system. However, the latter two techniques are
exhaustive and will, in principle, give a definite answer to the question of whether a
property holds for all program executions. Theorem proving requires a deep knowl-
edge of mathematical structures and techniques, is usually only partly automatable,
and is, in practise, often very costly, since the task can usually only be carried out
by experts. Model checking, on the other hand, relies on a complete, but automated,
inspection of the system’s state space. This makes it computationally costly (in terms
of time and space), but does not usually require a specialist as in the case of theo-
rem proving. In order to reduce the computational problems, state-of-the-art model
checkers employ a number of reduction techniques that make it possible to handle
even large state spaces relatively efficiently. Since we require an automatic/definite
answer and are looking into practical applications of verification in the design of
multi-agent programs, model checking is the most promising of the approaches.

Model checking is a technique whereby a finite description of a system is anal-
ysed with respect to a property in order to ascertain whether all possible executions
of the system satisfy this property. Formally, the property is typically described using
a temporal logic formula (Emerson 1990), while the model checking process essen-
tially involves trying to find a model within the system description for the negation of
this property. If any such model is found then it describes a ‘run’ of the system that
does not satisfy the required property (Clarke et al. 1999). In agent-based systems,
it is vital to verify not only the behaviour that the system has, but also to verify why
the agents are undertaking certain courses of action within the multi-agent system.
Thus, in our approach the temporal basis of model-checking, capturing the dynamic
nature of agent computation, is extended with modal operators (Gabbay et al. 2003)
capturing the informational (‘beliefs’), motivational (‘desires’) and deliberative (‘in-
tentions’) aspects of rational agents.

With the increasing use of multi-agent systems and the sophistication of model-
checking technology, it is not surprising that the concept of automated agent verifica-
tion has attracted significant interest. Pioneering work on model checking techniques
for the verification of agent-based systems has appeared, for example, in Bordini et al.
(2004), Kacprzak et al. (2004), Bordini et al. (2006), Raimondi and Lomuscio (2007).
Our previous work (Bordini et al. 2004, 2006) has concentrated on model checking
techniques for agent-based systems written in the logic-based agent-programming
language AgentSpeak (Rao 1996). This required a specific encoding of the AgentS-
peak agent system’s states in the input language used by the model checker. Applying

Autom Softw Eng

similar techniques to other agent programming languages would require manually en-
coding the state representation of that language. This is both tedious and error-prone.
This was a key motivation for the work presented here. Our intention was to lift away
the effort involved in developing a model checking framework for a given language
from encoding the language directly in a model checker, moving up to the level of
constructing a (model-checker backed) interpreter for the language given suitable
support.

3 AIL: a framework for creating BDI interpreters

The Agent Infrastructure Layer (AIL) is an intermediate layer that encompasses key
concepts from a wide range of BDI programming languages as data structures in
Java and enables the implementation of their operational semantics within a clear
framework. These data structures can then be used both in creating Java interpreters
for the agent programming languages and for interfacing with the underlying agent
model checker.

An agent originally programmed in some agent programming language (APL) and
running in an AIL-based interpreter uses the AIL data structures to store its internal
state comprising, typically: a belief base, a plan library, a set of intentions, and other
temporary state information. We also assume that the APL defines a reasoning cycle
which is expressed using an operational semantics. The rules in the cycle define how
the agent’s practical reasoning progresses, depending on its current internal repre-
sentation and the current stage of the reasoning cycle. The AIL provides support for
constructing reasoning cycles along with a number of rules that commonly appear in
the operational semantics of agent programming languages. The operational semantic
rules within AIL are given in Appendix A. In short, the AIL toolkit collects together
Java classes that:

1. facilitate the implementation of interpreters for various agent programming lan-
guages;

2. contain adaptable, clear, operational semantics; and
3. can be verified through AJPF, an extended version of the open source Java model

checker JPF (Visser et al. 2003).

If an AIL-based interpreter is run in conjunction with the AJPF model checker, then
the system will notify the model checker each time a new state is reached that is
relevant to the verification. It is left to the designers of interpreters to decide where,
in the reasoning cycle, such points should fall.

As a natural consequence of this, AIL also makes it easier to develop an interpreter
for a programming language using the AIL classes than it would be to build an
interpreter “from scratch” in Java. Figure 1 provides a diagrammatic representation
of AIL within the AJPF model checking architecture.

AJPF is our extension of the JPF model checker (Visser et al. 2003; Java
PathFinder 2009), which includes interfaces linking AIL interpreters to the model
checking framework and a property specification language. These interfaces also al-
low programming languages that do not have their own AIL-based interpreters to

Autom Softw Eng

F
ig

.1
A

JP
F

ar
ch

ite
ct

ur
e

(B
or

di
ni

et
al

.2
00

8)

Autom Softw Eng

be model checked against specifications written in the same property specification
language, using AJPF. However these languages will not benefit from the efficiency
improvements that the optimised AIL classes can provide. AJPF is discussed in more
detail in Sect. 4.2.

Figure 1 shows how the combination of the translated agent program(s) together
with the property specification constitutes an AJPF controller object. This controller
is used as the JPF verification target. The original program(s) with the original prop-
erty specification can be viewed as the AJPF verification target; they are fed into the
appropriate translators available as part of our framework.

3.1 Components of agent programming languages

We will now proceed to give an overview of the AIL structures available.

3.1.1 Agents

Agents are specified by a large class with multiple fields. This class is intended for
sub-classing or wrapping by language-specific interpreters which need only refer to
the fields that are of interest to them. We discuss some of the key components of
this class below. It also contains components for exploring organisational and group
structures as outlined in Dennis et al. (2008b), though we do not discuss these here.

When we have discussed many of the key data structures within an agent, we will
provide a formal definition of an AIL agent in Sect. 3.1.12.

3.1.2 Beliefs

Every agent contains a belief base of statements it believes to be true. This can
be viewed as a set of first order formulae. AIL also supports Prolog-style reason-
ing based on a rule base of Horn clauses.

3.1.3 Guards and logical consequence

AIL uses the concept of a guard on a plan (as well as on other constructs). In the
case of a plan, the guard is used to determine the applicability of the plan. In general,
guards are used whenever an agent needs to check its own state.

A guard consists of two sets of expressions. These sets represent propositions
the agent must hold (positive states)—i.e., statements it believes, goals it possesses
etc.—and propositions the agent must not hold (negative states).2 A guard represents
the conjunction of these expressions which can be checked for validity against the
agent’s internal state (so typically such expressions refer to things the agents believes
or goals it possesses). AIL provides an interface for the expressions that may appear
in guards and requires these expressions to implement a logical consequence relation
(we will write ag |= g to represent that the guard, g, is a logical consequence of

2The system distinguishes between strong and weak negation, i.e. the difference between not believing
something is the case and believing something is not the case.

Autom Softw Eng

the internal state of agent, ag). Procedurally speaking, the implementation of logical
consequence provides a decision procedure for deciding whether a guard holds in an
agent’s current state.

AIL provides a default implementation of logical consequence which provides an
algorithm for deciding whether some statement is believed by the agent, is a goal
of the agent, has been sent as a message by the agent, as well as common proposi-
tional logical statements constructed from such atomic formulae (e.g. conjunction,
disjunction, and negation).

However, since different languages may have different semantics for belief, goal,
etc., this procedure can be overridden so, for instance, a different semantics can be
supplied for what it means for a formula to be a goal of the agent. It is also possible, by
this means, for individual languages to provide custom data structures for additional
parts of an agent’s state that those languages need to appear in guards.

The default implementation of logical consequence supports reasoning using
Prolog-style Horn clauses where the literals appearing in such clauses may, them-
selves, be guards. This allows such rules to be used in languages with varying se-
mantics for the literals that appear in such rules, without each language having to
implement it’s own version of Prolog-style reasoning.

The use of the logical consequence method for reasoning about an agent’s internal
state is a key aspect of the AIL system and it provides the bridge into the agent
state for the atomic properties of the AJPF property specification language. Then, if
such properties refer, for instance, to the fact that some agent believes something, the
semantics for this is determined by the relevant agent’s implementation of the logical
consequence relation.

3.1.4 Goals

Goals are represented by a first order literal with a particular type—in the AIL toolkit
the types are achieve, perform, test and maintain (following Dastani et al. 2005).
There are rules in the toolkit distinguishing between the first three types—the fourth
is currently unsupported. There is no reason why further goal types should not be
added.

Agents do not maintain an explicit list of goals. Instead they deduce their goals
from the “commit to goal” events that are found in their set of intentions. However,
the ‘Agent’ class provides a number of methods that allow the agent to be treated as if
it did maintain an explicit set of goals. In reality these methods inspect the intention
data structure.

3.1.5 Intentions

AIL’s most complex data structure is that which represents an intention. BDI lan-
guages use intentions to store the intended means for achieving goals—this is gen-
erally represented as some from of deed stack (deeds include actions, belief updates,
and the commitment to goals). Intention structures in BDI languages may also main-
tain information about the (sub-)goal they are intended to achieve or the event that
triggered them. In AIL, we aggregate this information: an intention becomes a stack

Autom Softw Eng

of tuples of an event, a guard, a deed, and a unifier. This AIL intention data structure
is most simply viewed as a matrix structure consisting of four columns in which we
record events (new perceptions, goals committed to and so forth), deeds (a plan of
future actions, belief updates, goal commitments, etc.), guards (which must be true
before a deed can be performed) and unifiers. These columns form an event stack, a
deed stack, a guard stack, and a unifier stack. Rows associate a particular deed with
the event that has caused the deed to be placed on the intention, a guard which must
be believed before the deed can be executed, and a unifier. New events are associated
with an empty deed, ε.

Example The following shows the full structure for a single intention to clean a
room. We use a standard BDI syntax: !g to indicate the goal g, and +!g to indicate
the commitment to achieve that goal (i.e., a new goal that g becomes true is adopted).
Constants are shown starting with lower case letters, and variables with upper case
letters.

Event Deed Guard Unifier

+!clean() +!goto(Room) dirty(Room) Room = room1
+!clean() +!vacuum(Room) � Room = room1

This intention has been triggered by a desire to clean—the commitment to the goal
clean() is the trigger event for both rows in the intention. An intention is processed
from top to bottom so we see here that the agent first intends to commit to the goal
goto(Room), where Room is to be unified with room1. It will only commit to this
goal if it believes the (guard) statement, dirty(Room). Once it has committed to that
goal it then commits to the goal vacuum(Room). In many languages the process of
committing to a goal causes an expansion of the intention stack, pushing more deeds
on it to be processed. So goto(Room) may be expanded before the agent commits to
vacuuming the room. In which case the above intention might become

Event Deed Guard Unifier

+!goto(Room) +!planRoute(Room, Route) � Room = room1
+!goto(Room) +!follow(Route) � Room = room1
+!goto(Room) +!enter(Room) � Room = room1
+!clean() +!vacuum(Room) � Room = room1

At any moment, we assume there is a current intention which is the one being
processed at that time. The function Sint (implemented as a method in AIL) may be
used to select an intention. By default, this chooses the first intention from a queue,
but this choice may be overridden for specific languages and applications. Intentions
can be suspended which allows further heuristic control. A suspended intention is,
by default, not selected by Sint. Typically an intention will remain suspended until
some trigger condition occurs, such as a message being received. Many operational
semantic rules (such as those involved with perception) resume all intentions—this
allows suspension conditions to be re-checked.

Autom Softw Eng

3.1.6 Events

Events are things that occur within the system to which an agent may wish to react.
Typically we think of these as changes in beliefs or the new commitment to goals. In
many (though not all) programming languages, events trigger plans (i.e., a plan might
selected for execution only when the corresponding event has taken place).

In AIL there is a special event, ‘start’, that is used to start off an intention
which is not triggered by anything specific. This is mainly used for the initial goals
of an agent—the intention begins as a start intention with the deed to commit to a
goal. In some languages the belief changes caused by perception are also treated in
this way. Rather than being added directly to the belief base, in AIL such beliefs are
assigned to intentions with the event start and then added to the belief base when
the intention is actually executed.

3.1.7 Deeds

Deeds appear in the bodies of plans and as stacks in intentions, and represent things
the agent is planning to do but has not yet actually done. Deeds include:

Beliefs: an agent may both plan to add or to drop a belief.
Goals: an agent may both plan to commit to a goal (a sub-goal) or to drop a goal.
Actions: an agent may plan to perform an action.
No Plan Yet: the “no plan yet” deed is used when an intention contains an event that

has yet to be planned for; we represent the “no plan yet” deed with the distinguished
symbol, ε.

Lock/Unlock: a deed can lock or unlock an intention; the idea here is to allow an op-
erational semantics to, under some conditions, force an intention to remain current
until it is unlocked.

Waiting: the wait for deed allows intentions to be suspended until a particular guard
is satisfied in the agent’s state. We represent “waiting for guard g”, as ‘∗g’. The idea
is to allow an operational semantics to remove an intention from consideration by
Sint until some condition is met.

3.1.8 Plan library

The Agent class also contains a plan library. Plans are matched against intentions
and/or the agent’s state and manipulate existing (or create new) intentions. There are
four main components to a plan, as follows.

1. A trigger event which may match the top event of an intention.
2. A prefix which may match the top of an intention’s deed stack.
3. A guard stack: the top guard is checked against the agent’s state for plan appli-

cability. The rest of the stack is paired off against the rows in the body and may
provide additional conditions for that row’s execution.

4. A body which is the new deed stack that the plan proposes for execution.

Reactive plans do not have trigger events but instead react to the current state (e.g. the
beliefs and goals) of the agent. By convention, within the AIL these have a variable

Autom Softw Eng

representing an achieve goal as a placeholder for a trigger but this is not used by plan
selection which focuses simply on checking whether their guard follows from the
agent state.

Example Recall our previous example intention:

Event Deed Guard Unifier

+!clean() +!goto(Room) dirty(Room) Room = room1
+!clean() +!vacuum(Room) � Room = room1

A plan that matches this intention is

trigger +!clean()

prefix +!goto(Room)
+!vacuum(Room)

guard ¬ dirty(Room)

body +!find_dirty_room(Room2)

So if the current intention was triggered by goal !clean() (the trigger event), and it
currently intends to go to a room and vacuum it (prefix), but that room is not dirty
(guard), it proposes, instead, to replace that part of the intention with the goal of
locating a dirty room. If this plan was applied, the intention would become:

Event Deed Guard Unifier

+!clean() +!find_dirty_room(Room2) ¬ dirty(Room) Room = room1

It is more common for plans to match only intentions which contain unplanned goals
(i.e., those associated with the “no plan yet” deed, ε). For instance after a commitment
to goto(Room) the above intention might appear as:

Event Deed Guard Unifier

+!goto(Room) ε � Room = room1
+!clean() +!goto(Room) dirty(Room) Room = room1
+!clean() +!vacuum(Room) � Room = room1

which would match the plan

trigger +!goto(Room)

prefix ε

guard current_floor(ground) ∧ upstairs(Room)
�

body +!goto(stairs)
+!goto(Room)

This would transform the intention to:

Autom Softw Eng

Event Deed Guard Unifier

+!goto(Room) +!goto(stairs) current_floor(ground)
∧ upstairs(Room) Room = room1

+!goto(Room) +!goto(Room) � Room = room1
+!clean() +!goto(Room) dirty(Room) Room = room1
+!clean() +!vacuum(Room) � Room = room1

Applicable plans Applicable Plans represent an interim data structure that describes
how a plan from an agent’s plan library changes the current intentions. Essentially an
applicable plan states how many rows are to be dropped from the intention and what
new rows are to be added. The new rows are generated from an event, a guard stack,
a unifier and a stack of deeds. The guard and deed stacks are the same size. The new
intention rows are generated by creating a row for each deed and guard on the two
stacks and associating the event and unifier with each of those rows (so the event and
unifier are duplicated several times).

Therefore, an applicable plan is a tuple, 〈pe,pg,pds,pθ , n〉, of an event pe,
a guard stack pg , a deed stack pds , a unifier pθ and the number of rows to be dropped,
n. The applicable plan in the first example above would be

〈+!clean(), [¬dirty(Room)], [+!find_dirty_room(Room2)], {Room = room1},2〉
(1)

or in the previous tabular presentation we could represent this as:

Drop 2 Lines
replace with

Event Deed Guard Unifier

+!clean() +!find_dirty_room(Room2) ¬ dirty(Room) Room = room1

The applicable plan for the second example would be

〈+!goto(Room), [current_floor(ground) ∧ upstairs(Room);�],
[+!goto(stairs);+!goto(Room)], {Room = room1},1〉 (2)

or

Drop 1 Line
replace with

Event Deed Guard Unifier

+!goto(Room) +!goto(stairs) current_floor(ground) ∧
upstairs(Room) Room = room1

+!goto(Room) +!goto(Roo) � Room = room1

Applicable plans are used because many APL reasoning cycles first go through a
phase where they determine a list of applicable plans and then move to a phase where
they pick one plan to be applied. The function Splan (implemented as a Java method

Autom Softw Eng

in AIL) is used to select one applicable plan from a set. By default, this treats the set
as a list and picks the first plan, but it may be overridden by specific languages and
applications.

Applicable plan generation method For the purposes of this discussion, we will
write plans using the syntax pe : pp : pgu : pd where pe is the trigger event, pp is the
prefix, pgu is the guard, and pd is the body.

AIL provides a default function, appPlans, for the generation of applicable plans
from the current intention and an agent’s internal state. This function creates two sets
of applicable plans. The first set is, essentially, the applicable plans for continuing to
process intention i without any changes:

{〈hde(i),hdg(i),hdd(i), θ ∪ θhd(i),1〉 | (ag |= hdgθ
hd(i), θ) ∧ (hdd(i)θθhd(i) �= ε)}

(3)
Here, hde(i) is the top event in i, hdg(i) is the top guard, hdd(i) is the top deed, and
θhd(i) is the top unifier. The notation ag |= g, θ means that the guard, g, is satisfied by
agent ag given unifier θ . The notation tθ indicates the application of unifier θ to term
t . So, for instance, hdd(i)θθhd(i) is the result of applying the unifiers θ and θhd(i) to
the top deed on the intention.

Note that the above generates an empty set if the intention’s top deed is the “no
plan yet” deed, ε.

The second set is

{〈pe,pgu,pd, θ
hd(i) ∪ θ,#pp〉| pe : pp : pgu : pd ∈ P∧

#pp > 0 → (hde(i) |= pe ∧ unifier(pp, i) = θe) ∧ ag |= hd(pgu)θe, θ}
Here, hde(i) |= pe means that the plan’s trigger event follows from the top event on
the current intention. This allows for Prolog-style reasoning on plan triggers and is
a version of the logical consequence method. Function unifier(pp, i) generates the
unifier of the plan prefix with the top n rows of intention i where n = #pp (the size of
the stack of the plan’s prefix).

This general mechanism for deriving applicable plans has proved sufficient for all
the APLs implemented in the AIL to date.

3.1.9 Actions

Actions are the means by which an agent affects the external world, and are normally
represented as first order terms. In general, when an agent encounters an action, it
will cause the execution of “native” code—i.e., code typically developed with tradi-
tional programming paradigms rather than code developed for rational behaviour in
autonomous systems—to take place in the environment. For instance an action, in a
robot, to pick up an object is likely to execute detailed control system code to handle
the actual task of picking something up, and this is normally programmed in standard
programming languages for control.

Autom Softw Eng

3.1.10 Inbox and outbox

Agents maintain Inboxes and Outboxes for storing messages. The default logical con-
sequence method checks the Outbox (to check that a message has been sent) but not
the Inbox—so far the operational semantics implemented have used the Inbox only
for temporary storage of messages which are then processed by the agent, but in
principle the method could be extended to check for received messages as well. It
should be noted that storing all messages sent or received is potentially inefficient
and languages are not required to use the inboxes and outboxes in the agent class.

3.1.11 Reasoning cycle

Agents are assigned a “reasoning cycle” by the language in which they are written.
Each stage of a language’s reasoning cycle is typically formalised as a disjunction of
semantic rules which define how an agent’s state may change during the execution
of that stage. Any rule to be used as part of an AIL agent reasoning cycle has to im-
plement a particular Java interface. This can be achieved either by implementing the
interface directly or by sub-classing an existing rule. The combined rules of the var-
ious stages of the reasoning cycle define the operational semantics of that language.
The construction of an interpreter for a language involves the implementation of these
rules (which in some cases may already exist in the language’s original toolkit) and
the implementation of a reasoning cycle, by organising the rules into (the stages of)
such a cycle.

In this way, we have implemented, for example, both GOAL (de Boer et al. 2007)
and SAAPL (Simple Abstract Agent Programming Language) (Winikoff 2007) inter-
preters, following their respective operational semantics (Dennis and Fisher 2008) as
well as a GWENDOLEN interpreter (Dennis and Farwer 2008).3 The implementations
of these interpreters make use of the AIL operations together with some additional
classes specifically added to reproduce faithfully the semantics of those languages.

3.1.12 Formal definition of an AIL agent

An AIL agent can be formalised as a tuple consisting of

– The agent’s name (a string), ag.
– The agent’s belief base (a set of beliefs), B.
– The agent’s rule base (a set of prolog-style rules for reasoning about guards), R.
– The agent’s plan library, P.
– The agent’s current intention (which may be empty), i.
– The agent’s other intentions, I.
– The agent’s currently applicable plans, appPlans.
– The agent’s inbox of unprocessed messages, In.
– The agent’s outbox of sent messages, Out.
– The current stage of the agent’s reasoning cycle, S.

3The GWENDOLEN language was developed as a side effect of some of the initial design work on the AIL.

Autom Softw Eng

Operational semantic rules operate on this tuple to change the agent’s state. It should
be noted that individual language implementations may add further elements to this
tuple as well as ignore some elements.

A multi-agent system therefore consists of a tuple of several agents and an envi-
ronment (ξ). The environment has to provide certain services to the agent (the ability
to access perceptions, and take actions) but has no formal semantics of its own gov-
erning how it should alter from state to state; a model of the environment is assumed
to be provided by AIL users in Java.

3.2 Example: Implementing an interpreter for an agent programming language

GOAL (Hindriks et al. 2001; de Boer et al. 2007) is a BDI language introduced by
Hindriks et al. to illustrate the use of purely declarative goals in agent programming.
An agent is defined by its mental state comprising two sets of formulae: Σ for the
agent’s beliefs; and Γ for the agent’s goals. GOAL assumes an underlying logic on
its formula language, L , with an entailment relation |=C ; its semantics then defines
entailment for mental states as follows:

Definition 1 Let 〈Σ,Γ 〉 be a mental state:

〈Σ,Γ 〉 |=M Bφ iff Σ |=C φ,
〈Σ,Γ 〉 |=M Gψ iff ψ ∈ Γ ,
〈Σ,Γ 〉 |=M ¬φ iff 〈Σ,Γ 〉 �|=M φ,
〈Σ,Γ 〉 |=M φ1 ∧ φ2 iff 〈Σ,Γ 〉 |=M φ1 and 〈Σ,Γ 〉 |=M φ2.

An agent’s behaviour is governed by its capabilities and conditional actions.

Capabilities are associated with a partial function T : Bcap × ℘(L) → ℘(L),
which operates on the belief base Σ in order to alter it. Capabilities may be enabled
or not for an agent in a particular configuration. If the capability is not enabled then
T is undefined. T is used by the mental state transformation function M to alter
the agent state as follows:

Definition 2 Let 〈Σ,Γ 〉 be a mental state, and T be a partial function that associates
belief updates with agent capabilities. Then the partial function M is defined by:

M (a, 〈Σ,Γ 〉)

=
{

〈T (a,Σ),Γ \{ψ ∈ Γ | T (a,Σ) |=C ψ}〉 if T (a,Σ) is defined,

is undefined for a ∈ Bcap if T (a,Σ) is undefined
(4)

M (drop(φ), 〈Σ,Γ 〉) = 〈Σ,Γ \{ψ ∈ Γ | ψ |=C φ}〉 (5)

M (adopt(φ), 〈Σ,Γ 〉)

=
{

〈Σ,Γ ∪ {φ′ | Σ �|=C φ′, |=C φ → φ′}〉 if �|=C ¬φ and Σ �|=C φ

is undefined if Σ |=C φ or |=C ¬φ
(6)

Autom Softw Eng

Lastly, an agent has a set of conditional actions, Π . Each conditional action con-
sists of a guard, φ, and a capability or instruction, a, written φ � do(a). The condi-
tional actions together with a commitment strategy provide a mechanism for selecting
which capability to apply next.

Definition 3 Let 〈Σ,Γ 〉 be a mental state with b = φ � do(a) ∈ Π . Then, as a rule,
we have: If

1. the mental condition φ holds in 〈Σ,Γ 〉, i.e. 〈Σ,Γ 〉 |=M φ, and
2. a is enabled in 〈Σ,Γ 〉, i.e., M (a, 〈Σ,Γ 〉) is defined,

then 〈Σ,Γ 〉 b−→M (a, 〈Σ,Γ 〉) is a possible computation step. The relation −→ is the
smallest relation closed under this rule.

The commitment strategy determines how conditional actions are selected when
several potentially apply and this is not specified directly by the GOAL semantics.

3.2.1 GOAL implemented with AIL

We discuss the implementation of GOAL with AIL. This work was reported in Den-
nis and Fisher (2008) so we here focus on some key aspects, in order to use it as an
example.

GOAL agents were implemented as sub-classes of the AIL agent class. To model
GOAL’s mental states we treated the AIL belief base as the GOAL belief base Σ .
Although the AIL agent does not contain a specific goal base, we were able to use
the method for extracting goals from intentions to represent Γ ; a slight modification
was needed to the method to return only achievement goals.4

The implementation of |=M was straightforward. Belief formulae of the form B(φ)

are equivalent to the expressions appearing in AIL’s guards and use of AIL’s own
logical consequence method was sufficient.

3.2.2 Capabilities and conditional actions

We chose to model both capabilities and conditional actions as AIL plans, since both
control how an agent reacts to its environment.

Inherent in the description of a capability is the idea that the agent performs an
action associated with the capability and then makes a number of belief updates. We
treated capabilities as perform goals because they function as steps/sub-goals that
an agent should perform, yet they are not declarative. AIL requires the execution of
actions to be triggered explicitly so we decided to treat T (a,Σ) as a function on the
belief base paired with an optional action. We write this as T (a,Σ) = do(a)+f (Σ)

and represent it in the AIL as a plan, where the range of f is a deed stack of belief
updates. The enabledness of a capability is then governed by the plan guard.

4As we discuss later, we also used perform goals to model capabilities and did not want these to be returned
as part of Γ .

Autom Softw Eng

For simplicity, we abstract the full agent state and consider it just as a short tuple of
the agent name, current intention, and other intentions: 〈ag, i, I〉. Conditional actions
were modelled as reactive plans with φ as the plan guard. In both cases we were able
to use the default mechanisms for plan matching and application.

Although we used the default appPlans algorithm, we incorporated custom oper-
ational semantic rules within this. For instance, for applying a capability we used the
rule:

Δ = {〈a, a′;f ′(Σ)〉 | a ∈ Bcap ∧ enabled(a) ∧ T (a,Σ) = do(a′) + f ′(Σ)}
Δ �= ∅ Splan(Δ) = 〈a, a;f (Σ)〉

〈ag, (a, ε); i, I〉 → 〈ag, (a, a;f (Σ)); i′, I\{i′} ∪ {i}〉 (7)

This was a new rule but made use of pre-existing AIL operations (such as Splan).
Δ represents the output of appPlans.

By way of illustration, we show some of the Java code for the new “Plan with Ca-
pabilities” rule. The key methods of an AIL operational semantics rule are check-
Preconditions and apply which, broadly speaking, represent the conditions
for valid rule application and the effects of applying the rule. The precondition for
the rule application is that

Δ �= ∅ (8)

The equivalent code is:

public boolean checkPreconditions(AILAgent a)
{

Intention i = a.getIntention();
if (i.empty())

return false;

if (i.hdE().getGoal().getGoalType() == Goal.performGoal)
{

if (a.filterPlans(a.appPlans(i)).isEmpty())
return false;

else
return true;

}

return true;
}

appPlans is the Java implementation of appPlans and returns the set Δ; the above
method returns true if this set is non-empty. filterPlans is an overridable method
allowing the applicable plan list to be modified in an application specific fashion if
desired. By default it does nothing. The test

i.hdE().getGoal().getGoalType() == Goal.performGoal

restricts the method so it only succeeds if the head event of intention i is a “perform
goal” (since capabilities are represented by perform goals). The application of the
rule is then governed by the code:

Autom Softw Eng

public void apply(AILAgent a)
{

Intention i = a.getIntention();
LinkedList<ApplicablePlan> delta = a.filterPlans(a.appPlans(i));

GOALAgent ga = (GOALAgent) a;
ApplicablePlan p = ga.selectPlan(delta, i);

i.dropP(p.getN());
i.iConcat(p.getEvent(), p.getPrefix(),

p.getGuard(), p.getUnifier().clone());
}

Here we select a capability, p, from Δ (selectPlan is the implementation of
Splan). We drop (using dropP) the appropriate number of lines (p.getN()) from
the intention (as specified by the applicable plan), and then add (using iConcat) a
new row onto the intention consisting of the event, prefix, guard, and unifier of p. All
these methods are provided by the AIL.

3.2.3 The reasoning cycle

AIL assumes a reasoning cycle that passes through a number of explicit stages to
which rules are assigned. We therefore analysed the GOAL operational semantics to
identify stages. It first selects a conditional action (this involved a new rule, similar to
the rule for planning with a capability shown above); then processes the conditional
action by applying M ; this generally involves selecting a capability and applying it
(equivalent to using our new rule above to select a capability) and then processing
the effects of that capability as specified by T (this was easily implemented using
existing rules for performing actions and handling belief updates).

3.2.4 Faithfulness of the implementation

Any claim to have implemented the operational semantics of a language is faced
with correctness issues involved in transferring a transition system to, in this case,
a set of Java classes. Verifying implementations is a complex undertaking. Such a
verification effort would be a significant task and falls outside the scope of this work.
However, that aside, it is also the case that we have not directly implemented the
system presented in de Boer et al. (2007) but a variant of it using, for instance, our
representation of capabilities. The question arises: “Are these two transition systems
equivalent?” Although we have not done such proofs, we believe they would not
represent an insurmountable amount of work.

4 AJPF: verification for multi-agent systems

4.1 Java PathFinder

Java PathFinder (JPF) is an explicit-state Open Source model checker for Java pro-
grams (Visser et al. 2003; Java PathFinder 2009). JPF is implemented in Java and
provides a special Java Virtual Machine (JVM) running on top of the host JVM

Autom Softw Eng

and exploring all executions that a given program can have, resulting from thread
interleavings and non-deterministic choices. JPF’s backtracking JVM executes Java
bytecodes using a special representation of JVM states. Essentially, JPF uses Java’s
listener mechanism to provide a representation of an automaton that is attempting to
build a model based on the program execution. As the program proceeds, the listener
recognises state changes and checks against user specified properties. At appropriate
times this JVM might backtrack and the listener might be reset.

JPF employs state-of-the-art state-space reduction techniques, such as on-the-fly
partial-order reduction, i.e., combining instruction sequences that only have effects
inside a single thread and executing them as a single transition. This ensures that—
out of the box—JPF is a usable (though not very efficient) program model checker;
it also should be noted that recent improvements in JPF make it orders of magnitude
faster than previous versions. Nevertheless, we have to ensure that the state space
relevant to an agent system remains as small as possible. For instance, we want to
ensure that only relevant backtrack points are stored (i.e., backtracks points in the
execution of the operational semantics and not incidental backtrack points in the low-
level Java code), thereby limiting the state space and improving the efficiency of
model checking.

As well as its usability, we have chosen JPF for several other reasons. Firstly, a
large number of APL interpreters are implemented in Java, so a model checker for
Java programs was naturally the first choice. Secondly, in order to customise the
model checker for our needs and provide it to the public as an Open Source project,
we needed the underlying model checker to be Open Source too. Since we were to
do significant work in extending the model checker to an agent context (for example,
using interfaces), we preferred a model checker working within a standard but higher
level programming language. Lastly, we preferred a model checker with an active
development team and one that had been developed to provide good extensibility
mechanisms. Taking into account these prerequisites, the obvious choice was to base
our framework on the Open Source Java model checker JPF.

4.2 AJPF architecture

The AJPF architecture consists of the JPF model checker, the AJPF interfaces, a prop-
erty specification language (PSL), the controller and AJPF listener classes, and a fam-
ily of language parsers and translators. A schematic diagram of the architecture was
shown in Fig. 1.

A given program, written in one of the supported APLs, is translated into its AIL
representation and embedded in an AJPF controller object. The result is a Java pro-
gram that includes parts of the AIL libraries. This Java program becomes half of the
JPF verification target, but instead of invoking standard JPF, we use the JPF extension
mechanisms to configure our own listener. This implements the property specifica-
tion language and performs the checking of the property that is supplied with the
program. The property is represented as a Büchi Automaton (Sistla et al. 1987). The
AJPF controller object combines this Büchi Automaton and the AIL program and
then the controller governs when properties are checked and the Büchi Automaton
advanced. This is linked to the progress of the agent reasoning cycle.

Autom Softw Eng

4.3 The AJPF agent system interfaces—use and semantics

AJPF (see Fig. 1) provides interfaces for model checking a multi-agent program
against a property specification written in the Property Specification Language (PSL)
introduced later (in Sect. 4.4). AJPF requires that, for any given APL, two Java inter-
faces are implemented: one for individual agents and another for the overall multi-
agent system. This software layer provides an AJPF controller which requests a list
of agents from the multi-agent system and encapsulates each of them in a special
thread object which alternately calls one reasoning step of the agent, anticipated to
be one full run of the reasoning cycle, and then checks this against the specification
by calling, for instance, methods that implement belief checking as defined by the
specific language. It should be noted that this means the notions of belief, goal, etc.
defined within the AIL classes are those invoked by the property checking algorithm.
So any language that has an AIL-based interpreter inherits this semantics although in-
dividual methods can, of course, be over-ridden. For languages without an AIL-based
interpreter, these notions have to be formalised in the implementation of the AJPF in-
terface. Properties are also checked when JPF detects that an “end state” is reached
(this could indicate a cycle in the states of a run as well as program termination).

4.3.1 BDI languages without formal semantics

The AIL toolkit is designed for the prototyping of languages which have a clearly
defined BDI-based operational semantics. The construction of AJPF however does
mean that in principle it could be used with agent platforms that have no clear
semantics but which are, nevertheless, implemented in Java. The JACK frame-
work (Winikoff 2005), for instance, provides a set of Java classes for programming
agents which embody BDI concepts such as beliefs, goals, and plans. In theory, there-
fore, the appropriate modalities of the property specification language could be de-
fined for JACK programs and, assuming a reasoning steps can be identified, then
JACK programs could be model checked using AJPF.

In reality such an attempt is likely to encounter efficiency problems since the
JACK code will not make use of atomic sections and state matching hints in order to
reduce the model checking state space, so even for a small programs full verification
may not be possible in practise.

4.3.2 Environmental models

Since we are dealing with Java programs, we generally assume that the environment
in which they operate is also a Java program that can be included in the closed sys-
tem for model checking. Obviously there are situations where this is not the case, for
instance if the programs we are checking are intended to run on robots that operate
in the real world. In these cases they have to be model checked against an abstraction
of the real environment that would have to be, again, implemented in Java. The same
is the case for applications which are intended to be distributed across several differ-
ent machines. AJPF relies upon Java’s thread model for asynchronous execution of
agents and can only check a single program executing on a single machine. Therefore
the effects of a distributed environment would need to be abstracted into a (possibly
multi-threaded) single program environment for model checking in AJPF.

Autom Softw Eng

4.4 Specification of properties

In our framework, we are interested in verifying simple properties about goals, be-
liefs, actions, etc. We do not, in this approach, tackle the verification of properties
involving nested modalities, such as beliefs of one agent concerning the beliefs of
another agent. Hence, we do not implement a property specification language based
on a fully expressive logic of beliefs or knowledge.

A typical property of an agent-based protocol specification could be described by
a statement such as: “given an agent a with a goal g and a set of current beliefs
{b1, . . . , bn}, will a eventually believe g?”

Properties are specified at the AJPF level. For agents running on an AIL-based
interpreter, the semantics of the properties are already specified as part of the AIL
toolkit itself. The PSL allows users to refer to agent concepts at a high level, even
though JPF carries out model checking at the Java bytecode level.

We use a property specification language based on propositional linear-time tem-
poral logic (LTL) (Emerson 1990) with added modalities for agents’ beliefs, goals,
etc. It should be noted that, since it was released as Open Source, JPF no longer
supports LTL model checking. Our implementation therefore represents a significant
addition to JPF. Also, we do not tackle more complex properties such as those in-
volving nested beliefs and so the PSL defined below is relatively “shallow”.

The PSL syntax for property formulae φ is as follows, where ag is an “agent
constant” and f is a ground first-order atomic formula:

φ ::= B(ag, f) | G(ag, f) | A(ag, f) | I(ag, f) | P(f) | φ ∨ φ | ¬φ | φ Uφ | φ Rφ

Intuitively, B(ag, f) is true if ag believes f to be true, G(ag, f) is true if ag has a
goal to make f true, and so on (with A representing actions, I representing intentions,
and P representing percepts, i.e., properties that are true in the environment).

We next examine the specific semantics of property formulae. Consider a program,
P , describing a multi-agent system and let MAS be the state of the multi-agent system
at one point in the run of P . Let ag ∈ MAS be an agent at this point in the program
execution. Then

MAS |=MC B(ag, f) iff ag |= f

where |= is logical consequence as implemented by the agent programming language.
The interpretation of G(ag, f) is given as:

MAS |=MC G(ag, f) iff f ∈ agG

where agG is the set of agent goals (as implemented by the APL). The interpretation
of A(ag, f) is:

MAS |=MC A(ag, f)

if, and only if, the last action changing the environment was action f taken by agent
ag. Similarly, the interpretation of I(ag, f) is given as:

MAS |=MC I(ag, f)

Autom Softw Eng

if, and only if, f ∈ agG and there is an intended means for f (in AIL this is interpreted
as having selected some plan that can achieve f). Finally, the interpretation of P(f)

is given as:

MAS |=MC P(f)

if, and only if, f is a percept that holds true in the environment.
The other operators in the AJPF property specification language have standard

LTL semantics (Emerson 1990) and are implemented by the AJPF interface. Thus,
the classical logic operators are defined by:

MAS |=MC ϕ ∨ ψ iff MAS |=MC ϕ or MAS |=MC ψ

MAS |=MC ¬φ iff MAS �|=MC φ.

The temporal formulae apply to runs of the programs in the JPF model checker. A
run consists of a (possibly infinite) sequence of program states MASi , i ≥ 0 where
MAS0 is the initial state of the program (note, however, that for model checking the
number of different states in any run is assumed to be finite). Let P be a multi-agent
program, then

MAS |=MC ϕ Uψ iff in all runs of P there exists a state MASj such that
MASi |=MC ϕ for all 0 ≤ i < j and MASj |=MC ψ

MAS |=MC ϕ Rψ iff either MASi |=MC ϕ for all i or there exists MASj such
that MASi |=MC ϕ for all i ∈ {0, . . . , j} and
MASj |=MC ϕ ∧ ψ

The common temporal operators ♦ (eventually) and � (always) are derivable from U
and R (Emerson 1990).

Typically, APLs do not fully implement logics of belief so, as mentioned above,
we use shallow modalities which are like special predicates—however, this does not
preclude users, when implementing the AJPF interfaces, from developing a more
complex belief logic based on their agent state. The implementation of the modali-
ties defines their semantics (e.g., for belief) in that specific language. The AIL im-
plements these interfaces and so defines an AIL specific semantics for the property
specification language; supported languages that use the AIL must ensure that their
AIL-based interpreters are constructed in a way that makes the AIL semantics of the
properties consistent with the language’s individual semantics for those modalities
(otherwise they cannot use the AIL implementation and will need to override it using
the AJPF interface).

4.5 Heterogeneous multi-agent systems

As stated above, the AJPF controller object accepts a set of AJPF agent objects and
executes steps of their reasoning cycles, followed by property checks. Since it simply
accepts objects that satisfy its interfaces, it is agnostic about the actual semantics of
their reasoning cycles and does not require each agent to be using the same semantics
at all (although it is necessary for all the agents to interact with the same environ-
ment). This makes it as simple to encode a heterogeneous multi-agent system as it is
to encode a system using only a single agent programming language.

Autom Softw Eng

In Dennis and Fisher (2008) we investigated a scenario comprising GWENDOLEN,
GOAL and SAAPL agents working together. We were able to successfully imple-
ment and verify this system within AJPF. In that work, AIL was found to be appro-
priate for the three languages and we were able to implement interpreters for SAAPL
and GOAL with relative ease.5 The SAAPL interpreter took about a week to imple-
ment and debug while the GOAL interpreter took about two weeks. Once correctly
implemented, it was simple to incorporate, run, and verify a heterogeneous multi-
agent system.

4.6 Benefits of using AIL and AJPF

The benefits of using the AIL are many, with the main incentives being verification
via model checking and the support for heterogeneous multi-agent systems. The flex-
ibility of our approach arises from the fact that the agents can be programmed in a
variety of agent-oriented programming languages. This unifying approach to model
checking and execution of (heterogeneous) agent systems is an important step to-
wards the practical use of verification techniques, which is essential as dependable
systems are increasingly required in many areas of applications of agent technology.

Previous approaches to model checking multi-agent programs focused on a spe-
cific APL, e.g. AgentSpeak (Bordini et al. 2006). A language-specific translation of
multi-agent systems into models written in the input language of exiting model check-
ers, generating models that were very difficult to understand, had to be developed; it
should also be noted that there is an incredible number of different agent program-
ming languages currently in use in the Agents community. Conceiving and imple-
menting such translations is a tedious, complicated (given the restrictions of typical
model checker input languages), and error-prone task that is avoided in the present
approach by using an intermediate agent representation that is tailored to multi-agent
systems. By lifting the implementation effort away from the model checker to AIL,
we make it less tedious and error-prone as we provide tools that are a good match to
the operational semantics of agent programming languages.

The architecture of the AIL and AJPF is much more flexible than previous ap-
proaches to model checking for agent-based systems. Despite the greater flexibility,
we have taken precautions in the construction of the architecture and the internal
optimisations of AJPF to ensure that it works relatively efficiently.

We have developed AIL so that new APLs can easily be incorporated into our
framework. Even without re-programming a language interpreter using the AIL
classes, it is possible to integrate agent programs written in a variety of languages into
our verification and execution framework by interfacing their interpreters directly to
AJPF. Property specification is uniform amongst all languages that use either the AIL
data structures or implement their own notions of belief, goal, action, etc.

4.7 Efficiency issues

In general, model checking suffers from what is known as the state-space explosion
problem, i.e., the problem that the state space for search increases exponentially as

5An interpreter for GWENDOLEN had been developed while implementing the AIL.

Autom Softw Eng

the system increases in size. It is therefore important to make sure that only essential
information is stored in the states that constitute the system to be checked. Using
JPF means that the state space that is actually checked is the state space of the Java
program representing the AIL agent program. In the remainder, when speaking of
the abstract state space, we refer to the state space of the multi-agent system bar any
additions to the state space that might have been introduced by the translation and use
of AIL classes. For efficiency it is, of course, desirable to avoid as many additional
states as possible that do not add to the overall behaviour, thus being theoretically
harmless.

In spite of this, AJPF is not fast. Partly, this is because JPF is itself not a particu-
larly fast model checker (though it is both flexible and appropriate) and partly it is be-
cause of the non-trivial additional semantic layer that is added in AJPF. Interestingly
recent work on the comparison of model checkers for the GOAL language (Jongmans
et al. 2010) concluded that all existing approaches to model-checking agent program-
ming languages that were based on pre-existing model checkers suffered from similar
time inefficiencies.

In the following sections, we describe our efforts towards dealing with the issues
of efficiency.

4.7.1 Atomic execution

We employ atomic sections to reduce the state space of executions whose internal
states are not relevant to the execution of the multi-agent system. An atomic section
excludes all backtracking within that section. We use this in a number of places where
thread interaction is not relevant to the agent transition system.

For instance, using an atomic section for the initialisation phase of the agents and
of the MAS leads to a significant speed-up. This portion of the code is executed
many times as JPF backtracks (thereby initialising the agents in a different order) and
substantial savings result from this. Further use of atomic sections in the reasoning
cycle also help improve efficiency.

4.7.2 State matching

In model checking it is important to take care that, in the system to be verified, the
states that are conceptually identical do not contain any components that would make
the model checker distinguish between them. It is therefore essential to restrict the
data structures to the abstract agent system, hiding from the model checker any com-
ponents that might have been introduced for operational reasons or to provide statis-
tics, such as counters, that do not inherently belong to the agent state. JPF’s state
matching is an important mechanism to avoid unnecessary work. The execution state
of a program mainly consists of heap and thread-stack snapshots. During the execu-
tion of a program, JPF checks every state it reaches against its history. If an equivalent
state had been reached before, there is no need to continue along the current execution
path. In this case, JPF backtracks to the last unexplored non-deterministic choice.

JPF provides a means to tag variables or parts of data structures, so that the model
checker ignores them. This is essential to get state matching to work in the presence of

Autom Softw Eng

counters, etc. JPF supports this abstraction through the @FilterField annotation.
Applying this to (part of) a data structure explicitly declares the structure to be exempt
from state matching.

JPF uses its own internal mechanisms for state matching based on Jenkins
hashes (Jenkins 1997). It is outside the scope of this work to discuss the implemen-
tation and the trade-offs involved in the efficiency of compiling the hash. We have
observed that, since execution of the Java engine is comparatively slow and is in-
dependent of the implementation of AIL, there are important efficiency gains to be
made if as many states can be matched as possible.

4.7.3 Property checking

Checking temporal properties, as defined in our property specification language, can
cause branches of the search space where the property automaton branches. We there-
fore limit the places in which these properties need to be checked. In general we only
check properties at the end of the execution of a whole reasoning cycle rather than,
for instance, after the application of every operational semantic rule.

5 Evaluation

Having described both AIL and AJPF, we now provide a number of scenarios show-
ing the whole system in action. While these examples are relatively simple, they
exhibit all the functionality of the MCAPL system.

In these examples we target one particular BDI language. Although this language
is simple, it is designed to exhibit many features common to BDI languages in gen-
eral. Agents are represented as sets of initial beliefs and goals together with a li-
brary of plans. A multi-agent system is a set of agents, together with an environment,
through which communication occurs and in which actions are performed.

Below, we first describe the various scenarios and then, in Sect. 5.2, discuss their
verification.

5.1 Verified scenarios

5.1.1 Contract Net example

The Contract Net scenario (Smith and Davis 1980) is a well-known, and widely used,
model of cooperation in distributed problem-solving. Essentially, a particular agent
(the manager) broadcasts tasks (goals) to be accomplished, and then agents capable
of doing so bid for the contract. In real scenarios, the bidding, allocation, and sub-
contracting can be quite complex. However, we consider a very simple version: the
manager does not broadcast to all the agents in the system at once but instead contacts
them in turn; there is no bidding process nor sub-contracting; agents volunteer for a
task if, and only if, they can perform it; and the manager simply accepts the first
proposal it receives.

We investigated the model checking of this scenario with up to six agents attempt-
ing to achieve either one or two goals requested by the manager. The code for the
version with two bidding agents and two goals can be found in Appendix B.2.

Autom Softw Eng

5.1.2 Auction scenarios

We also considered a simple auction example. The basic idea of an auction (Vickrey
1961; Klemperer 2004) is at the heart of many multi-agent scenarios (Boutilier et al.
1997). Not only are auctions central to e-commerce applications (Collins et al. 2009;
Fortnow et al. 2008), they are implicit within many market-based approaches to agent
computation (Walsh and Wellman 1998). These include areas where resource alloca-
tion or task allocation is required, for example in telecommunications (Haque et al.
2005; Gibney et al. 1999), electricity supply management (Corera et al. 1996), agent
mobility (Bredin et al. 2003), logistics (Dash et al. 2007), and scheduling (Reeves
et al. 2005). However, although much work has been carried out on deep analysis
of auction mechanisms, such as through formal mechanism design (Wooldridge et
al. 2007), the analysis of implementations of auction mechanisms has lagged behind.
While there has been some work on the formal verification of auction implementa-
tions, such as Doghri (2008), this has lacked an agent perspective. Thus, the more
sophisticated agent aspects such as goals, intentions, beliefs, and deliberation are not
typically verified within an auction context.

The basic version of this study is initially very simple. We describe the basic sce-
nario below and then, in subsequent sections, we describe more sophisticated vari-
ants, each becoming increasingly realistic.

A very basic auction The idea here is simple. A number of agents (in the diagram
below, three) make bids of some value to an auctioneer agent. The auctioneer agent
then awards the resource to the highest bidder and announces this. This cycle can then
repeat, if necessary (note that, in our verified scenarios, the bidding process does not
cycle).

Versions of this scenario with increasing numbers of agents were implemented in
GWENDOLEN. The code for the four-agent version can be found in Appendix B.3.

Auction coalition scenario The above basic scenario was next extended to include
the possibility of coalitions (Sandholm and Lesser 1997; Konishi and Ray 2003). In
our model, a coalition occurs when several agents collaborate by pooling their bid

Autom Softw Eng

resources in order to win the auction. For example, if three agents x, y, and z bid
100, 150, and 200 respectively, then z ought to win every time. However, if x and y

form a coalition, their collective bid of 250 will be enough to win the auction.
A simple coalition scenario was implemented in GWENDOLEN with an auctioneer

and a variable number of bidders. A version of the code for this scenario with 4 agents
is shown in Appendix B.4. In that version, all but one of the bidders bid straight away,
but one of the agents attempts to form a coalition by communicating with one of
the other bidders. The contacted bidder agrees to form the coalition, and informs the
coalition former of its bidding amount. The coalition instigator then combines its own
bidding amount with that of its coalition partner and submits this bid to the auctioneer.
Then, having received all of the bids, the auctioneer announces the winner.

Below, Agent 3 instigates the coalition:

The main difference in the implementation of this scenario, as compared with our
earlier one, is that one agent, Agent 3, has a goal to form a coalition. Agent 3 then
contacts Agent 2 and proposes a coalition. If Agent 2 agrees then Agent 3 can now bid
a winning 250 (i.e., 100 + 150). Clearly, we would like to verify that this approach
does, indeed, lead to Agent 3 winning the auction. This is one of the properties we
verify in Sect. 5.2.

Dynamic auction coalition scenario A further variant on the auction coalition sce-
nario was implemented. In this case, a round of bidding takes place in which all agents
bid. Then, after an agent discovers that it has lost the auction, it sends a message to
another agent (excluding the previous winner) to form a coalition. Then, the agents
bid again. Sample code can be found in Appendix B.5.

Coalition trust scenario This auction scenario is similar to that described in
Sect. 5.1.2, except the coalition forming agent now has a belief about which other
agent(s) it can trust, i.e., the other agents with which it would prefer to form a coali-
tion. This trust aspect is static, that is, the coalition-forming agent starts the auction
with belief(s) about which agents it can trust, and these do not change during the
auction. Sample code for this scenario can be seen in Appendix B.6.

Autom Softw Eng

Dynamic trust scenario This final auction scenario builds upon the previous one.
Here, if the coalition-forming agent loses the auction, it tries to form a coalition with
an agent it trusts. Then, if its coalition is successful in winning the auction, it stops.
However, if its coalition is unsuccessful then it no longer believes that it can trust the
other agent in the coalition, and will try to form another coalition with another agent
it trusts (excluding the winner). Again, sample code for this scenario can be seen in
Appendix B.7.

5.1.3 Trash collection robots

Our last example is based on the garbage collection agents reported in Bordini et al.
(2003, 2006). This example was previously written in AgentSpeak and then verified
in both the Spin (Holzmann 2003) and JPF model checkers. This work was the im-
mediate precursor of the work reported here that represents an attempt to re-engineer
the model checking system to make it more generic. In our previous examples, we
were interested in the effects on the system of adding more agents to it. Here, our
intention was to gain some idea of the cost of the more generic architecture. The sce-
nario investigated involved two robots (theoretically on Mars) detecting and burning
two pieces of garbage placed at random on a 5 by 5 grid. The first robot searches for
garbage, picks it up and takes it to the second robot. The second robot then picks up
the garbage and incinerates it. We translated the original AgentSpeak code directly
into GWENDOLEN. This code is shown in Appendix B.8.

5.2 Results

We investigated a number of aspects of the verification of our case studies, as reported
in the sections below.

5.2.1 Effect of scaling the program

We started by investigating the effect of the complexity of the program on the size
of the state space. As a crude measure of an increase in the program complexity
we investigated the effect of adding an additional agent into the contract net and
auction scenarios. We did not investiage the trash collection robot scenario in this way
since this scenario involved no communication between the agents and was developed
primarily in order to provide a comparison with previous work. In the contract net
scenario, we verified that eventually the manager believed all its goals were achieved.
In the auction scenario, we verified that eventually the agent making the highest bid
believed it had won.

The effects of adding additional agents on the state space are shown in Fig. 2. As
can be seen, the size of the state space increases exponentially as more agents are
added into a scenario. This represents a typical result for a model checking exercise.

Although less informative since execution time can easily be affected by factors
other than the program under consideration, we also investigated the effect of extra
agents against the time taken for a program to be verified. The results of this are
shown in Fig. 3. As can be seen, although we have comparatively few states in our

Autom Softw Eng

Fig. 2 State space increase as number of agents increases

space compared to many model checking systems, we nevertheless take consider-
able time to verify a program. This is because each transition in the state graph of
the model checker takes significant time to execute as the JPF JVM processes many
bytecode instructions.

5.2.2 Effect of the property size

As well as checking properties about the beliefs of the agents, we also checked prop-
erties related to their goals, actions, intentions, etc. In theory, since the BDI modalities
of the property specification language are treated as propositions by the property au-
tomata, the effect of the property on the model checking state space should be the
same as for standard LTL model checking (Holzmann 2003).

In the Contract Net scenario, on a system consisting of three agents bidding to
perform one goal, we checked the validity of the properties shown in Fig. 4 with their
resulting state space size. As predicted, the size of the state space appears primarily
to depend upon the LTL elements with disjunctions involving eventualities creating
the largest state spaces.

5.2.3 Comparison with previous work

Lastly, we compared the performance of our model checking system against the pre-
vious work for model checking AgentSpeak systems. Bordini et al. (2003, 2006) re-

Autom Softw Eng

Fig. 3 Time taken as number of agents increases

Property No. of states

♦B(ag1, g) 152
♦P(g) 106
�(G(ag2, g) → ♦A(ag2, g)) 281
♦(G(ag2, g) ∨ G(ag3, g)) 79
♦(I(ag2, g) ∨ I(ag3, g)) 79
�(G(ag3, respond(g,ag1)) → ♦(B(ag2,award(g)) ∨ A(ag3, a))) 294

Fig. 4 Varying the property checked

ported that verifying the property ♦(I(r1, continue(check)) ∧ B(r1, checking(slots))
took 333,413 states and 65 seconds to verify in Spin and 236,946 states and 18 hours
to verify in JPF. In our (JPF-based) system the verification of the same property used
23,655 states and took 9 hours. Clearly the Spin based system remains vastly superior
in terms of efficiency. It is hard to accurately compare the results for the JPF based
systems since JPF itself has been the subject of continuous development. However,
it is clear that the generic approach is unlikely to be worse in terms of efficiency
than the language-specific approach taken previously, although it is known that JPF
is currently much faster than it used to be.

Autom Softw Eng

6 Conclusions

6.1 Summary

In this paper we have described the development of the MCAPL framework, incor-
porating the AIL intermediate semantic layer and the AJPF enhanced model checker.
We have seen that the AIL semantic structures are sufficiently expressive to allow
developers to capture a range of BDI programming languages and that the seman-
tic rules fit well with the modified AJPF model checker. The efficacy and generality
of the AIL toolkit has also been established by the implementation of a variety of
different agent programming languages and the verification of multi-agent systems
implemented in those languages. Interpreters have been implemented for GWEN-
DOLEN (Dennis and Farwer 2008), GOAL (de Boer et al. 2007), SAAPL (Winikoff
2007), and ORWELL (Dastani et al. 2009). Interpreters for AgentSpeak (Bordini
et al. 2007) and 3APL (Dastani et al. 2005) are also being developed. Importantly,
the MCAPL framework is also appropriate for verifying heterogeneous multi-agent
systems, as well as homogeneous ones.

The overall approach has been designed and implemented. It has also been tested
on some small multi-agent programs: variations of the contract net protocol (Smith
1980) and auction systems, but with five or fewer agents (Webster et al. 2009). Specif-
ically, we have focused on a series of scenarios of increasing complexity in order to
demonstrate that, although the difficulty of the model checking task increases with
each scenario, it is nevertheless realistic to model-check the properties of interesting
multi-agent implementations within a reasonable time.

Thus, the MCAPL framework provides a generic harness for automatically verify-
ing agent software. Clearly, for bigger scenarios, improved efficiency will be required
(see the discussion in the next section), but the examples implemented and verified in
this paper demonstrate that simple properties of multi-agent systems can already be
tackled.

6.2 Efficiency problems

A typical problem in model checking, particularly of concurrent systems (where var-
ious entities have independent, yet interacting, behaviour), is that of state space ex-
plosion. The model checker needs to build an in-memory model of the states of the
system, and the number of such states grows exponentially for example in the number
of different entities being modelled.

Even with refined representation techniques, such as the BDDs used in symbolic
model checking (Burch et al. 1992), the formulae/structures required to represent the
state spaces of realistic systems are huge. JPF is an explicit-state, on-the-fly model
checker, and a further problem is that the underlying JPF virtual machine is rather
slow. Thus, our current verification system is also slow (although recent work shows
that its performance is comparable to a similar system implemented in Maude; Jong-
mans et al. 2010). Although speed is the main problem, space required can also be
problematic (Bordini et al. 2008) (though note that the slow examples above actu-
ally explore fewer than 500,000 states in total). We should also note that the success
of program model checking relies a great deal on state-space reduction techniques,

Autom Softw Eng

which we have also adapted for agent verification in Bordini et al. (2009), but have
not yet implemented to work at the AIL level.

However, our approach is no less efficient than the language-specific work re-
ported in Bordini et al. (2006). Thus, it is our belief that the generic design principles
embodied in the MCAPL framework could be transported to other model checking
systems and it is not the generality of the framework which is the main issue in terms
of efficiency.

6.3 Future work

Our proposed future work falls into three main areas.
Firstly, we would like to extend the agent programming languages available within

the system to include, at the least, the Jason (Bordini et al. 2005b, 2007) implemen-
tation of AgentSpeak and 3APL (Hindriks et al. 1998; Dastani et al. 2005). At the
same time we would like to improve the support for the languages we already have
implemented in terms of supplying more complete parsers and translators for them
so that programs written for other implementations of those languages can be easily
imported into our system and run.

Secondly, we intend to improve the model checking aspects of the frame-
work. In particular, we would like to investigate the use of “mixed execution” in
JPF (D’Amorim 2007). This would allow us to delegate the operation of parts of
the Java code to the native, efficient Java Virtual Machine rather than using the JPF
virtual machine. This involves identifying appropriate methods and data structures
which are irrelevant to the correct storage of the system state for backtracking. We
have made some initial, inconclusive, investigations into delegating the unification
algorithm in this way, but work elsewhere suggests that we should be able to achieve
significant time improvements.

Lastly, we are interested in replacing the JPF back end to the system with a differ-
ent model checker such as Spin (Holzmann 2003) or NuSMV (Cimatti et al. 2002).
Previous work (Bordini et al. 2003, 2006) suggests that a considerable speed up may
be possible in another model checker but that more work would be required in creat-
ing a framework in which the model checker could simply tackle a range of different
agent programming languages. It is our belief that much of the design work reported
here could be adapted to an alternative system.

Acknowledgements The authors would like to thank Berndt Farwer for help in initial stages of this
work.

The authors would like to thank EPSRC for its support of this work through research projects
EP/D052548, EP/DO54788, and EP/F037201, and CNPq for its support through grant 307924/2009-2.

Appendix A: AIL operational semantics rules

A.1 Introduction and notation

The purpose of this chapter is to provide a reference for the presupplied rules that
may be used in the operational semantics of a language implemented in the AIL. We
have tried to present these in as clear a fashion as possible excluding implementation
details where possible.

Autom Softw Eng

An agent can be viewed as a large tuple consisting of the fields of the AILAgent
class. Writing out every element of this tuple makes the presentation largely unread-
able, therefore we restrict ourselves to including only those elements of the tuple
that are relevant to the rule itself. These can be identified by the naming conventions
shown below and, where there is a possibility of ambiguity we will indicate these with
equalities—i.e. i = (a, ε) indicates that the current intention is (a, ε). Where a value
is changed by the transition it will often be primed to indicate the new value—e.g.
i′ = null shows that the new value of the current intention is null.

ag The name of the agent.
B The agent’s Belief base.
i The current intention.
I The agent’s other intentions.
Pl The agent’s applicable plans.
A The agent’s queue of pending actions.
In The agent’s inbox.
Out The agent’s outbox.
ξ The agent’s environment.

Many of the operational rules make a check on a deed to see what type it is (e.g.
the addition of a belief, the deletion of a goal). We represent these checks implicitly
using notation as follows:

a An AIL data structure of action type.
b An AIL data structure of belief type.
+b A belief addition.
−b A belief removal.
b{source} A belief, from source source.
!τ g A goal of type τ .
+!τ g A goal addition.
−!τ g A goal drop.
×!τ g A goal there is a problem with.
lock An AIL lock structure.
unlock An AIL unlock structure.
↑ag m A message m sent to ag.
↓ag m A message m received from ag.
� An AIL structure who’s logical content is trivially true.
ε A special marker indicating that some event has no plan yet.

Many of the rules make reference to methods that exist in the AILAgent class.
Obviously subclassing these methods potentially changes the semantics of the rule.
This is intentionally the case. Table 1 shows the notation used for methods in the
AILAgent class.

Rules that specifically deal with accessing information from the environment, ξ ,
refence methods specificed in the AILEnv interface that have to be implemented by
any environment. Again this means the semantics of the rules will depend upon the
environment used. Table 2 shows the notation used for methods in the AILEnv inter-
face.

Autom Softw Eng

Table 1 Notation for methods in the AILAgent class

Notation Method name Description

allsuspended allintentionssuspended All the intentions in the agent are suspended.

consistent(b) consistent(b) b is consistent with the belief base (defaults to true).

appPlans(i) appPlans(i)) Generate application plans.

filter(Pl) filterPlans(Pl) Filter plans from the set (defaults to none).

ag |= gu, θ θ = logicalconsequence(gu) The agent believes the guard gu given unifier θ .

relevant(s, s′) relevant(s, s′) s and s′ are sources of information relevant to each
other (defaults to true).

Sint(I) selectIntention(I) Select an intention from the set I.

Splan(Pl) selectPlan(Pl) Select a plan from the set Pl.

Table 2 Notation for methods in the AILEnv interface

Notation Method name Description

ξ.do(a) executeAction Executing an action in the environment.

ξ.getMessages() getMessages Returns new messages.

ξ.Percepts(ag) getPercepts Returns new perceptions.

Many of the rules also manipulate, or check information about single intentions.
Again these reference methods in the Intention class. Table 3 shows the notation used
for methods in the Intention class.

Lastly we use a few functions as shorthand for more complex processes with the
AIL toolkit:

oldPercepts(P) Any beliefs in an agent’s belief base which are marked as per-
cepts (i.e. their source is percept) which are not in the set P .

wake(ag) Unset any flags telling the agent to sleep it’s thread next oppor-
tunity.

unify(l1, l2) Unify the two Unifiable structures l1 and l2. This generally cre-
ates an empty unifier and then calls its unifies method.

unsuspend(I) Unsuspend all the intentions in I.
τa(a) Returns the “type” of action, a. Useful when a semantics wants

to separate actions into categories and treat them differently.
dθ Represents the application of a unifier, θ , to some data structure,

d . d may be an action, a belief, a goal, a message, an event,
a guard or a deed.

A.2 The rules

1. ApplyApplicablePlans

Pl �= ∅ 〈0, e, g;G,Ds, θ〉 = Splan(Pl) g �= �
〈i,Pl〉 → 〈i′ = new(+state(g),�;G,Ds, θ,self),Pl′ = ∅〉 (9)

Autom Softw Eng

Table 3 Notation for methods in the Intention class

Notation Method name Description

Uθ compose Compose the unifier with the top unifier on the inten-
tion.

drop(g) dropGoal Drop all rows from the intention until one is reached
with +!τ g as it’s event.

dropp(N, i) dropP Drop N rows from the top of the intention.

empty(i) empty The deed stack of the intention is empty.

events(i) events The set/stack of events associated with the intention.

hdd(i) hdD The top deed on the intention.

hde(i) hdE The top event on the intention.

hdg(i) hdG The top guard on the intention.

θhd(i) hdU The top unifier on the intention.

@ iConcat Add a new event, deed stack, guard stack and unifier
to the top of the intention.

;p iCons Add a new event, deed, guard and unifier as the top
row of the intention.

new(e) Intention Create a new intention from the event e.

new(e, source) Intention Create a new intention from the event e and the source
source.

new(e,Gs,Ds, θ, source) Intention Create a new intention from an event, guard stack,
deed stack, unifier and source.

lock(i) lock Mark the intention as locked.

locked(i) locked The intention is locked.

noplan(i) noplan The intention has not been planned (i.e. the deed stack
is empty or contains only the ε “no plan yet” deed).

suspend(i) suspend Mark the intention as suspended.

tli (i) tlI Drop the top deed (with associated event, guard and
unifier) from the intention.

unlock(i) unlock Mark the intention as unlocked.

Pl �= ∅ 〈N,e,g;G,Ds, θ〉 = Splan(Pl) N > 0 ∨ g = �
〈i,Pl〉 → 〈i′ = (e, g;G,Ds, θ) @ dropp(N, i),Pl′ = ∅〉 (10)

Notes: This rule selects a plan from the agent’s applicable plans. The plan is
represented as a tuple of the number of rows to be dropped, the trigger event, the
plan’s guard stack, deed stack and unifier.

If it is a reactive plan then N is equal to 0. In this case a new trigger is created
+state(g) where g is the top guard on the plan’s guardstack. This is supposed to
represent the state of the world that triggered the plan. A new intention is created
from the applicable plan.

Otherwise the applicable plan is “glued” to the top of the current intention.

Autom Softw Eng

2. DirectPerception

P = ξ.Percepts(ag)

〈ag,B, In〉 →
wake(〈ag,B′ = B ∪ P \oldPercepts(P), In′ = In ∪ ξ.getMessages()〉)

(11)

Notes: A simple perception rule. It adds all percepts to the belief base and
removes all beliefs no longer perceived. It also add all messages to the inbox.
A key part of the working of the rule depends on AIL’s annotation of all beliefs
in the belief base with a source and its use of a special annotation for beliefs
whose source is perception.

3. DirectPerceptionwEvent

P = ξ.Percepts(ag) P − = oldPercepts(P)

I1 = {new(+b)|b ∈ P } I2 = {new(−b)|b ∈ P −}
〈ag,B, I, In〉 →

wake(〈ag, I′ = I ∪ I1 ∪ I2,B′ = B ∪ P \P −, In′ = In ∪ ξ.getMessages()〉)
(12)

Notes: Similar to DirectPerception this rule also creates new intentions trig-
gered by the addition (or removal) of all the beliefs allowing the agent to react to
the changes.

4. DoNothing

A → A
(13)

Notes: The DoNothing rule, as its name suggests, makes no changes to the
state of the agent. This is intended as a default rule that can be used in a rea-
soning cycle stage to do nothing if none of the other rules in the stage apply but
nevertheless still allow the stage to progress.

5. DropIntention

I �= ∅ Sint(I) = (i′, I′)
〈ag, i, I〉 → 〈ag, i′, I′〉 (14)

Notes: DropIntention is really intended for sub-classing. It simply drops
the current intention, i, and selects a new one from the intention set. A sub-
class would be expected to place extra conditions on i to make sure they are only
dropped in very specific circumstances. See DropIntentionIfEmpty for an
example.

6. DropIntentionIfEmpty

i �= null empty(i) I �= ∅ SintI = (i′, I′)
〈ag, i, I〉 → 〈ag, i′, I′〉 (15)

Notes: DropIntentionIfEmpty drops the intention i if it is empty and
selects a new current intention from the intention set. The additional i �= null is
necessary since a few rules can leave the agent state with no current intention.

Autom Softw Eng

7. GenerateApplicablePlans

〈ag, i,Pl〉 → 〈ag, i,Pl′ = filter(appPlans(i))〉 (16)

Notes: This rule considers all the plans in the agent’s plan library and exam-
ines all possible instantions of these plans, if there is more than one. It converts
these instantiated plans to Applicable Plans, filters them according to any lan-
guage specific heuristics (as defined by over-riding of the filterPlans method),
and places them in the agents Applicable Plan list. The rule is primarily indented
for subclassing by more sophisticated rules.

8. GenerateApplicablePlansEmpty

filter(appPlans(i)) = ∅ noplan(i)

〈ag, i,Pl〉 → 〈ag, i,Pl′ = [(1,hde(i), [], [],∅)]〉 (17)

filter(appPlans(i)) = ∅ ¬noplan(i)

〈ag, i,Pl〉 → 〈ag, i,Pl′ = [(0,hde(i), [], [],∅)]〉 (18)

Notes: This is a special case of the GenerateApplicablePlans rule for when the set
of applicable plans is empty. It does two different things depending on whether
or not the current intention has a plan at the top. If it does then the rule provides
an applicable plan that will leave the intention unchanged allowing the plan to
continue processing. If not it provides a plan that will drop the top row of the
intention (for instance if the intention indicates a belief change event then the
absence of a plan means that the system has no need to respond to that event.
This rule will thus cause that belief change notification to be dropped).

9. GenerateApplicablePlansEmptyProblemGoal

filter(appPlans(i)) = ∅ noplan(i) hde(i) = +!τ g

〈ag, i,Pl〉 → 〈ag, i,Pl′ = [0,x!τ g, [ε], [�], θhd(()i))]〉 (19)

filter(appPlans(i)) = ∅ noplan(i) ¬hde(i) = g

〈ag, i,Pl〉 → 〈ag, i,Pl′ = [(1,hde(i), [], [],∅)]〉 (20)

filter(appPlans(i)) = ∅ ¬noplan(i) ¬hde(i) = g

〈ag, i,Pl〉 → 〈ag, i,Pl′ = [(0,hde(i), [], [],∅)]〉 (21)

Notes: This is a further specialisation of GenerateApplicablePlansEmpty. In
this case if the current intention has no plan and the trigger event at the
top of the intention is a goal then, instead of simply dropping that row (as
GenerateApplicablePlansEmpty does) it adds a new row triggered by a “problem
goal” event. The agent can then react to that problem goal if it has an appropriate
plan.

10. GenerateApplicablePlansIfNonEmpty

filter(appPlans(i)) �= ∅
〈ag, i,Pl〉 → 〈ag, i,Pl′ = filter(appPlans(i))〉 (22)

Autom Softw Eng

Notes: As GenerateApplicablePlans except with a check for non-
emptiness.

11. HandleAction

ag |= hdg(i)θhd(i), θb hdd(i)θhd(i) = a ξ.do(aθb) = θa

〈ag, i〉 → 〈ag, i′ = tli (i)Uθ (θhd(i) ∪ θa)〉 (23)

ag |= hdg(i)θhd(i), θb hdd(i)θhd(i) = a ¬ξ.do(aθb)

〈ag, i〉 → 〈ag, i′ = tli (i)Uθ θhd(i)〉 (24)

Notes: This is a basic action handling rule. It attempts to execute the action in
the environment (do). If this succeeds it gets a unifier which is handed back to
the intention. If the action fails it is simply ignored. Most languages will want to
explicitly handle action failure in some way, possibly by sub-classing this rule.

12. HandleActionwProblem

ag |= hdg(i)θhd(i), θb hdd(i)θhd(i) = a ξ.do(aθb) = θa

〈ag, i〉 → 〈ag, i′ = tli (i)Uθ (θhd(i) ∪ θa)〉 (25)

ag |= hdg(i)θhd(i), θb hdd(i)θhd(i) = a ¬ξ.do(aθb) hde(i) = +!τgg

〈ag, i〉 → 〈ag, i′ = (x!τg g, θhd(i) ∪ θa);pi〉 (26)

Notes: This extends HandleActionwith some failure handling. If the action
appears on the deed stack because of a goal commitment then the intention gets
a new intention noting there is a problem with the goal. The agent can then react
to this—e.g. by attempting the action again or dropping the goal or in some other
fashion.

13. HandleAddAchieveTestGoal

ag |= hdg(i)θhd(i), θb hdd(i)θhd(i) = +!τgg τg = a ∨ τg = t ag |= gθb, θg

〈ag, i〉 → 〈ag, i′ = tli (i)Uθ (θhd(i) ∪ θa ∪ θg)〉
(27)

ag |= hdg(i)θhd(i), θb hdd(i)θhd(i) = +!τg g τg = a ∨ τg = t ag �|= gθb

〈ag, i〉 → 〈ag, i′ = (gτg, θhd(∪)θb);pi〉
(28)

Notes: This rule handles the commitment to an achieve or test goal. These are
detected in the condition τg = a ∨ τg = t . An achieve or test goal is one that
triggers a plan if it not already believed but does no more than set a unifier if it
is. If it is to trigger a plan then we register the commitment to planning the goal
as an event on the top of the intention stack.

14. HandleAddBelief

ag |= hdg(i)θhd(i), θb hdd(i)θhd(i) = +b consistent(B,b)

〈ag,B, i, I〉 →
〈ag,B′ = B ∪ b{src(i)}, i′ = tli (i)Uθ (θ

hd(i) ∪ θb), I′ = unsuspend(I)〉
(29)

Autom Softw Eng

Notes: A basic rule for adding a new belief to the belief base. It assigns a source
to the belief, which is the source of the intention. As a side effect it “unsuspends”
all intentions.

15. HandleAddBeliefwEvent

ag |= hdg(i)θhd(i), θb hdd(i)θhd(i) ∪ θb = +b consistent(B,b)

〈ag,B, i, I〉 →
〈ag,B′ = B ∪ b{src(i)},

i′ = tli (i)Uθ (θ
hd(i) ∪ θb), I′ = unsuspend(I) ∪ new(+b,src(self))〉

(30)

Notes: A modification of the basic add belief rule which also generates an
event noting the belief change. Note here that the new intention is given the
source “self” not the source of the original intention—this is because any fur-
ther changes triggered by the belief change are dependent on the agent’s internal
reasoning and not on the original source of the belief change.

16. HandleAddGoal (Abstract)

ag |= hdg(i)θhd(i), θb hdd(i)θhd(i) ∪ θb = +!τg g

undefined
(31)

Notes: Sets up the necessary preconditions for handling an event involving the
addition of a goal but doesn’t define any transition.

17. HandleAddPerformGoal

ag |= hdg(i)θhd(i), θb hdd(i)θhd(i) ∪ θb = +!τg g

〈ag, i〉 → 〈ag, i′ = (+!τg g, θhd(i) ∪ θb);p(+!hde,null, θhd(i));pi〉 (32)

Notes: Commit to a perform goal. Unlike HandleAddAchieveTestGoal
there are no checks for whether we believe the goal. We leave a null action on
the stack though so we don’t loose track of the previous event (which can happen
if that event was planned with only one perform goal).

18. HandleBelief (Abstract)

ag |= hdg(i)θhd(i), θb hdd(i)θhd(i) ∪ θb =?b

undefined
(33)

Notes: Sets up the necessary preconditions for handling a belief (either addition
or deletion) but doesn’t define the transition. The preconditions are that the top
guard on the intention is believed and that the top deed is off belief type. We use
? here to show that the abstract rule does not differentiate between adding and
removing a belief.

19. HandleDelayedAction

ag |= hdg(i)θhd(i), θb hdd(i)θhd(i) = a

〈ag, i,A〉 → 〈ag, i′ = tli (i)Uθ (θhd(i) ∪ θb),A′ = A;a〉 (34)

Autom Softw Eng

Notes: This rule is intended for use in languages which use an action queue
to store actions as they are processed, but delay their actual execution in the
environment until some later point. This rule is untested.

20. HandleDropBelief

ag |= hdg(i)θhd(i), θb hdd(i)θhd(i) = −b
B1 = {b′|b′ ∈ B ∧ unify(b′,b) ∧ relevant(src(b′),src(b))}
〈ag,B, i, I〉 → 〈ag,B′ = B\B1, i′ = tli (i)Uθ (θhd(i) ∪ θb), I〉 (35)

Notes: This is the basic rule for dropping beliefs from the belief base. If the
deed, −b is on top of the current intention all beliefs that unify with b are re-
moved from the belief base.

21. HandleDropBeliefwEvent

ag |= hdg(i)θhd(i), θb hdd(i)θhd(i) = −b
B1 = {b′|b′ ∈ B ∧ unify(b′,b) ∧ relevant(src(b′),src(b))}

〈ag,B, i, I〉 →
wake(〈ag,B′ = B\B1, i′ = tli (i)Uθ (θ

hd(i) ∪ θb), I′ = I ∪ new(−b,src(i))〉)
(36)

Notes: This rule drops a belief from the belief base (providing the source of
the instruction to drop the belief is deemed “relevant” to the source of the belief).
At the same time it generates a new intention containing the event that the belief
has been dropped. Appropriate handling of this event can allow the agent to form
plans in reaction to it.

22. HandleDropGeneralGoal

ag |= hdg(i)θhd(i), θb hdd(i)θhd(i) ∪ θb = −!τg g τg �∈ Exclusions
∃e ∈ events(i).unify(e,+!τgg)

〈ag, i〉 → 〈ag, i′ = i.dropE(e)〉 (37)

ag |= hdg(i)θhd(i), θb hdd(i)θhd(i) ∪ θb = −!τg g τg �∈ Exclusions
¬∃e ∈ events(i).unify(e,+!τg g) I1 = {i′|i′ ∈ I ∧ ∃e′ ∈ i′.unify(e′,+!τgg)}

〈ag, I〉 → 〈ag, I′ = I ∪ {i′′|∃i′ ∈ I1 ∧ i′′ = i′.dropE(e)}\I1〉
(38)

Notes: This rule can be parameterised by a set of excluded goal types (Ex-
clusions) above. This allows it to act as a default rule for handling “drop goal”
instructions. It does this by searching the current intention for the most recent
add goal event that unifies with the goal to be dropped and then deletes all rows
on the intention above that. dropE isn’t a built-in AIL function but is created by
recursing through the intention’s events. The second rule drops the event from
all the intentions that contain it, assuming the goal doesn’t occur in the current
intention.

Autom Softw Eng

23. HandleDropGoal (Abstract)

ag |= hdg(i)θhd(i), θb hdd(i)θhd(i) ∪ θb = −!τg g

undefined
(39)

Notes: Sets up the necessary preconditions for handling a drop goal event but
doesn’t define the transition.

24. HandleEmptyDeedStack

empty(i)

〈ag, i〉 → 〈ag, i〉 (40)

Notes: Does nothing if the current intention’s deed stack is empty.
25. HandleGeneralAction

ag |= hdg(i)θhd(i), θb hdd(i)θhd(i) = a ξ.do(aθb) = θa τa(a) �∈ Excluded

〈ag, i〉 → 〈ag, i′ = tli (i)Uθ (θhd(i) ∪ θa)〉
(41)

ag |= hdg(i)θhd(i), θb hdd(i)θhd(i) = a ¬ξ.do(aθb) hde(i) = +!τgg
τa(a) �∈ Excluded

〈ag, i〉 → 〈ag, i′ = new(x!τg g, θhd(i) ∪ θa);pi)〉
(42)

ag |= hdg(i)θhd(i), θb hdd(i)θhd(i) = a ¬ξ.do(aθb) ¬hde(i) = +!τg g
τa(a) �∈ Excluded

〈ag, i〉 → 〈ag, i′ = tli (i)Uθ θhd(i)〉
(43)

Notes: HandleGeneralAction extends HandleActionwProblem. The rule is param-
eterised by a set of action types that are “Excluded”—for instance the GWEN-
DOLEN implementation handles “send” actions differently to other types of ac-
tion so these are excluded from consideration by this particular rule.

26. HandleGeneralDelayedAction

ag |= hdg(i)θhd(i), θb hdd(i)θhd(i) = a τa(a) �∈ Excluded

〈ag, i,A〉 → 〈ag, i′ = tli (i)Uθ (θhd(i) ∪ θb),A′ = A;a〉 (44)

Notes: This extends HandleDelayedAction in the same way that HandleGeneral-
Action extends HandleActionwProblem. That is the rule can be parameterised with
a list of “Excluded” action types which are to be handled by alternative rules.

27. HandleGoal (Abstract)

ag |= hdg(i)θhd(i), θb hdd(i)θhd(i) ∪ θb =?!τgg

undefined
(45)

Notes: Sets up the necessary preconditions for handling an event involving a
goal but doesn’t define any transition.

Autom Softw Eng

28. HandleGuardNotSatisfied

ag �|= hdg(i)θhd(i)

A → A
(46)

Notes: The agent does nothing if the guard on an intention can not be satisfied.
Should be used with caution since it can cause programs to loop.

29. HandleLockUnlock

ag |= hdg(i)θhd(i), θb hdd(i)θhd(i) ∪ θb = lock

〈ag, i〉 → 〈ag, i′ = lock(tli (i)Uθ (θhd(i) ∪ θb))〉 (47)

ag |= hdg(i)θhd(i), θb hdd(i)θhd(i) ∪ θb = unlock

〈ag, i〉 → 〈ag, i′ = unlock(tli (i)Uθ (θhd(i) ∪ θb))〉 (48)

Notes: This allows an intention to be “locked” as the current intention, for in-
stance to allow a complete sequence of belief changes be processed before any
other reasoning takes place. Once finished the intention has to be unlocked. See
the SelectIntention rule to see how this works. In languages without the lock
construct locking isn’t used, obviously, and so doesn’t affect intention selection.

30. HandleMessages

〈ag, I, In〉 →
〈ag, I′ = I ∪ {new(+received(m),src(ag)) | ↓ag m ∈ In, In′ = []}〉

(49)

Notes: This rule does not poll the environment for messages. It takes all mes-
sages currently in an agent’s inbox and converts them to intentions (triggered
by a perception that the message has been received), emptying the inbox in the
process. It should be noted that it does not store the message anywhere once the
inbox is emptied. It assumes that some plan will act appropriately to the message
received event. If this does not happen then the message content may be lost.

31. HandleNull

ag |= hdg(i)θhd(i), θb hdd(i)θhd(i) ∪ θb = null

〈ag, i〉 → 〈ag, i′ = tli (i)Uθ (θhd(i) ∪ θb)〉 (50)

Notes: The null action is used as a place holder to preserve, in some situations,
a record of an event in an intention stack. This rule simply ignores the null action
when it is encountered.

32. HandleSendAction

ag |= hdg(i)θhd(i), θb hdd(i)θhd(i) = ↑ag m ξ.do((↑ag m)θb) = θa

〈ag, i, I,Out〉 →
〈ag, i′ = tli (i)Uθ (θ

hd(i) ∪ θa), I′I ∪ {new(+↑ag m,src(self))},
Out′ = Out ∪ {m}〉

(51)

Autom Softw Eng

ag |= hdg(i)θhd(i), θb hdd(i)θhd(i) = ↑ag m ¬ξ.do((↑ag m)θb) hde(i) = +!τg g

〈ag, i, I,Out〉 →
〈ag, i′ = (x!τg g, θhd(i) ∪ θb);pi, I′ = I ∪ {new(+↑ag m,src(self))},

Out′ = Out ∪ {m}〉
(52)

Notes: This rule is implemented as an extension of HandleActionwProblem. As
well as executing a send action it also adds a record the message has been sent to
the outbox and generates an intention from the message sending event.

33. HandleTopDeed (Abstract)

ag |= hdg(i)θhd(i), θb

undefined
(53)

Notes: Sets up the necessary preconditions for handling the top of the deed
stack but doesn’t define the transition.

34. HandleWaitFor

ag |= hdg(i)θhd(i), θb hdd(i)θhd(i) = ∗b
P = ξ.Percepts(ag) OP = oldPercepts(P) b ∈ B ∪ P \OP

〈ag,B, i, I, In〉 →
wake(〈ag,B′ = B ∪ P \OP, i′ = tli (i)Uθ (θ

hd(i) ∪ θb),

I′ = I ∪ {new(+b′) | b′ ∈ P ∧ b �∈ B} ∪ {new(−b′) | b′ ∈ OP},
In′ = In ∪ ξ.getMessages()〉)

(54)

ag |= hdg(i)θhd(i), θb hdd(i)θhd(i) = ∗b
P = ξ.Percepts(ag) OP = oldPercepts(P) b �∈ B ∪ P \OP

(¬allsuspended ∨ P �= ∅)

〈ag,B, i, I, In〉 →
wake(〈ag,B′ = B ∪ P \OP, i′ = suspend(i)

I′ = I ∪ {new(+b′) | b′ ∈ P ∧ b �∈ B} ∪ {new(−b′) | b′ ∈ OP}
In′ = In ∪ ξ.getMessages()〉)

(55)

ag |= hdg(i)θhd(i), θb hdd(i)θhd(i) = ∗b
b �∈ B allsuspended ξ.Percepts(ag) = ∅

〈ag,B, In, i〉 →
sleep(〈ag,B, In ∪ ξ.getMessages(),suspend(i)}〉)

(56)

Notes: Because sleeping and waiting behaviour is critical to model checking
with JPF we found it necessary to introduce new syntax which allows an in-
tention to wait until the agent holds a certain belief. This syntax is ∗b. If the
relevant belief is not held then that intention is suspended and if all intentions
are suspended then the agent is told to sleep at the next opportunity. This rule
for handling the waiting behaviour is actually implemented as an extension to
perception and so makes the decision to suspend the intention based on the most
recent information available to the agent. It should be noted that several other

Autom Softw Eng

rules, e.g. ones that add new beliefs to the belief base automatically unsuspended
all intentions allowing the wait for deed to be rechecked.

35. HandleWaitForDirect

ag |= hdg(i)θhd(i), θb hdd(i)θhd(i) = ∗b
P = ξ.Percepts(ag) OP = oldPercepts(P) b ∈ B ∪ P \OP

〈ag,B, i, In〉 →
wake(〈ag,B′ = B ∪ P \OP, i′ = tli (i)Uθ (θ

hd(i) ∪ θb),

In′ = In ∪ ξ.getMessages()〉)

(57)

ag |= hdg(i)θhd(i), θb hdd(i)θhd(i) = ∗b
P = ξ.Percepts(ag) OP = oldPercepts(P) b �∈ B ∪ P \OP

(¬allsuspended ∨ P �= ∅)

〈ag,B, i, In〉 →
wake(〈ag,B′ = B ∪ P \OP, i′ = suspend(i)

In′ = In ∪ ξ.getMessages()〉)

(58)

ag |= hdg(i)θhd(i), θb hdd(i)θhd(i) = ∗b
b �∈ B allsuspended ξ.Percepts(ag) = ∅

〈ag,B, In, i〉 →
sleep(〈ag,B, In ∪ ξ.getMessages(),suspend(i)}〉)

(59)

Notes: This rule is essentially the same as HandleWaitFor. The only difference
is that it sub-classes DirectPerception rather than Perceive. This means it does not
create new intentions from incoming belief changes.

36. IgnoreUnplannedProblemGoal

hde(i) = x!τg g hdd(i) = ε

〈ag, i〉 → 〈ag, i〉 (60)

Notes: This rule ignores an unplanned problem goal. It simply does nothing but
allows the reasoning cycle of the agent to continue processing on the assumption
that planning of the goal may become possible later.

37. MatchDropGoal

deeds(i) = [ε] hde = x!τg g
I′ = {〈i′, θ〉 | i′ ∈ I ∧ ∃+!g′ ∈ events(i′). unify(g′, g) = θ ∧ src(i′) = src(i)}

I′′ = {(−!τg g, ε, T , θ);pi | 〈i, θ〉 ∈ I′} Sint(I\I′ ∪ I′′) = (i1, I1)

〈ag, i, I〉 → 〈ag, i′ = i1, I′ = I1〉
(61)

Notes: If an intention consists only of a single unplanned problem goal event
then this should be matched with and placed as a row on the top of all intentions
containing that goal. The intention is then removed and a new current intention
selection. This is intended to assist in dealing with requests to drop goals that
come from some external source.

Autom Softw Eng

38. Perceive

ag |= hdg(i)θhd(i), θb P = ξ.Percepts(ag) OP = oldPercepts(P)

〈ag,B, I, In〉 →
wake(〈ag,B′ = B ∪ P \OP,

I ∪ {new(+b) | b ∈ P) ∧ b �∈ B} ∪ {new(−b) | b ∈ OP},
In ∪ ξ.getMessages()〉)

(62)

Notes: This is a complex perception rule. It adds all percepts to the belief base
and removes all beliefs no longer perceived. It also add all messages to the inbox.
It then creates new intentions, each triggered by the events of acquiring or losing
one of the percepts. A key part of the working of the rule depends on AIL’s
annotation of all beliefs in the belief base with a source and its use of a special
annotation for beliefs whose source is perception.

39. ProcessDelayedAction

ξ.do(a)

〈ag,A = a;A′〉 → 〈ag,A′〉 (63)

Notes: This rule executes the top action on the agent’s action queue. The as-
sumption is that a (FIFO) queue of actions has been created which the agent will
execute in order at some point. During planning actions are put on the queue but
not actually executed. This rule is untested.

40. SelectIntention

¬empty(i) ¬locked(i) Sint(I ∪ {i}) = (i′, I′) ¬allsuspended

〈ag, i, I〉 → 〈ag, i′, I′〉 (64)

¬empty(i) locked(i) ¬allsuspended

〈ag, i, I〉 → 〈ag, i, I〉 (65)

Notes: This is the basic rule for intention selection. It works by calling the
agent method selectIntention (Sint) which is expected to be a common candidate
for over-riding. The only situation in which Sint is not called is if the current
intention is locked in which case that intention is selected again.

41. SelectIntentionNotUnplannedProblemGoal

¬empty(i) ¬locked(i) Sint(I ∪ {i}) = (i′, I′)
hde(i′) �= −!τg g ∨ ¬noplan(i′) ¬allsuspended

〈ag, i, I〉 → 〈ag, i′, I′〉 (66)

¬empty(i) locked(i) hde(i′) �= −!τgg ∨ ¬noplan(i′) ¬allsuspended

〈ag, i, I〉 → 〈ag, i, I〉
(67)

Autom Softw Eng

Notes: This rule extends SelectIntention with one additional condition which
is that the top event on the selected intention is not a problem or drop goal event
which has no associated plan. We assume that, where this rule is used, another
rule (e.g. MatchDropGoal) is employed to handle these intentions.

42. SleepIfEmpty

(i = null ∨ empty(i) ∨ is_suspended(i)) ∧ (I = ∅ ∨ allsuspended)

〈ag, i, I〉 → sleep(〈ag, i, I〉) (68)

Notes: This rule sleeps an agent thread in a controlled fashion if all its intention
are empty or suspended. It is quite important to include this rule, or one similar
to it, into a language semantics even if one isn’t there. The JPF model checker
does not assume a fair JAVA scheduling algorithm so unless a multi-agent system
forces agents (and so their threads) to sleep it will investigate runs in which one
agent executes continuously and none of the others do so. Note that this does not
immediately sleep the thread. It sets a flag that the agent wishes to sleep. The
agent controller then decides when this should happen.

Appendix B: Sample GWENDOLEN code for the verified scenarios

B.1 Notation

GWENDOLEN uses the AIL’s plan mechanisms “off the shelf”. It makes no use of
prefix matching in plan execution and only has plans whose prefix is ε. Similarly,
it is assumed that the guard stacks for plans are all � except for the very top guard
that governs the plan applicability. Plans are therefore a triple of a triggering event
(if relevant), a guard, and a body of deeds to be performed. We therefore represent
GWENDOLEN’s version of the plan

trigger +!aclean()
prefix [ε]
guard dirty(Room)

�
body +!agoto(Room)

+!avacuum(Room)
that appeared in Sect. 3.1.8 as

+!aclean() : dirty(Room) <- +!agoto(Room);+!avacuum(Room) (69)

GWENDOLEN agents also distinguish two sorts of goals. Achievement goals, !ag,
make statements about beliefs the agent wishes to hold. They remain goals until
the agent gains an appropriate belief. Perform goals, !pg, simply state a sequence
of deeds to be performed and cease to be a goal as soon as that sequence is com-
plete. When an agent takes an action, it executes code specific to that action in the
environment. Typically, this code alters the set of propositions that agents are able
to perceive. It may also cause messages to be added to an agent’s inbox. Agents go

Autom Softw Eng

through a specific perception phase when they check their beliefs against the environ-
ment’s percepts and modify them accordingly. At this point, agents also handle the
messages currently in their inbox.

↑ (a,p,m) indicates the sending of a message m, with performative, p, to agent a,
and ↓ (p,m) indicates the receipt of a message m with performative p. Since guards
may also refer to sent and received messages, the syntax ↑ (a,p,m) is also used in
plan guards, as is ↓ (p,m). In the following examples, the relevant performatives are
p (for perform the message content) and b (for believe the message content).

Bb is used in plan guards to indicate the condition that the agent believes b. The
lock, unlock, and ∗b deeds (see Sect. 3.1.7) appear as such in the code.

Throughout this section, we will use ‘,’ to indicate concatenation of deeds
on a stack. We follow the Prolog convention of representing variables as start-
ing with upper-case letters, while constants start with lower-case letter. The belief
rules used for Prolog-style reasoning in guards are represented in a Prolog style as
l1 :- l2, l3, l4;

B.2 Contract net code

Action a makes fact g true in the environment. Similarly, action a2 makes the g2
true. These facts can then be perceived by all agents.

Code Example 2.1 Contract Net

1:name: ag1
2

3: Initial Beliefs :
4

5¬cando(g)
6¬cando(g2)
7ag(ag2)
8ag(ag3)
9my_name(ag1)
10

11: Initial Goals:
12

13!a g
14!a g2
15

16:Plans:
17

18+!a g : {B cando(g)} ← a;
19+!a g2 : {B cando(g2)} ← a2;
20+!a Gl : {B ¬cando(Gl)} ← +!p cfp(Gl);
21+!p cfp(G) :
22{B ag(A1), B my_name(Name), ¬↑ (A1, p, respond(G, Name)), ¬B proposal (Ag, G)}
23← ↑(A1, p, respond(G, Name));
24+!p cfp(G1) : {B proposal (A, G1)} ← ∗G1;
25+proposal(A, G4) : {B ¬cando(G4), ¬B awarded(G4)} ← ↑(A, b, award(G4)),
26+awarded(G4);
27+↓(p, Ga) : � ← +!p Ga;
28+↓(b, B): � ← +B;
29+!p respond(G2, Name) : {B cando(G2), B my_name(A)} ← ↑(Name, b, proposal(A, G2));
30+!p respond(G3, Name) : {B ¬cando(G3), B my_name(A)} ← ↑(Name, b, sorry(A, G3));

Autom Softw Eng

31+award(G5) : � ← +!a G5 ;
32+!p cfp(G6) : � ← ∗G6;
33

34:name: ag2
35

36: Initial Beliefs :
37

38my_name(ag2)
39cando(g)
40¬cando(g2)
41

42:Plans:
43

44+!a g : {B cando(g)} ← a;
45+!a g2 : {B cando(g2)} ← a2;
46+!a Gl : {B ¬cando(Gl)} ← +!p cfp(Gl);
47+!p cfp(G) :
48{B ag(A1), B my_name(Name), ¬↑ (A1, p, respond(G, Name)), ¬B proposal (Ag, G)}
49← ↑(A1, p, respond(G, Name));
50+!p cfp(G1) : {B proposal (A, G1)} ← ∗G1;
51+proposal(A, G4) : {B ¬cando(G4), ¬B awarded(G4)} ← ↑(A, b, award(G4)),
52+awarded(G4);
53+↓(p, Ga) : � ← +!p Ga;
54+↓(b, B): � ← +B;
55+!p respond(G2, Name) : {B cando(G2), B my_name(A)} ← ↑(Name, b, proposal(A, G2));
56+!p respond(G3, Name) : {B ¬cando(G3), B my_name(A)} ← ↑(Name, b, sorry(A, G3));
57+award(G5) : � ← +!a G5 ;
58+!p cfp(G6) : � ← ∗G6;
59

60:name: ag3
61

62: Initial Beliefs :
63

64my_name(ag3)
65cando(g2)
66¬cando(g)
67

68:Plans:
69

70+!a g : {B cando(g)} ← a;
71+!a g2 : {B cando(g2)} ← a2;
72+!a Gl : {B ¬cando(Gl)} ← +!p cfp(Gl);
73+!p cfp(G) :
74{B ag(A1), B my_name(Name), ¬↑ (A1, p, respond(G, Name)), ¬B proposal (Ag, G)} ←
75↑(A1, p, respond(G, Name));
76+!p cfp(G1) : {B proposal (A, G1)} ← ∗G1;
77+proposal(A, G4) : {B ¬cando(G4), ¬ B awarded(G4)} ← ↑(A, b, award(G4)),
78+awarded(G4);
79+↓(p, Ga) : � ← +!p Ga;
80+↓(b, B): � ← +B;
81+!p respond(G2, Name) : {B cando(G2), B my_name(A)} ← ↑(Name, b, proposal(A, G2));
82+!p respond(G3, Name) : {B ¬cando(G3), B my_name(A)} ← ↑(Name, b, sorry(A, G3));
83+award(G5) : � ← +!a G5 ;
84+!p cfp(G6) : � ← ∗G6;

Autom Softw Eng

B.3 Basic auction code

Code Example 2.2 Basic Auction

1:name: ag1
2

3: Initial Beliefs :
4

5:Plans:
6

7+↓(b, B): � ← +B;
8+bid(Z, A) : {B bid(X1, ag2), B bid(X2, ag3), B bid(X3, ag4), B bid (200, Ag)} ←
9↑(Ag, b, win);
10

11:name: ag2
12

13: Initial Beliefs :
14

15my_name(ag2)
16

17: Initial Goals:
18

19!pbid
20

21:Plans:
22

23+↓(b, B): � ← +B;
24+!p bid : {B my_name(Name), ¬↑(ag1, b, bid (100, Name))} ← ↑(ag1, b, bid (100, Name));

Agents 3 and 4 are identical to agent 2 except for the amount they bid.

B.4 Auction coalition code

The code for agent 1 is the same as in the Basic Auction example.

Code Example 2.3 Auction Coaltion

1:name: ag2
2

3: Initial Beliefs :
4

5my_name(ag2)
6

7: Initial Goals:
8

9!p coalition
10

11:Plans:
12

13+↓(b, B): � ← +B;
14+!p bid : {B my_name(Name), ¬↑(ag1, b, bid (250, Name))} ← ↑(ag1, b, bid (250, Name));
15+!p coalition : {B my_name(Ag), ¬↑(ag3, b, coalition (Ag))} ← ↑(ag3, b, coalition (Ag));
16+agree(A, X) : � ← +!p bid;
17

18:name: ag3
19

Autom Softw Eng

20: Initial Beliefs :
21

22my_name(ag3)
23

24: Initial Goals:
25

26!pbid
27

28:Plans:
29

30+↓(b, B): � ← +B;
31+!p _p bid : {B my_name(Name), ¬↑(ag1, b, bid (150, Name))} ←
32↑(ag1, b, bid (150, Name));
33+ coalition (A) : {B my_name(Name), ¬↑(A, b, agree(Name, 150))} ←
34↑(A, b, agree(Name, 150));

The code for agent 4 is the same as for agent 3 except with a different bid amount.

B.5 Dynamic auction coalition code

The action win(Z,A) makes the fact that agent A has won with amount Z available
to all agents by perception.

Code Example 2.4 Dynamic Auction

1:name: ag1
2

3: Initial Beliefs :
4

5my_name(ag1)
6

7: Belief Rules:
8

9B allbids :− B bid_processed (ag2), B bid_processed (ag3), B bid_processed (ag4);
10

11:Plans:
12

13+↓(b, bid(D, From)) : {B bid(E, From)} ← −bid(From, E),
14+bid(From, D);
15+↓(b, bid(D, From)) : {¬B bid(E, From)} ← +bid(From, D);
16+bid(Z, A) : {B current_winner (Ag1, Amw), Amw < A, Ballbids} ← lock,
17−current_winner(Ag1, Amw),
18+ann_winner,
19+current_winner(Z, A),
20win(Z, A),
21unlock;
22+bid_processed(Ag) : {B current_winner (Agw, Amw), Ballbids , ¬B ann_winner} ←
23lock,
24+ann_winner,
25win(Agw, Amw),
26unlock;
27+bid(Ag, Am) : {¬B current_winner (Ag2, Amw)} ←
28+current_winner(Ag, Am),
29+bid_processed(Ag);
30+bid(Ag, Am) : {B current_winner (Agw, Amw), ¬ (Am < Amw), ¬B allbids } ← lock,
31+current_winner(Ag, Am),
32+bid_processed(Ag),

Autom Softw Eng

33−current_winner(Agw, Amw),
34unlock;
35+bid(Ag, Am) : {B current_winner (Agw, Amw), Am < Amw, ¬Ballbids} ←
36+bid_processed(Ag);
37

38:name: ag2
39

40: Initial Beliefs :
41

42my_name(ag2)
43collaborator (ag3)
44cash(150)
45

46: Initial Goals:
47

48!pbid
49

50:Plans:
51

52+↓(b, B): � ← +B;
53+!p bid : {B my_name(Name), Bcash(C), ¬ ↑(ag1, b, bid(C, Name))} ←
54↑(ag1, b, bid(C, Name));
55+agree(A, X): {B cash(C), B my_name(Name)} ← ↑(ag1, b, bid((C + X), Name));
56+win(Ag, X): {B my_name(Name), ¬Bwin(Name, Any), B collaborator (Coll)} ←
57+!a coalition (Coll) ;
58+!a _p coalition (Coll) : {B my_name(Ag), ¬↑(Coll , b, coalition (Ag))} ←
59↑(Coll , b, coalition (Ag)),
60+ coalition (Coll);
61

62:name: ag3
63

64: Initial Beliefs :
65

66my_name(ag3)
67cash(150)
68

69: Initial Goals:
70

71!pbid
72

73:Plans:
74

75+↓(b, B): � ← +B;
76+!p bid : {B my_name(Name), Bcash(C), ¬ ↑(ag1, b, bid(C, Name))} ←
77↑(ag1, b, bid(C, Name));
78+ coalition (A) : {B my_name(Name), Bcash(C), ¬ ↑(A, b, agree(Name, C))} ←
79↑(A, b, agree(Name, C));

The code for agent 4 is the same as for agent 3 except with a different bid amount.

B.6 Auction trust code

The action win(A,Z) makes the fact that agent A has won with amount Z available
to all agents by perception.

Autom Softw Eng

Code Example 2.5 Trust Auction

1:name: ag1
2

3: Initial Beliefs :
4

5:Plans:
6

7+↓(b, bid(D, From)) : {B bid(From, E)} ← −bid(From, E),
8+bid(From, D);
9+↓(b, bid(D, From)) : {¬B bid(From, E)} ← +bid(From, D);
10+bid(Z, A) : {B bid(ag2, X1), B bid(ag3, X2), B bid(ag4, X3),
11¬B winning_amount(Am), X2 < X1, X3 < X1} ←
12+winning_amount(X1),
13win(ag2, X1);
14+bid(Z, A) : {B bid(ag2, X1), B bid(ag3, X2), B bid(ag4, X3),
15¬B winning_amount(Am), X1 < X2, X3 < X2} ←
16+winning_amount(X2),
17win(ag3, X2);
18+bid(Z, A) : {B bid(ag2, X1), B bid(ag3, X2), B bid(ag4, X3),
19¬B winning_amount(Am), X2 < X3, X1 < X3} ←
20+winning_amount(X2),
21win(ag4, X3);
22+bid(Z, A) : {B winning_amount(Am), Am < A} ← −winning_amount(Am),
23+winning_amount(A),
24win(A, Z);
25

26:name: ag2
27

28: Initial Beliefs :
29

30my_name(ag2)
31trust (ag3)
32

33: Initial Goals:
34

35!pbid
36

37:Plans:
38

39+↓(b, B): � ← +B;
40+!p _p bid : {B my_name(Name), ¬↑(ag1, b, bid (150, Name))} ←
41↑(ag1, b, bid (150, Name));
42+win(A, X) : {B my_name(Name), ¬Bwin(Name, Y), B trust (Ag),
43¬ ↑(Ag, b, coalition (Name))} ← ↑(Ag, b, coalition (Name));
44+agree(A, X) : � ← ↑(ag1, b, bid (300, ag2));
45

46:name: ag3
47

48: Initial Beliefs :
49

50my_name(ag3)
51

52: Initial Goals:
53

54!pbid
55

56

Autom Softw Eng

57:Plans:
58

59+↓(b, B): � ← +B;
60+!p bid : {B my_name(Name), ¬↑(ag1, b, bid (150, Name))} ← ↑(ag1, b, bid (150, Name));
61+ coalition (A) : {B my_name(Name), ¬↑(A, b, agree(Name, 150))} ←
62↑(A, b, agree(Name, 150));

The code for agent 3 is the same as for agent 4 except with a different bid amount.

B.7 Auction dynamic trust code

Code Example 2.6 Dynamic Trust Action

1:name: ag1
2

3:Plans:
4

5+↓(b, bid(D, From)) : {B bid(From, E)} ← −bid(From, E),
6+multiple_bidder (From),
7+bid(From, D);
8+↓(b, bid(D, From)) : {¬B bid(From, E)} ← +bid(From, D);
9+bid(Z, A) : {B bid(ag2, X1), B bid(ag3, X2), B bid(ag4, X3), B bid(ag5, X4),
10¬B winning_amount(Am), X2 < X1, X3 < X1, X4 < X1} ←
11+winning_amount(X1),
12win(ag2, X1);
13+bid(Z, A) : {B bid(ag2, X1), B bid(ag3, X2), B bid(ag4, X3), B bid(ag5, X4),
14¬B winning_amount(Am), X1 < X2, X3 < X2, X4 < X2} ←
15+winning_amount(X2),
16win(ag3, X2);
17+bid(Z, A) : {B bid(ag2, X1), B bid(ag3, X2), B bid(ag4, X3), B bid(ag5, X4),
18¬B winning_amount(Am), X2 < X3, X1 < X3, X4 < X3} ←
19+winning_amount(X3),
20win(ag4, X3);
21+bid(Z, A) : {B bid(ag2, X1), B bid(ag3, X2), B bid(ag4, X3), B bid(ag5, X4),
22¬B winning_amount(Am), X2 < X4, X1 < X4, X3 < X4} ←
23+winning_amount(X4),
24win(ag5, X4);
25+bid(Z, A) : {B winning_amount(Am), Am < A} ← −winning_amount(Am),
26+winning_amount(A), win(A, Z);
27+bid(Z, A) : {B multiple_bidder (Z), B winning_amount(Am), A < Am} ←
28↑(Z, b, failed_bid);
29

30:name: ag2
31

32: Initial Beliefs :
33

34my_name(ag2)
35trust (ag3)
36trust (ag4)
37

38: Initial Goals:
39

40!pbid
41

42:Plans:
43

Autom Softw Eng

44+↓(b, B): � ← +B;
45+!p bid : {B my_name(Name), ¬↑(ag1, b, bid (150, Name))} ← ↑(ag1, b, bid (150, Name));
46+win(A, X) : {B my_name(Name), ¬Bwin(Name, Y), B trust (Ag),
47¬B formed_coalition (AgB), ¬ ↑(Ag, b, coalition (Name))} ←
48↑(Ag, b, coalition (Name)),
49+formed_coalition (Ag);
50+ failed_bid : {B my_name(Name), ¬Bwin(Name, Y),
51B trust (Ag), B formed_coalition (AgB), ¬ ↑(Ag, b, coalition (Name))} ←
52↑(Ag, b, coalition (Name)),
53+formed_coalition (Ag),
54−trust (AgB);
55+agree(A, X) : � ← ↑(ag1, b, bid ((X + 150), ag2));
56

57:name: ag3
58

59: Initial Beliefs :
60

61my_name(ag3)
62

63: Initial Goals:
64

65!pbid
66

67:Plans:
68

69+↓(b, B): � ← +B;
70+!p bid : {B my_name(Name), ¬↑(ag1, b, bid (25, Name))} ← ↑(ag1, b, bid (25, Name));
71+ coalition (A) : {B my_name(Name), ¬↑(A, b, agree(Name, 25))} ←
72↑(A, b, agree(Name, 25));

The code for agents 4 and 5 are the same as for agent 3 except with a different bid
amount.

B.8 Cleaning robot code

The action next(slot) moves the robot to the next space on the grid and updates all
perceivable facts accordingly (e.g., whether the agent can see any garbage etc.). The
action drop(garb) makes garbage perceivable in that grid slot (assuming the agent
was holding garbage). The action moveTowards(X1, Y1) makes the agent move one
square towards the coordinates (X1, Y1). The action burn(garb) destroys a piece of
garbage.

Code Example 2.7 Cleaning Robots

1:name: r1
2

3: Initial Beliefs :
4

5pos(r2 , 2, 2)
6checking(slots)
7

8:Plans:
9

10+pos(r1 , X1, Y1) : {B checking(slots), ¬B garbage(r1)} ← next(slot);
11+garbage(r1) : {B checking(slots)} ← +!p stop (check),

Autom Softw Eng

12+!p take(garb, r2),
13+!p continue (check);
14+!p stop (check) : � ← +!a pos(r1 , X1, Y1),
15+pos(back, X1, Y1),
16−checking(slots);
17+!p take(S, L) : � ← +!p ensure_pick (S),
18+!p go(L),
19drop(S);
20+!p ensure_pick(S) : {B garbage(r1)} ← pick(garb),
21+!p ensure_pick(S);
22+!p ensure_pick(S) : � ← donothing;
23+!p continue (check) : � ← +!p go(back),
24−pos(back, X1, Y1),
25+checking(slots),
26next (slot);
27+!p go(L) : {B pos(L, X1, Y1), B pos(r1 , X1, Y1)} ← donothing;
28+!p go(L) : � ← +!a pos(L, X1, Y1),
29moveTowards(X1, Y1),
30+!p go(L);
31

32:name: r2
33

34:Plans:
35

36+garbage(r2) : � ← burn(garb);

References

de Boer, F.S., Hindriks, K.V., van der Hoek, W., Meyer, J.J.C.: A verification framework for agent pro-
gramming with declarative goals. J. Appl. Log. 5(2), 277–302 (2007)

Bond, A.H., Gasser, L. (eds.): Readings in Distributed Artificial Intelligence. Kaufmann, Los Altos (1988)
Bordini, R.H., Visser, W., Fisher, M., Wooldridge, M.: Verifiable multi-agent programs. In: First Inter-

national Workshop on Programming Multiagent Systems: Languages, Frameworks, Techniques and
Tools (ProMAS-03). Lecture Notes in Artificial Intelligence, vol. 3067. Springer, Berlin (2003)

Bordini, R.H., Fisher, M., Visser, W., Wooldridge, M.: Model checking rational agents. IEEE Intell. Syst.
19(5), 46–52 (2004)

Bordini, R.H., Dastani, M., Dix, J., El Fallah Seghrouchni, A. (eds.): Multi-Agent Programming: Lan-
guages, Platforms and Applications. Springer, Berlin (2005a)

Bordini, R.H., Hübner, J.F., Vieira, R.: Jason and the golden fleece of agent-oriented programming. In:
Bordini, R.H., Dastani, M., Dix, J., El Fallah Seghrouchni, A. (eds.) Multi-Agent Programming:
Languages, Platforms and Applications, pp. 3–37. Springer, Berlin (2005b). Chap. 1

Bordini, R.H., Fisher, M., Visser, W., Wooldridge, M.: Verifying multi-agent programs by model checking.
J. Auton. Agents Multi-Agent Syst. 12(2), 239–256 (2006)

Bordini, R.H., Hübner, J.F., Wooldridge, M.: Programming multi-agent systems in AgentSpeak using Ja-
son. Wiley Series in Agent Technology. Wiley, New York (2007)

Bordini, R.H., Dennis, L.A., Farwer, B., Fisher, M.: Automated verification of multi-agent programs. In:
Proc. 23rd IEEE/ACM International Conference on Automated Software Engineering (ASE), pp.
69–78 (2008)

Bordini, R.H., Fisher, M., Wooldridge, M., Visser, W.: Property-based slicing for an agent-oriented pro-
gramming language. J. Logic Comput. (2009)

Boutilier, C., Shoham, Y., Wellman, M.P.: Economic principles of multi-agent systems. Artif. Intell. 94(1–
2), 1–6 (1997)

Bratman, M.E.: Intentions, Plans, and Practical Reason. Harvard University Press, Cambridge (1987)
Bratman, M.E., Israel, D.J., Pollack, M.E.: Plans and resource-bounded practical reasoning. Comput. In-

tell. 4, 349–355 (1988)

Autom Softw Eng

Bredin, J., Kotz, D., Rus, D., Maheswaran, R.T., Imer, Ç., Basar, T.: Computational markets to regulate
mobile-agent systems. J. Auton. Agents Multi-Agent Syst. 6(3), 235–263 (2003)

Burch, J.R., Clarke, E.M., McMillan, K.L., Dill, D.L., Hwang, L.J.: Symbolic model checking: 1020 states
and beyond. Inf. Comput. 98(2), 142–170 (1992)

Cimatti, A., Clarke, E.M., Guinchiglia, E., Guinchiglia, F., Pistore, M., Roveri, M., Sebastiani, R., Tac-
chella, A.: NuSMV 2: An OpenSource tool for symbolic model checking. In: Proc. International Con-
ference on Computer-Aided Verification (CAV 2002). Lecture Notes in Computer Science. Springer,
Berlin (2002)

Clarke, E., Grumberg, O., Peled, D.: Model Checking. MIT Press, Cambridge (1999)
Cohen, P.R., Levesque, H.J.: Intention is choice with commitment. Artif. Intell. 42, 213–261 (1990)
Collins, J., Faratin, P., Parsons, S., Rodríguez-Aguilar, J.A., Sadeh, N.M., Shehory, O., Sklar, E. (eds.):

Agent-Mediated Electronic Commerce and Trading Agent Design and Analysis (AMEC/TADA).
Lecture Notes in Business Information Processing, vol. 13. Springer, Berlin (2009)

Corera, J.M., Laresgoiti, I., Jennings, N.R.: Using archon. Part 2. Electricity transportation management.
IEEE Intell. Syst. 11(6), 71–79 (1996)

D’Amorim, M.: Efficient explicit-state model checking for programs with dynamically allocated data.
Ph.D. thesis, University of Illinois at Urbana-Champaign, Champaign, IL, USA (2007). Adviser-
Marinov, Darko

Dash, R.K., Vytelingum, P., Rogers, A., David, E., Jennings, N.R.: Market-based task allocation mech-
anisms for limited-capacity suppliers. IEEE Trans. Syst. Man Cybern., Part A, Syst. Hum. 37(3),
391–405 (2007)

Dastani, M., van Riemsdijk, M.B., Meyer, J.J.C.: Programming multi-agent systems in 3APL. In: Bordini,
R.H., Dastani, M., Dix, J., El Fallah Seghrouchni, A. (eds.) Multi-Agent Programming: Languages,
Platforms and Applications, pp. 39–67. Springer, Berlin (2005). Chap. 2

Dastani, M., Tinnemeier, N.A.M., Meyer, J.J.C.: A programming language for normative multi-agent sys-
tems. In: Dignum, V. (ed.) Multi-Agent Systems: Semantics and Dynamics of Organizational Models,
chap 16. IGI Global (2009)

Davis, R., Smith, R.G.: Negotiation as a metaphor for distributed problem solving. Artif. Intell. 20(1),
63–109 (1983)

Dennis, L.A., Farwer, B.: Gwendolen: a BDI language for verifiable agents. In: Löwe, B. (ed.) Logic and
the Simulation of Interaction and Reasoning AISB’08 Workshop. AISB, Aberdeen (2008)

Dennis, L.A., Fisher, M.: Programming verifiable heterogeneous agent systems. In: Proc. 6th International
Workshop on Programming in Multi-Agent Systems (ProMAS). Lecture Notes in Computer Science,
vol. 5442, pp. 40–55. Springer, Berlin (2008)

Dennis, L.A., Farwer, B., Bordini, R.H., Fisher, M., Wooldridge, M.: A common semantic basis for BDI
languages. In: Proc. 7th International Workshop on Programming Multiagent Systems (ProMAS).
Lecture Notes in Artificial Intelligence, vol. 4908, pp. 124–139. Springer, Berlin (2008a)

Dennis, L.A., Hepple, A., Fisher, M.: Language constructs for multi-agent programming. In: Proc. 8th
International Workshop on Computational Logic in Multi-Agent Systems (CLIMA). Lecture Notes
in Artificial Intelligence, vol. 5056, pp. 137–156. Springer, Berlin (2008b)

Doghri, I.: Formal verification of WAHS: an autonomous and wireless P2P auction handling system. In:
Proc. 8th International Conference on New Technologies in Distributed Systems (NOTERE), pp.
1–10. ACM, New York (2008)

Durfee, E.H., Lesser, V.R., Corkill, D.D.: Trends in cooperative distributed problem solving. IEEE Trans.
Knowl. Data Eng. 1(1), 63–83 (1989)

Emerson, E.A.: Temporal and modal logic. In: van Leeuwen, J. (ed.) Handbook of Theoretical Computer
Science, pp. 996–1072. Elsevier, Amsterdam (1990)

Fisher, M., Hepple, A.: Executing logical agent specifications. In: Bordini, R.H., Dastani, M., Dix, J., El
Fallah Seghrouchni, A. (eds.) Multi-Agent Programming: Languages, Tools and Applications, pp. 1–
27. Springer, Berlin (2009)

Fisher, M., Ghidini, C.: Executable specifications of resource-bounded agents. J. Auton. Agents Multi-
Agent Syst. 21(3), 368–396 (2010)

Fisher, M., Singh, M.P., Spears, D.F., Wooldridge, M.: Logic-based agent verification (Editorial). J. Appl.
Log. 5(2), 193–195 (2007)

Fortnow, L., Riedl, J., Sandholm, T. (eds.): Proc. 9th ACM Conference on Electronic Commerce (EC).
ACM, New York (2008)

Gabbay, D., Kurucz, A., Wolter, F., Zakharyaschev, M.: Many-dimensional modal logics: theory and appli-
cations. Studies in Logic and the Foundations of Mathematics, vol. 148. Elsevier, Amsterdam (2003)

Autom Softw Eng

Gibney, M.A., Jennings, N.R., Vriend, N.J., Griffiths, J.M.: Market-based call routing in telecommuni-
cations networks using adaptive pricing and real bidding. In: Proc. 3rd International Workshop on
Intelligent Agents for Telecommunication Applications (IATA). Lecture Notes in Computer Science,
vol. 1699, pp. 46–61. Springer, Berlin (1999)

Haque, N., Jennings, N.R., Moreau, L.: Resource allocation in communication networks using market-
based agents. Knowl.-Based Syst. 18(4–5), 163–170 (2005)

Hierons, R.M., Bogdanov, K., Bowen, J.P., Cleaveland, R., Derrick, J., Dick, J., Gheorghe, M., Harman,
M., Kapoor, K., Krause, P., Lüttgen, G., Simons, A.J.H., Vilkomir, S.A., Woodward, M.R., Zedan, H.:
Using formal specifications to support testing. ACM Comput. Surv. 41(2), 1–76 (2009)

Himoff, J., Skobelev, P., Wooldridge, M.: MAGENTA Technology: Multi-agent systems for industrial lo-
gistics. In: Proc. 4th International Joint Conference on Autonomous Agents and Multiagent Systems
(AAMAS), pp. 60–66. ACM Press, New York (2005)

Hindriks, K., de Boer, F., van der Hoek, W., Meyer, J.J.: Formal semantics for an abstract agent program-
ming language. In: Intelligent Agents IV: Proc. 4th International Workshop on Agent Theories, Ar-
chitectures and Languages. Lecture Notes in Artificial Intelligence, vol. 1365, pp. 215–229. Springer,
Berlin (1998)

Hindriks, K., de Boer, F., van der Hoek, W., Meyer, J.J.: Agent programming with declarative goals.
In: Intelligent Agents VII: Proc. 6th International Workshop on Agent Theories, Architectures, and
Languages (ATAL). Lecture Notes in Artificial Intelligence, vol. 1986, pp. 228–243. Springer, Berlin
(2001)

Hirsch, B., Fricke, S., Kroll-Peters, O., Konnerth, T.: Agent programming in practise—experiences with
the JIAC IV agent framework. In: Proc. Workshop “From Agent Theory to Agent Implementation”
(AT2AI) (2008)

Holzmann, G.J.: The Spin Model Checker: Primer and Reference Manual. Addison-Wesley, Reading
(2003)

Jenkins, B.: Hash Functions. Dr. Dobbs Journal, September (1997)
Jennings, N.R., Wooldridge, M.: Applications of agent technology. In: Agent Technology: Foundations,

Applications, and Markets. Springer, Heidelberg (1998)
Jongmans, S.S., Hindriks, K., van Riemsdijk, M.: Model checking agent programs by using the program

interpreter. In: Dix, J., Leite, J.a., Governatori, G., Jamroga, W. (eds.) Computational Logic in Multi-
Agent Systems. Lecture Notes in Computer Science, vol. 6245, pp. 219–237. Springer, Berlin (2010).
doi:10.1007/978-3-642-14977-1_17

Java PathFinder: (2009). http://javapathfinder.sourceforge.net
Kacprzak, M., Lomuscio, A., Penczek, W.: Verification of multiagent systems via unbounded model check-

ing. In: Proc. 3rd International Joint Conference on Autonomous Agents and Multiagent Systems
(AAMAS), pp. 638–645. IEEE Computer Society, Los Alamitos (2004)

Klemperer, P.: Auctions: Theory and Practice. Princeton University Press, Princeton (2004). See also http://
www.nuff.ox.ac.uk/users/klemperer/VirtualBook/VBCrevisedv2.asp

Klügl, F., Bazzan, A., Ossowski, S. (eds.): Applications of Agent Technology in Traffic and Transportation.
Whitestein Series in Software Agent Technologies and Autonomic Computing. Birkhäuser, Basel
(2005)

Konishi, H., Ray, D.: Coalition formation as a dynamic process. J. Econ. Theory 110(1), 1–41 (2003)
Ljunberg, M., Lucas, A.: The OASIS air traffic management system. In: Proc. 2nd Pacific Rim International

Conference on AI (PRICAI) (1992)
Moreno, A., Garbay, C.: Software agents in health care. Artif. Intell. Med. 27(3), 229–232 (2003)
Muscettola, N., Nayak, P.P., Pell, B., Williams, B.: Remote agent: to boldly go where no AI system has

gone before. Artif. Intell. 103(1–2), 5–48 (1998)
Owre, S., Shankar, N.: A brief overview of pvs. In: Proc. 21st International Conference on Theorem

Proving in Higher Order Logics (TPHOLs). Lecture Notes in Computer Science, vol. 5170, pp. 22–
27. Springer, Berlin (2008)

Pokahr, A., Braubach, L., Lamersdorf, W.: Jadex: A BDI Reasoning Engine. In: Bordini, R.H., Dastani,
M., Dix, J., El Fallah Seghrouchni, A. (eds.) Multi-Agent Programming: Languages, Platforms and
Applications, pp. 149–174. Springer, Berlin (2005)

Raimondi, F., Lomuscio, A.: Automatic verification of multi-agent systems by model checking via ordered
binary decision diagrams. J. Appl. Log. 5(2), 235–251 (2007)

Rao, A.: AgentSpeak(L): BDI agents speak out in a logical computable language. In: Proc. 7th European
Workshop on Modelling Autonomous Agents in a Multi-Agent World (MAAMAW). Lecture Notes
in Computer Science, vol. 1038, pp. 42–55. Springer, Berlin (1996)

http://dx.doi.org/10.1007/978-3-642-14977-1_17
http://javapathfinder.sourceforge.net
http://www.nuff.ox.ac.uk/users/klemperer/VirtualBook/VBCrevisedv2.asp
http://www.nuff.ox.ac.uk/users/klemperer/VirtualBook/VBCrevisedv2.asp

Autom Softw Eng

Rao, A.S., Georgeff, M.P.: An abstract architecture for rational agents. In: Rich, C., Swartout, W., Nebel, B.
(eds.) Proceedings of Knowledge Representation and Reasoning (KR&R-92), pp. 439–449 (1992)

Rao, A.S., Georgeff, M.: BDI agents: from theory to practice. In: Proc. 1st International Conference on
Multi-Agent Systems (ICMAS), San Francisco, USA, pp. 312–319 (1995)

Reeves, D.M., Wellman, M.P., MacKie-Mason, J.K., Osepayshvili, A.: Exploring bidding strategies for
market-based scheduling. Decis. Support Syst. 39(1), 67–85 (2005)

Rimassa, G., Burmeister, B.: Achieving business process agility in engineering change management with
agent technology. In: Proc. 8th AI*IA/TABOO Joint Workshop “From Objects to Agents”—Agents
and Industry: Technological Applications of Software Agents (WOA), pp. 1–7. Seneca Edizioni,
Torino (2007)

Sandholm, T., Lesser, V.R.: Coalitions among computationally bounded agents. Artif. Intell. 94(1–2), 99–
137 (1997)

Shoham, Y.: Agent-oriented programming. Artif. Intell. 60(1), 51–92 (1993)
Sistla, A.P., Vardi, M., Wolper, P.: The complementation problem for Büchi automata with applications to

temporal logic. Theor. Comput. Sci. 49, 217–237 (1987)
Smith, R.G.: A Framework for Distributed Problem Solving. UMI Research Press, Ann Arbor (1980)
Smith, R.G., Davis, R.: Frameworks for cooperation in distributed problem solving. IEEE Trans. Syst.

Man Cybern. 11(1), 61–70 (1980)
van Riemsdijk, B., van der Hoek, W., Meyer, J.J.: Agent programming in dribble: from beliefs to goals with

plans. In: Proc. 2nd International Joint Conference on Autonomous Agents and Multiagent Systems
(AAMAS), pp. 393–400. ACM, New York (2003)

Vickrey, W.: Counterspeculation, auctions, and competitive sealed tenders. Eur. J. Finance 16(1), 8–37
(1961)

Visser, W., Havelund, K., Brat, G.P., Park, S., Lerda, F.: Model checking programs. Autom. Softw. Eng.
10(2), 203–232 (2003)

Walsh, W.E., Wellman, M.P.: A market protocol for decentralized task allocation. In: Proc. 3rd Inter-
national Conference on Multiagent Systems (ICMAS), pp. 325–332. IEEE Computer Society, Los
Alamitos (1998)

Webster, M.P., Dennis, L.A., Fisher, M.: Model-checking auctions, coalitions and trust. Tech. Rep. ULCS-
09-004, Department of Computer Science, University of Liverpool (2009). http://www.csc.liv.ac.uk/
research

Winikoff, M.: JACK™ intelligent agents: an industrial strength platform. In: Bordini, R.H., Dastani, M.,
Dix, J., El Fallah Seghrouchni, A. (eds.) Multi-Agent Programming: Languages, Platforms and Ap-
plications, pp. 175–193. Springer, Berlin (2005). Chap. 7

Winikoff, M.: Implementing commitment-based interactions. In: Proc. 6th International Joint Conference
on Autonomous Agents and Multiagent Systems (AAMAS), pp. 1–8. ACM, New York (2007)

Winikoff, M., Padgham, L., Harland, J., Thangarajah, J.: Declarative and procedural goals in intelligent
agent systems. In: Proc. 8th International Conference on Principles of Knowledge Representation and
Reasoning (KR), pp. 470–481. Kaufmann, Los Alamitos (2002)

Wooldridge, M., Ågotnes, T., Dunne, P.E., van der Hoek, W.: Logic for automated mechanism design—
a progress report. In: Proc. 22nd National Conference on Artificial Intelligence (AAAI), p. 9. AAAI
Press, Menlo Park (2007)

http://www.csc.liv.ac.uk/research
http://www.csc.liv.ac.uk/research

	Model checking agent programming languages
	Abstract
	Introduction
	Background
	Rational agents and multi-agent systems
	BDI agent programming languages
	Agent verification

	AIL: a framework for creating BDI interpreters
	Components of agent programming languages
	Agents
	Beliefs
	Guards and logical consequence
	Goals
	Intentions
	Example

	Events
	Deeds
	Plan library
	Example
	Applicable plans
	Applicable plan generation method

	Actions
	Inbox and outbox
	Reasoning cycle
	Formal definition of an AIL agent

	Example: Implementing an interpreter for an agent programming language
	GOAL implemented with AIL
	Capabilities and conditional actions
	The reasoning cycle
	Faithfulness of the implementation

	AJPF: verification for multi-agent systems
	Java PathFinder
	AJPF architecture
	The AJPF agent system interfaces-use and semantics
	BDI languages without formal semantics
	Environmental models

	Specification of properties
	Heterogeneous multi-agent systems
	Benefits of using AIL and AJPF
	Efficiency issues
	Atomic execution
	State matching
	Property checking

	Evaluation
	Verified scenarios
	Contract Net example
	Auction scenarios
	A very basic auction
	Auction coalition scenario
	Dynamic auction coalition scenario
	Coalition trust scenario
	Dynamic trust scenario

	Trash collection robots

	Results
	Effect of scaling the program
	Effect of the property size
	Comparison with previous work

	Conclusions
	Summary
	Efficiency problems
	Future work

	Acknowledgements
	Appendix A: AIL operational semantics rules
	Introduction and notation
	The rules
	Notes:
	Notes:
	Notes:
	Notes:
	Notes:
	Notes:
	Notes:
	Notes:
	Notes:
	Notes:
	Notes:
	Notes:
	Notes:
	Notes:
	Notes:
	Notes:
	Notes:
	Notes:
	Notes:
	Notes:
	Notes:
	Notes:
	Notes:
	Notes:
	Notes:
	Notes:
	Notes:
	Notes:
	Notes:
	Notes:
	Notes:
	Notes:
	Notes:
	Notes:
	Notes:
	Notes:
	Notes:
	Notes:
	Notes:
	Notes:
	Notes:
	Notes:

	Appendix B: Sample Gwendolen code for the verified scenarios
	Notation
	Contract net code
	Basic auction code
	Auction coalition code
	Dynamic auction coalition code
	Auction trust code
	Auction dynamic trust code
	Cleaning robot code

	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

