
J Comput Virol (2006) 2:149–161
DOI 10.1007/s11416-006-0023-z

INVITED PAPER

Detection of metamorphic computer viruses
using algebraic specification

Matt Webster · Grant Malcolm

Published online: 31 August 2006
© Springer-Verlag France 2006

Abstract This paper describes a new approach
towards the detection of metamorphic computer viruses
through the algebraic specification of an assembly lan-
guage. Metamorphic computer viruses are computer
viruses that apply a variety of syntax-mutating, behav-
iour-preserving metamorphoses to their code in order
to defend themselves against static analysis based detec-
tion methods. An overview of these metamorphoses is
given. Then, in order to identify behaviourally equiv-
alent instruction sequences, the syntax and semantics
of a subset of the IA-32 assembly language instruc-
tion set is specified formally using OBJ – an algebraic
specification formalism and theorem prover based on
order-sorted equational logic. The concepts of equiva-
lence and semi-equivalence are given formally, and a
means of proving equivalence from semi-equivalence
is given. The OBJ specification is shown to be use-
ful for proving the equivalence or semi-equivalence of
IA-32 instruction sequences by applying reductions –
sequences of equational rewrites in OBJ. These proof
methods are then applied to fragments of two differ-
ent metamorphic computer viruses, Win95/Bistro and
Win9x.Zmorph.A, in order to prove their (semi-)equiv-
alence. Finally, the application of these methods to the
detection of metamorphic computer viruses in general
is discussed.

M. Webster (B) · G. Malcolm
Department of Computer Science,
University of Liverpool,
Liverpool, L69 3BX, UK
e-mail: matt@csc.liv.ac.uk

G. Malcolm
e-mail: grant@csc.liv.ac.uk

1 Introduction

Computer viruses are typically segments of a stored pro-
gram that when run are able to create a copy of them-
selves in another stored program. During this process
of reproduction, it is possible for the virus to modify it-
self in some way. Metamorphic computer viruses essen-
tially replace sequences of instructions with syntacti-
cally different (yet semantically equivalent) sequences
of instructions in successive generations [10]. In this way
the behaviour of each generation is the same, but the
actual code is different. Typically, this is done in order
to avoid static analysis based detection methods such
as signature scanning, heuristic analysis and spectral
analysis.

This paper describes an approach towards to the
detection of metamorphic computer virus using an alge-
braic specification of the IA-32 assembly language. In
Sect. 2 an overview of the specification is given, and the
notions of equivalence and semi-equivalence of instruc-
tions and instruction sequences are defined formally.
Using this formalism we prove that semi-equivalence
can be extended to equivalence under certain conditions
that can be checked using static analysis. The OBJ spec-
ification, when combined with the OBJ term rewriting
engine, can be used as an interpreter for programs in IA-
32, and this in turn can be used for dynamic analysis of
computer viruses. In Sect. 3 this dynamic analysis is used
to prove the equivalence and semi-equivalence of real-
life metamorphic computer virus code fragments, and
potential applications to metamorphic computer virus
detection are discussed. In Sect. 4 some directions for
future research are given.

150 M. Webster, G. Malcolm

1.1 Types of code metamorphosis

Metamorphic computer viruses conceal their code from
anti-virus scanners using a variety of semantics-preserv-
ing, syntax-mutating methods [7]. Here a non-exhaus-
tive list of the different kinds of code metamorphosis is
given in order to demonstrate the many and varied ways
in which metamorphic computer viruses can use syntac-
tic camouflage to defend themselves against static anal-
ysis based detection. Several of these types were given
by Lakhotia and Mohammed [7].

1.1.1 Junk code insertion

Junk code is code that is superfluous to the main func-
tion(s) of the virus, and is inserted to create syntactic
variants. There are different types of junk code, includ-
ing but not limited to:

• Code that reverses the effects of a previous instruc-
tion or instructions, thus making the previous instruc-
tion(s) and the inverse code into junk. For example,
the instruction sequence xchg eax,ebx ; xchg
eax,ebx—which swaps the values in registers eax
andebx twice—would fall under this category. (Note
that, throughout this paper, we use a semicolon (;)
to indicate sequential composition of assembly lan-
guage instructions.)

• Code that performs a computation that is not utilised
in any of the outputs of the program. For example,
the first instruction in the following instruction list
does nothing as the result is overwritten by the next
instruction: mov eax,0 ; mov eax,ebx.

1.1.2 Variable renaming

Variables are renamed in successive generations of meta-
morphic computer viruses such as Win9x.Regswap [10].
For instance, mov eax,0 ; push eax ; pop ebx

push ebp push ebp
mov ebp, esp push esp

pop ebp

mov esi, dwordptr [ebp + 08] mov esi, dwordptr [ebp + 08]
test esi, esi or esi, esi
je 401045 je 401045

mov edi, dwordptr [ebp + 0c] mov edi, dwordptr [ebp + 0c]
or edi, edi test edi, edi
je 401045 je 401045

Fig. 1 Allomorphic fragments of Win95/Bistro [10]

could be replaced by the equivalent instruction sequence
mov ecx,0 ; push ecx ; pop ebx.

1.1.3 Unconditional jump insertion

A block of instructions is broken up into more than one
smaller blocks of instructions linked by unconditional
jumps. For example:

pop edx pop edx
mov edi,0004h jmp label1
mov esi,ebp label2:
mov eax,000Ch jmp label3

label1:
mov edi,0004h
mov esi,ebp
jmp label2
label3:
mov eax,000Ch

1.1.4 Instruction reordering

Blocks of data-independent instructions are reordered
to create syntactic variants. For example, mov eax,
ebx ; mov esi,edi can be reordered to mov esi,
edi; mov eax,ebx.

1.1.5 Equivalent sequence replacement

A sequence of instructions is replaced by equivalent
sequences of instructions in order to generate syntac-
tic variants. A good example of this can be seen in the
Win95/Bistro virus (see Fig. 1, Sect. 3.1).

1.1.6 Pseudo-conditional jump insertion

A sequence of instructions ends in a conditional jump
that depends entirely on information encoded in the
preceding instructions. An example of this would be the
following instruction sequence, mov eax,20 ; sub
eax,20 ; je label1, in which the conditional jump
je (“jump if the zero flag is set to 1”) is effectively uncon-
ditional because the preceding instructions always set
the zero flag to 1.

1.1.7 Arithmetical/Boolean mutation

Arithmetical and Boolean operations can be easily
mutated into other, equivalent forms. A good example
of this can be found in the Win9x.Zmorph.A virus (see
Fig. 2, Sect. 3.2).

Detection of metamorphic computer viruses 151

mov edi, 2580774443 mov ebx, 535699961
mov ebx, 467750807 mov edx, 1490897411
sub ebx, 1745609157 xor ebx, 2402657826
sub edi, 150468176 mov ecx, 3802877865
xor ebx, 875205167 xor edx, 3743593982
push edi add ecx, 2386458904
xor edi, 3761393434 push ebx
push ebx push edx
push edi push ecx

Fig. 2 Allomorphic fragments of Win9x.Zmorph.A

1.1.8 Payload mutation

Some viruses only reproduce on certain days of the
week, or when the hour of the day is an even num-
ber, for example. These conditionalities can be mutated
by a metamorphic computer virus. The payload of the
virus could also be mutated.

1.1.9 Pseudo branching

Here, the same code is executed whether the condition
of a conditional jump is true or not. For example, the fol-
lowing two code fragments are equivalent with respect
to the eax register:

je label1 mov eax, 435098
mov eax, 435098 sub eax, 340934
sub eax, 340934 ...
jmp label2
label1:
mov eax, 435098
sub eax, 340934
label2:
...

This form of metamorphism has not been seen in any
metamorphic computer virus, to the authors’ knowl-
edge. It is included as a likely future development of
metamorphic computer viruses. This is justified with the
following quote from Filiol et al. [2] on the ethics of
the computer virology community: “We cannot rely on
a ‘wait and see’ approach, but we must anticipate tech-
nological evolutions.”

1.2 Related work

An overview of both static and dynamic analysis based
methods for computer virus detection is given by
Filiol [1]. A general overview of metamorphic com-
puter viruses in the wild is given by Ször and Ferrie [10].
Lakhotia and Mohammed have studied an approach to
the detection of metamorphic computer viruses based
on imposing order on high-level language statements

in order to reduce the number of syntactic variants of
programs [7,9]. Yoo and Ultes-Nitsche have explored
detection methods for metamorphic computer viruses
using artificial neural networks [12].

The work in this paper is an extension of a previ-
ous project, in which the algebraic specification of com-
puter viruses and their environments was explored using
Abstract State Machines and OBJ [11].

2 Specifying IA-32 assembly language

A new means toward the detection of metamorphic
computer viruses has been developed. It relies on a for-
mal specification in OBJ of the IA-32 instruction set.
The OBJ specification can be used to calculate the ef-
fects on any variable of any instruction sequence. Thus
it is possible to prove equivalence or semi-equivalence
of IA-32 instruction sequences by applying reductions –
sequences of equational rewrites – using the OBJ term
rewriting engine.

2.1 A brief introduction to OBJ

OBJ is a formal notation and theorem prover based on
algebraic specification [4]. OBJ can be used for software
specification [3], as data types can be defined in OBJ
as sorts in an order-sorted algebra. Operators on these
sorts can be defined and given meaning using equational
rewrite rules.

For example, the syntax of the natural numbers in
Peano notation could be laid out in OBJ as follows:

obj PEANO is
sort Nat .
op 0 : -> Nat .
op s_ : Nat -> Nat .
op _+_ : Nat Nat -> Nat .

endo

The first line simply introduces the name (PEANO) of
the specification. This specification uses only one sort of
data: natural numbers, whose name (Nat) is declared in
the second line. The next three lines declare three oper-
ators. The first, 0 is a nullary operator (i.e., a constant)
and can be used by other non-nullary operators (which
have an operand of sort Nat) to generate more com-
plex terms. s_ is a unary operator that takes a Nat and
returns a Nat, and _+_ is an infix binary operator that
takes two Nats and returns a Nat. s_ is the successor
function, and _+_ is addition.

In OBJ the semantics of operators are given using
a series of equations, which can also be used as term

152 M. Webster, G. Malcolm

rewriting rules. So, if we wanted to give the semantics
for the _+_ operator above, we could do this as follows:

obj PEANO-SEMANTICS is
protecting PEANO.
*** Import the PEANO module

vars M N : Nat .
eq M + 0 = M .
eq M + s(N) = s(M + N) .

endo

Now we have specified the semantics of addition, or
rather, we have made the _+_ operator behave as a
operation which returns the value of the sum of two
natural number operands in Peano notation. The = is
effectively a rewriting operator, showing that the term
on the left is rewritten to the term on the right. Using
OBJ, we can perform a reduction (a series of rewrites)
in order to reduce a term to the most reduced form
possible, i.e. the OBJ interpreter keeps applying rewrite
rules as long as there is a rewrite rule that will apply. A
typical reduction using the specification above would be
as follows:

OBJ> reduce s(s(s(0))) + s(s(0)) .
result Nat: s (s (s (s (s 0))))

An important notion in OBJ is that of reduction as proof.
Since each of the equations above holds for the natural
numbers, the above reduction is a proof that “s(s(s(0)))+
s(s(0)) = s(s(s(s(s(0)))))”, or “3 + 2 = 5” in Arabic
numerals. Whilst trivial, this example demonstrates the
expressive power of the OBJ formalism.

2.2 Specifying the semantics of IA-32

The Intel Architecture 32-bit (IA-32) instruction set
architecture [5], also known as x86-32, is used by the
vast majority of personal computers worldwide, and it
follows that the majority of computer viruses will (at
some point in their reproductive cycle) be manifest as
a sequence of IA-32 instructions. This section describes
how a subset of IA-32 has been formally specified using
OBJ.

Together, the OBJ modules IA-32-SYNTAX and
IA-32-SEMANTICS define an order-sorted initial alge-
bra with sorts Store, Instruction, Variable,
Expression, Stack, Int and EInt. A complete list-
ing of these modules is given in Appendix A; for a
more detailed account of OBJ and algebraic specifica-
tion, see [3,4].

In IA-32, as in any other imperative language, compu-
tation is achieved by updating the state of the machine
that interprets the instructions of the language. We use

the sort Store to represent this state, which comprises
the values stored in the registers, stack, and various flags
of the IA-32 architecture.

Instructions (when executed) can modify the store,
which we express in OBJ using the following operator:

op _;_ : Store Instruction -> Store .

We say that _;_ takes a Store and an Instruction
and returns a Store. This operator lets us calculate
the effects of any sequence of instructions on a store.
This mirrors classical denotational semantics, where an
instruction sequence denotes a function that takes a
starting state as an argument, and returns the updated
state that results from running the instruction sequence
in the starting state.

It is very useful to be able to calculate the effects of a
sequence of instructions on a store, and for this purpose
two operators are defined:

op _[[_]] : Store Expression -> EInt .
op _[[stack]] : Store -> Stack .

Using these operators we can calculate the value
of an expression or the stack relative to a store.
(Expression is a supersort which encapsulates sorts
EInt and Variable.) Therefore the _[[_]] and
_[[stack]] operators will let us calculate the effects
of any sequence of instructions on any integer, variable
or the stack.

The previous operators are the foundation for the
algebraic specification of the IA-32 instruction set. On
top of this foundation we can start to specify the syntax
and semantics of IA-32 instructions. For example, the
syntax of the MOV instruction can be defined as follows:

op mov_,_ : Variable Expression ->
Instruction .

Now we can specify the semantics of MOV, using equa-
tional rewriting rules. First we need some variables for
the rewrite rules. We define these as follows:

vars I I1 I2 : EInt .
vars V V1 V2 V3 : Variable .

These variables are used as “wildcards” in the equational
rewrite rules, and are not to be confused with the sort
Variable of IA-32 variables used in the instruction
sequences (such as registers eax, ebx and so on).

Now we can define the semantics of MOV (as given
in the IA-32 Architecture Software Developer’s Man-
ual [5]) by the equations:

eq S ; mov V,E [[V]] = S[[E]] .
cq S ; mov V1,E [[V2]] = S[[V2]]

Detection of metamorphic computer viruses 153

if V1 =/= V2 and V2 =/= ip .
eq S ; mov V,E [[stack]] = S[[stack]] .
eq S ; mov V,E [[ip]] = S[[ip]] + 1 .

As we can see, a storeSmodified bymov V,E is denoted
by S ; mov V,E. We use OBJ variables to general-
ise all instances of the mov instruction, i.e. mov V,E
includes all mov instructions with an IA-32 variable as
the destination operand and an expression (an IA-32
variable or an integer) as the source operand. The first
equation states that the value of V in S after executing
mov V,E is equal to S[[E]], which is the value of the
expression E in store S. The second equation is condi-
tional, and says that the value of any variable other than
the destination operand (V1) and the instruction pointer
(ip) is unchanged by the execution of mov V1,E. The
third equation states that the stack is left unchanged
by mov V,E. The final equation states that mov V,E
always increments the instruction pointer. (For the sake
of simplicity in the OBJ specification, all instructions are
defined as having length equal to 1.)

In a similar way the semantics of ADD, SUB, XOR, AND,
OR, PUSH, POP and NOP have also been defined for use
in the equivalence proofs in Sect. 3. In principle, there
is no reason to stop here; it would be quite feasible to
specify the semantics of IA-32 in its entirety using OBJ.
Indeed, equational logic formalisms such as OBJ have
been shown to be a useful tool for the specification of
imperative languages [3,4,8]. The full specification of
this subset of IA-32 can be found in Appendix A.

2.2.1 Using the OBJ specification as an interpreter

When the syntax and semantics of a programming lan-
guage are defined in an automated theorem prover such
as OBJ, an interpreter and program analysis tool for
that programming language are obtained “essentially
for free” [8]. In Sect. 3 this interpreter is used to prove
the equivalence or semi-equivalence of instruction
sequences towards metamorphic computer virus
detection.

Here is an example of how we can use this implicit
interpreter to prove properties of programs. The fol-
lowing IA-32 instruction sequence swaps the values in
registers eax and ebx:

mov ecx,eax ; mov eax,ebx ; mov ebx,ecx

(1)

We can test this by performing some reductions us-
ing OBJ. For example, to test the value of eax after
executing the instruction sequence we can perform the
following reduction, in which s denotes the state of an

arbitrary store prior to execution of the instruction se-
quence:

OBJ> red s ; mov ecx,eax ;
mov eax,ebx ; mov ebx,ecx [[eax]] .

result EInt: s[[ebx]]

By applying the rewriting rules that specify the seman-
tics of the mov instruction, the OBJ term-rewriting
engine has reduced

s ; mov ecx,eax ; mov eax,ebx ;
mov ebx,ecx [[eax]]

to s[[ebx]], thus proving that the effect of (1) on any
store s is to assign the value of ebx in store s to eax. We
can also check that ebx has been assigned the original
value of eax:

OBJ> red s ; mov ecx,eax ;
mov eax,ebx ; mov ebx,ecx [[ebx]] .

result EInt: s[[eax]]

Therefore, using the OBJ specification of IA-32, we have
proven that (1) swaps the values in the registers eax and
ebx.

2.3 Equivalence of instruction sequences

Metamorphic computer viruses change their syntax
without changing their behaviour when they reproduce,
so we are particularly interested in applying our seman-
tics for IA-32 to show that two segments of code have
the same behaviour.

We begin by defining notions of equivalent and semi-
equivalent behaviour for code segments. In order to do
so, we first need to extend the semantics described above
to sequences of instructions. This is done by declaring
a sort InstructionSequence which includes all the
single instructions of IA-32 as “singleton sequences”:

subsort Instruction
< InstructionSequence.

We also declare an operation for sequential composi-
tion:

op _;_ : InstructionSequence
InstructionSequence
-> InstructionSequence .

We adopt the semicolon notation here for the sake of
explicit clarity. The semantics of sequential composition
is captured by an equation that states that executing a
sequential composition amounts to executing the first
sequence, then executing the second sequence in the
resulting store:

154 M. Webster, G. Malcolm

var S : Store .
vars P1 P2 : InstructionSequence .
eq S ; (P1 ; P2) = (S ; P1) ; P2 .

In the remainder of this section, we adopt a more stan-
dard mathematical notation. Let S, V, and I denote the
sets of all stores, variables, and instructions, respectively;
the variables V include the registers, stack and flags of
IA-32. Let _[[_]] : S × V → Z and _;_ : S × I → S,
so that s; p denotes the state of an updated store after
executing instruction sequence p in store s, and s; p[[v]]
denotes the value of the variable v in updated store s; p,
as described in the OBJ specification outlined above.

We say that two sequences of instructions are equiva-
lent if and only if they behave equivalently with respect
to the set of variables in the store, and that they are
semi-equivalent if and only if they behave equivalently
with respect to a subset of the set of variables in the
store.

Definition 1 For W ⊆ V, instruction sequences p1 and
p2 are W-equivalent, written p1 ≡W p2, iff for all stores
s, and all variables v ∈ W:

s; p1[[v]] = s; p2[[v]] .

In the case that W = V, we say that p1 is equivalent to p2,
and write p1 ≡ p2.

Note that these notions of equivalence are in fact equiv-
alence relations.

2.4 Equivalence in context

Our end goal is to be able to prove that two allomor-
phic sequences of code are equivalent. In this section,
we give some results that allow us to use static analy-
sis in such proofs. If p1 ≡W p2 then these instruction
sequences may have different effects on variables that
are not in W. However, if these instruction sequences are
composed with another instruction sequence ψ whose
behaviour does not depend on such variables, then we
may have:

p1;ψ ≡ p2;ψ .

If these conditions are met by some p1, p2 and ψ then
we say that p1 and p2 are equivalent in context of ψ .

For the purposes of static analysis, we identify the
variables that are read or written to by instructions. In
particular, we want Vin(θ) to be the set of variables that
could affect the behaviour of some instruction θ in some
way.

Definition 2 For instruction θ , define Vin(θ) by v∈Vin(θ)

iff there exist s, s′ ∈ S and v′ ∈ V such that s ≡V−{v} s′
and s; θ [[v′]] �= s′; θ [[v′]].

For example, Vin(mov eax,ebx) = {ebx,ip}
because the values in ebx and ip are accessed as a
means of determining the output of this instruction.

Similarly, we identify Vout(θ) as the set of variables
that could be modified by some instruction θ .

Definition 3 For instruction θ , define Vout(θ) by v ∈
Vout(θ) iff there is an s ∈ S such that s; θ [[v]] �= s[[v]].

For example, Vout(mov eax,ebx) = {eax,ip}
because the values in eax and ip are modified by this
instruction.

These functions extend naturally to sequences of
instructions:

Definition 4 For instruction sequences ψ1 and ψ2:

Vin(ψ1;ψ2) = Vin(ψ1) ∪ Vin(ψ2)

Vout(ψ1;ψ2) = Vout(ψ1) ∪ Vout(ψ2) .

Lemma 1 For all instructions θ and for all p1, p2:

p1 ≡Vin(θ) p2 implies p1; θ ≡Vout(θ) p2; θ .

The proof of this lemma is by case-analysis on each
instruction; this can be done using an OBJ proof script:
see Appendix B for details. For example, the follow-
ing proof script proves the case for θ = mov v1,v2,
since Vin(mov v1,v2) = {v2,ip} and Vout(mov v1,v2) =
{v1,ip}. The result of each reduction should be, and is,
true.

ops v1 v2 : -> Variable .
eq s1[[v2]] = s2[[v2]] .
eq s1[[ip]] = s2[[ip]] .
reduce s1 ; mov v1, v2 [[v1]] is s2 ;

mov v1, v2 [[v1]] .
reduce s1 ; mov v1, v2 [[ip]] is s2 ;

mov v1, v2 [[ip]] .

Lemma 2 If p1 ≡W p2 and Vin(θ) ⊆ W then:

p1; θ ≡W∪Vout(θ) p2; θ .

Proof Assume p1 ≡W p2. By the previous lemma, we
know that p1; θ ≡Vout(θ) p2; θ , so we need only con-
sider variables in W and not in Vout(θ). For any w /∈
Vout(θ), we have s; p1; θ [[w]] = s; p1[[w]] and s; p2;
θ [[w]] = s; p2[[w]], by Definition 3. If w ∈ W, then s;
p1[[w]] = s; p2[[w]] by assumption that p1 ≡W p2, so
s; p1; θ [[w]] = s; p2; θ [[w]] as desired.

Now we can incrementally chain together sets of vari-
ables into equivalences for instruction sequences with
our main

Detection of metamorphic computer viruses 155

Theorem 1 Let ψ be an instruction sequence such that
ψ = θ1; θ2; . . . ; θm, where θ1≤i≤m are instructions. If
p1 ≡W p2 and for all j with 1 ≤ j ≤ m

Vin(θj) ⊆ W ∪
j−1⋃

i=1

Vout(θi) (2)

then p1;ψ ≡W∪Vout(ψ) p2;ψ .

Proof By induction on m. The base case, where m = 1,
is shown in Lemma 2. For the induction step, assume
p1 ≡W p2 and for 1 ≤ j ≤ m

Vin(θj) ⊆ W ∪
j−1⋃

i=1

Vout(θi) (3)

so that, by the induction hypothesis, p1;ψ ′ ≡W ∪ Vout(ψ ′)
p2;ψ ′, whereψ ′ = θ1; θ2; . . . ; θm−1. Now apply Lemma 2
again (taking the p1 of that lemma to be p1;ψ ′, p2 to
be p2;ψ ′, noting that, by (3) Vin(θm) ⊆ W ∪ Vout(ψ

′)),
and since Vout(ψ) = Vout(ψ

′) ∪ Vout(θm), this gives
p1;ψ ≡W ∪ Vout(ψ) p2;ψ as desired.

It is possible to recover equivalence of instruction se-
quences from semi-equivalence in some cases. If
p1 ≡W p2, then p1 and p2 may have different effects
on variables in V − W (which we henceforth write as
W); but if all variables in W are overwritten in the same
way by some instruction sequence ψ , despite the differ-
ences in W, then p1 is equivalent to p2 in the context of
ψ , as stated in our final

Corollary 1 (Equivalence in context) If p1 ≡W p2 and
p1;ψ ≡W ∪ Vout(ψ) p2;ψ for instruction sequences p1, p2,
ψ and W ⊆ Vout(ψ) then p1;ψ ≡ p2;ψ .

Proof If W ⊆ Vout(ψ) then p1;ψ ≡W ∪ W p2;ψ . Since
W ∪ W = V it follows that p1;ψ ≡ p2;ψ .

In the following section the OBJ specification of IA-32
is used for dynamic analysis in order to prove equiva-
lence/semi-equivalence of metamorphic computer virus
code fragments. The proofs in this section are useful for
a static analysis based approach to equivalence proving.
The application of both the static and dynamic analy-
sis based approaches to metamorphic computer virus
detection are discussed in Sect. 3.3.

3 Proving equivalence of viral code

Any two generations of the same metamorphic
computer virus that differ syntactically are called
allomorphs. Using the formal specification of IA-32

described in Sect. 2.2 it is possible to prove the equiv-
alence or semi-equivalence of various allomorphs of
metamorphic computer viruses using reductions in OBJ,
by using the OBJ specification as an interpreter. The
technique is used on allomorphic code fragments of
two metamorphic computer viruses: Win95/Bistro and
Win9x.Zmorph.A. The application of this technique to
the detection of computer viruses is discussed in Sect. 3.3.

3.1 Example 1: Win95/Bistro

Win95/Bistro applies equivalent sequence replacement
to generate syntactic variants. Figure 1 shows two allo-
morphic fragments from Win95/Bistro.

The fragments have been divided up into three blocks
each. The first two blocks consist of instructions which
alter the state of the stack, the ebp register and the
instruction pointer (ip). We can analyse the effects on
these variables using an OBJ reduction. First we define
two store operators a and b, one for each block:

ops a b : Store -> Store .

Next we define the instruction sequences corresponding
to a and b (this is a shorthand that allows more concise
use of the instruction sequences):

eq a(S) = S ; push ebp ; mov ebp, esp .
eq b(S) = S ; push ebp ; push esp ;
pop ebp .

Now, using the semantics of IA-32 as specified in OBJ,
we can use a reduction to calculate the effects of any
instruction sequence on any variable. We can also use the
is operation to prove that two instruction sequences
have the same effect on the same variable, and are there-
fore equivalent with respect to that variable.

Proposition 1 a is equivalent to b with respect to every
variable apart from the instruction pointer, i.e. a ≡W b
where W = V − {ip}.
Proof Since Vout(a) = Vout(b) = {stack,ebp} we
need only prove equivalence with respect to
{stack,ebp} and non-equivalence with respect to ip,
since all other variables (i.e. those outside Vout(a)) will
be unchanged.

OBJ> reduce a(s)[[stack]] is b(s)
[[stack]].

result Bool: true
OBJ> reduce a(s)[[ebp]] is b(s)[[ebp]] .
result Bool: true
reduce in IA-32 : a(s)[[ip]] is b(s)
[[ip]]

result Bool: false

156 M. Webster, G. Malcolm

Therefore, a(S) and b(S) are equivalent with respect
to every variable except the instruction pointer.

Next we can tackle the second pair of allomorphic frag-
ments. This time we define a constant, dword1, to stand
for the value of dword ptr [ebp + 08], which is
the same in both fragments.

op dword1 : -> EInt .

We define c and d in a similar way to last time:

eq c(S) = S ; mov esi, dword1;
test esi, esi .

eq d(S) = S ; mov esi, dword1;
or esi, esi .

test performs a Boolean-and operation on its oper-
ands, and sets the value of three flags (zf, sf and pf) in
the EFLAGS register according to the result, and sets
the value of two other flags (cf and of) in EFLAGS
to zero (no other memory locations are updated) [5].
or performs a Boolean-or operation on its operands,
and sets the value of three flags (zf, sf and pf) in the
EFLAGS register according to the result, and sets the
value of two other flags (cf and of) in EFLAGS to
zero (also, the variable in the source operand is set to
the result of the Boolean-or) [5]. Clearly, a Boolean-and
is not equivalent to a Boolean-or, however these two
instructions are equivalent if the source and destination
operands in both instructions are the same variable. The
Win95/Bistro virus uses this fact to generate allomorphs.
We express this truth, a result of the idempotent law
of Boolean-and and Boolean-or, using two equations.
(The _band_ and _bor_ operators are overloaded so
that the equations will apply to extended integers such
as dword1.)

op _band_ : EInt EInt -> EInt .
op _bor_ : EInt EInt -> EInt .
eq I bor I = I .
eq I band I = I .

Proposition 2 c is equivalent to d, i.e. c ≡ d.

Proof Proof is with a reduction. Since

Vout(c) = Vout(d) = {esi,ip,zf,sf,pf,cf,of}
we need only test the values of these variables in order
to prove equivalence.

OBJ> reduce c(s)[[esi]] is d(s)[[esi]] .
result Bool: true
OBJ> reduce c(s)[[ip]] is d(s)[[ip]] .
result Bool: true
OBJ> reduce c(s)[[zf]] is d(s)[[zf]] .
result Bool: true

OBJ> reduce c(s)[[pf]] is d(s)[[pf]] .
result Bool: true
OBJ> reduce c(s)[[sf]] is d(s)[[sf]] .
result Bool: true
OBJ> reduce c(s)[[cf]] is d(s)[[cf]] .
result Bool: true
OBJ> reduce c(s)[[of]] is d(s)[[of]] .
result Bool: true

Therefore, c is equivalent to d.

The third pair of code fragments can be dealt with in a
similar way to the second, as the same instructions are
used.

We define another constant, dword2, to stand for
the value of [ebp + 0c], which is the same in both
fragments.

op dword2 : -> EInt .

We define e and f in a similar way to c and d:

eq e(S) = S ; mov edi, dword2 ;
or edi, edi .

eq f(S) = S ; mov edi, dword2 ;
test edi, edi .

Proposition 3 e is equivalent to f, i.e. e ≡ f.

Proof Proof is with a reduction. Since

Vout(e) = Vout(f) = {esi,ip,zf,sf,pf,cf,of}
we need only test the values of these variables in order
to prove equivalence.

OBJ> reduce e(s)[[esi]] is f(s)[[esi]] .
result Bool: true
OBJ> reduce e(s)[[ip]] is f(s)[[ip]] .
result Bool: true
OBJ> reduce e(s)[[zf]] is f(s)[[zf]] .
result Bool: true
OBJ> reduce e(s)[[pf]] is f(s)[[pf]] .
result Bool: true
OBJ> reduce e(s)[[sf]] is f(s)[[sf]] .
result Bool: true
OBJ> reduce e(s)[[cf]] is f(s)[[cf]] .
result Bool: true
OBJ> reduce e(s)[[of]] is f(s)[[of]] .
result Bool: true

Therefore, e is equivalent to f.

3.2 Example 2: Win9x.Zmorph.A

IA-32 code that was found after the disassembly of two
Win9x.Zmorph.A allomorphs can be seen in Fig. 2. It is
known that this virus decrypts itself onto the stack from

Detection of metamorphic computer viruses 157

hardcoded numbers [6]. Therefore we would expect the
code fragments in Fig. 2 to be equivalent with respect to
the stack.

In a similar way to the previous section, we assign the
two allomorphs to g(S) and h(S) respectively.

Proposition 4 g and h are equivalent with respect to the
stack, i.e. g ≡W h where W = {stack}.
Proof We prove this by performing a reduction, and
checking equality of the two resulting stacks using the
is operator.

OBJ> reduce g(s)[[stack]] is
h(s)[[stack]] .

result Bool: true

Therefore g ≡W h where W = {stack}.
We can check the resulting state of the stack by perform-
ing an additional reduction:

OBJ> reduce a(s)[[stack]] .
result Stack:1894369473 next(2281701373

next (2430306267 next (s[[stack]])))

The original state of the stack is denoted by
s[[stack]], and the _next_ operator delimits indi-
vidual values placed on the stack.

Therefore, the two allomorphic fragments are equiv-
alent (with respect to the stack) to the following IA-32
instruction sequence:

PUSH 2430306267 ; PUSH 2281701373 ;
PUSH 1894369473

3.3 Application to anti-virus scanning

Once a programming language such as IA-32 has been
specified using a formal notation and theorem prover
such as OBJ, we obtain an interpreter (and program
analysis tool) for that language “essentially for free” [8].
Therefore, a suspect code segment could be interpreted
using the OBJ specification of IA-32 in order to check
the behaviour of that code. For example, in Sect. 3.2, two
variants of the Win9x.Zmorph.A metamorphic com-
puter virus were shown to be equivalent with respect to
the stack, meaning that the state of the stack was affected
in the same way by both generations of the virus. Check-
ing this behaviour for a suspect code fragment would be
straightforward using the methods shown. Therefore,
the IA-32 specification in OBJ could be applied as a
means of code emulation based dynamic analysis. This
technique could also be applied to the analysis of sus-
pected malware that functions by causing a stack over-
flow.

An application to aid signature scanning would be
to check whether a suspect code fragment behaved
(semi-)equivalently to a signature of a metamorphic
computer virus. Computer virus signatures must be suffi-
ciently discriminating and non-incriminating, meaning
that they must identify a particular virus reliably with-
out falsely incriminating code from a different virus or
non-virus [1]. If a suspect code block was proven to have
equivalent behaviour to a signature, this would result in
identification to the same degree of accuracy as the orig-
inal signature. (Since a signature uses a syntactic repre-
sentation of the semantics of a code fragment to identify
a viral behavioural trait, any equivalent signature must
therefore identify the same trait.) If the code block is
only semi-equivalent, then the accuracy of detection
could be reduced. However if equivalence in context
(see Sect. 2.4) could be proven then accuracy would
again be to the same degree as the original signature.

4 Conclusion

A new means toward detection of metamorphic com-
puter viruses has been developed. The method works
by formally specifying the semantics of a programming
language (in this case, IA-32) using OBJ – a formal nota-
tion for algebraic specification and theorem proving.
This specification can be used to prove the equivalence
or semi-equivalence of sequences of IA-32 instructions.
In addition, there are methods for proving equivalence
from semi-equivalence (equivalence in context). These
techniques are readily applicable to real-life metamor-
phic computer viruses, as the examples of equivalence
and semi-equivalence proofs for allomorphs of
Win95/Bistro and Win9x.Zmorph.A have shown.

It is reasonable to suggest that it is possible to detect
metamorphic computer viruses, which use syntactically
different yet semantically equivalent code in succes-
sive generations in order to avoid detection, by proving
equivalence between syntactically different allomorphs
using the methods described in this paper. Potential
applications include (but are not limited to) those in
Sect. 3.3.

4.1 Future work

So far a subset of the IA-32 instruction set has been spec-
ified using OBJ, but there is no reason why the entire
instruction set could not be implemented, as
several imperative programming languages have been
specified using similar approaches [3,4,8]. A full
specification of IA-32 would enable application of
the detection techniques described in this paper to

158 M. Webster, G. Malcolm

computer viruses that use instructions beyond the sub-
set of IA-32 specified here (see Appendix A for the OBJ
specification). The specification techniques used would
also extend naturally to other assembly languages such
as IA-64, the 64-bit successor to IA-32. The technique
of (semi-)equivalence proof has been applied to two
of the nine computer virus code metamorphosis types
given in Sect. 1.1: equivalent sequence replacement and
arithmetical/Boolean metamorphism. A practical exten-
sion of this work would be to extend and test the tech-
niques shown here for other types of metamorphism.
In Sect. 2.4 a method for proving equivalence in context
was given. An extension of this would be to find further
means of proving equivalence in context, which would
aid the detection of metamorphic computer viruses that
employ semi-equivalence based code metamorphosis.

Appendix A OBJ Specification

Below is a listing of the OBJ modules IA-32-SYNTAX,
IA-32-SEMANTICS and BITWISE. The first two mod-
ules specify the syntax and semantics of a subset of the
IA-32 instruction set, and import sorts and operations
from theBITWISEmodule, which defines the syntax and
semantics of bitwise Boolean operations for integers in
Arabic numeral notation using Lisp operations (OBJ3
is built on top of GNU Common Lisp).

The modules below are sufficient for reproducing all
of the equivalence proofs in this paper. These mod-
ules, along with proof scripts for Lemma 1 and the
(semi-)equivalence of the fragments of Win95/Bistro
and Win9x.Zmorph.A are available online from
http://www.csc.liv.ac.uk/∼matt/pubs/obj/1/ .

Notes

• The sort EInt stands for Extended Integer. EInt is
a supersort of Int, and is used so that we can extend
the sort of integers to include a value undef so that
certain operations that return an integer can also
return a value that signifies that the result of the op-
eration is undefined. For example, any uninitialised
variable has the value undef.

• The prec keyword sets the precedence of the opera-
tor, and is used so that the user can omit parentheses
when constructing complex strings.

Code listing

*** Specification of a subset of the IA-32
instruction set.

*** Subset = {MOV, ADD, SUB, XOR, AND, OR,
PUSH, POP, NOP}.

*** By Matt Webster, June 2006. OBJ3
version 2.0 was used.

*** This module specifies the 16 bitwise
Boolean operations

*** for integers in Arabic numeral notation
using built-in Lisp

*** operations (OBJ is built on top of GNU
Common Lisp).

Obj BITWISE is protecting INT .

*** syntax of the 16 Boolean binary
operations

op _bone_ : Int Int -> Int [prec 35] .
op _btwo_ : Int Int -> Int [prec 35] .
op _bandcone_ : Int Int -> Int [prec 35] .
op _bandctwo_ : Int Int -> Int [prec 35] .
op _band_ : Int Int -> Int [prec 35] .
op _bcone_ : Int Int -> Int [prec 35] .
op _bctwo_ : Int Int -> Int [prec 35] .
op _bclr_ : Int Int -> Int [prec 35] .
op _bxnor_ : Int Int -> Int [prec 35] .
op _bor_ : Int Int -> Int [prec 35] .
op _bnand_ : Int Int -> Int [prec 35] .
op _bnor_ : Int Int -> Int [prec 35] .
op _borcone_ : Int Int -> Int [prec 35] .
op _borctwo_ : Int Int -> Int [prec 35] .
op _bset_ : Int Int -> Int [prec 35] .
op _bxor_ : Int Int -> Int [prec 35] .

vars H1 H2 : Int .

*** semantics of the Boolean binary
operations

bq H1 bone H2 = (boole boole-1 H1 H2) .
bq H1 btwo H2 = (boole boole-2 H1 H2) .
bq H1 bandcone H2 = (boole boole-andc1

H1 H2) .
bq H1 bandctwo H2 = (boole boole-andc2

H1 H2) .
bq H1 band H2 = (boole boole-and H1 H2) .
bq H1 bcone H2 = (boole boole-c1 H1 H2) .
bq H1 bctwo H2 = (boole boole-c2 H1 H2) .
bq H1 bclr H2 = (boole boole-clr H1 H2) .
bq H1 bxnor H2 = (boole boole-eqv H1 H2) .
bq H1 bor H2 = (boole boole-ior H1 H2) .
bq H1 bnand H2 = (boole boole-nand H1 H2) .
bq H1 bnor H2 = (boole boole-nor H1 H2) .
bq H1 borcone H2 = (boole boole-orc1

H1 H2) .
bq H1 borctwo H2 = (boole boole-orctwo

H1 H2) .
bq H1 bset H2 = (boole boole-set H1 H2) .
bq H1 bxor H2 = (boole boole-xor H1 H2) .

endo

*** This module defines the syntax of a subset
of IA-32.

Obj IA-32-SYNTAX is protecting BITWISE .
protecting INT .
sorts Instruction Variable Expression Stack

EInt .
subsorts Variable EInt < Expression .
subsort Int < EInt .

*** IA-32 instructions

Detection of metamorphic computer viruses 159

op mov_,_ : Variable Expression ->
Instruction [prec 20] .

op add_,_ : Variable Expression ->
Instruction [prec 20] .

op sub_,_ : Variable Expression ->
Instruction [prec 20] .

op nop : -> Instruction .
op push_ : Expression -> Instruction

[prec 20].
op pop_ : Variable -> Instruction

[prec 20].
op and_,_ : Variable Expression ->

Instruction [prec 20] .
op or_,_ : Variable Expression ->

Instruction [prec 20] .
op xor_,_ : Variable Expression ->

Instruction [prec 20] .
op test_,_ : Variable Expression ->

Instruction [prec 20] .
*** helper operations
op stackPush : Expression Stack -> Stack .
op stackPop : Stack -> Stack .
op stackTop : Stack -> EInt .
op _next_ : EInt Stack -> Stack [prec 15] .
op stackBase : -> Stack .
op msb : EInt -> EInt .
op isZero : EInt -> EInt .
op parity : EInt -> EInt .
*** error messages
op emptyStackError1 : -> Stack .
op emptyStackError2 : -> EInt .
*** IA-32 registers
ops eax ebx ecx edx ebp esp esi edi ip : ->

Variable .
*** IA-32 EFLAGS register
ops cf of sf af zf pf : -> Variable .
*** equality operation
op _is_ : EInt EInt -> Bool .
op _is_ : Stack Stack -> Bool .
*** extending the Int sort to include

"undef"
op undef : -> EInt .

endo

*** This module defines the semantics of the
IA-32 instructions

*** whose syntax is defined in IA-32-SYNTAX.
obj IA-32-SEMANTICS is

protecting IA-32-SYNTAX .
sort Store .

*** stores
ops s : -> Store .
op initial : -> Store .

*** operators for defining the semantics of
IA-32

op _[[_]] : Store Expression -> EInt
[prec 30] .

op _[[stack]] : Store -> Stack [prec 30] .
op _;_ : Store Instruction -> Store

[prec 25] .

*** variables for rewriting rules
var S : Store .

vars I I1 I2 : EInt .
vars INT INT1 INT2 : Int .
vars V V1 V2 V3 : Variable .
vars E E1 E2 E3 : Expression .
vars ST ST1 ST2 : Stack .

*** _is_ semantics
eq I1 is I2 = (I1 == I2) .
eq ST1 is ST2 = (ST1 == ST2) .
*** the value of any integer in a store

is the integer itself
eq S[[I]] = I .
*** initial values of variables and the

stack
eq initial[[stack]] = stackBase .
cq initial[[V]] = undef

if V =/= ip .
eq initial[[ip]] = 0 .

*** IA-32 instruction semantics
eq S ; and V,E [[V]] = S[[V]] band S[[E]] .
cq S ; and V1,E [[V2]] = S[[V2]]

if V1 =/= V2 and V2 =/= ip
and V2 =/= sf and V2 =/= zf
and V2 =/= pf and V2 =/= cf and
V2 =/ of.

eq S ; and V,E [[stack]] = S[[stack]] .
eq S ; and V,E [[ip]] = S[[ip]] + 1 .
eq S ; and V,E [[sf]] = msb(S[[V]] band

S[[E]]) .
eq S ; and V,E [[zf]] = isZero(S[[V]] band

S[[E]]) .
eq S ; and V,E [[pf]] = parity(S[[V]] band

S[[E]]) .
eq S ; and V,E [[cf]] = 0 .
eq S ; and V,E [[of]] = 0 .

eq S ; or V,E [[V]] = S[[V]] bor S[[E]] .
cq S ; or V1,E [[V2]] = S[[V2]]

if V1 =/= V2 and V2 =/= ip
and V2 =/= sf and V2 =/= zf
and V2 =/= pf and V2 =/= cf
and V2 =/= of.

eq S ; or V,E [[stack]] = S[[stack]] .
eq S ; or V,E [[ip]] = S[[ip]] + 1 .
eq S ; or V,E [[sf]] = msb(S[[V]] bor

S[[E]]) .
eq S ; or V,E [[zf]] = isZero(S[[V]] bor

S[[E]]) .
eq S ; or V,E [[pf]] = parity(S[[V]] bor

S[[E]]) .
eq S ; or V,E [[cf]] = 0 .
eq S ; or V,E [[of]] = 0 .

eq S ; xor V,E [[V]] = S[[V]] bxor S[[E]] .
cq S ; xor V1,E [[V2]] = S[[V2]]

if V1 =/= V2 and V2 =/= ip
and V2 =/= sf and V2 =/= zf
and V2 =/= pf and V2 =/= cf
and V2 =/= of.

eq S ; xor V,E [[stack]] = S[[stack]] .
eq S ; xor V,E [[ip]] = S[[ip]] + 1 .
eq S ; xor V,E [[sf]] = msb(S[[V]] bxor

S[[E]]) .
eq S ; xor V,E [[zf]] = isZero(S[[V]] bxor

S[[E]]) .

160 M. Webster, G. Malcolm

eq S ; xor V,E [[pf]] = parity(S[[V]] bxor
S[[E]]) .

eq S ; xor V,E [[cf]] = 0 .
eq S ; xor V,E [[of]] = 0 .

eq S ; test V,E [[V]] = S[[V]] .
cq S ; test V1,E [[V2]] = S[[V2]]

if V2 =/= ip and V2 =/= sf
and V2 =/= zf and V2 =/= pf
and V2 =/= cf and V2 =/= of.

eq S ; test V,E [[stack]] = S[[stack]] .
eq S ; test V,E [[ip]] = S[[ip]] + 1 .
eq S ; test V,E [[sf]] = msb(S[[V]] band

S[[E]]) .
eq S ; test V,E [[zf]] = isZero(S[[V]]

band S[[E]]) .
eq S ; test V,E [[pf]] = parity(S[[V]]

band S[[E]]) .
eq S ; test V,E [[cf]] = 0 .
eq S ; test V,E [[of]] = 0 .

eq S ; mov V,E [[V]] = S[[E]] .
cq S ; mov V1,E [[V2]] = S[[V2]]

if V1 =/= V2 and V2 =/= ip .
eq S ; mov V,E [[stack]] = S[[stack]] .
eq S ; mov V,E [[ip]] = S[[ip]] + 1 .

eq S ; add V,E [[V]] = (S[[V]] + S[[E]])
band 4294967295 .

cq S ; add V1, E [[V2]] = S[[V2]]
if V1 =/= V2 and V2 =/= ip .

eq S ; add V,E [[stack]] = S[[stack]] .
eq S ; add V,E [[ip]] = S[[ip]] + 1 .

eq S ; sub V,E [[V]] = (S[[V]] - S[[E]])
band 4294967295 .

cq S ; sub V1, E [[V2]] = S[[V2]]
if V1 =/= V2 and V2 =/= ip .

eq S ; sub V,E [[stack]] = S[[stack]] .
eq S ; sub V,E [[ip]] = S[[ip]] + 1 .

eq S ; push E [[stack]] = stackPush(S[[E]],
S[[stack]]) .

cq S ; push E [[V]] = S[[V]]
if V =/= ip .

eq S ; push E [[ip]] = S[[ip]] + 1 .

eq S ; pop V [[stack]] = stackPop
(S[[stack]]).

eq S ; pop V [[V]] = stackTop(S[[stack]]).
cq S ; pop V1 [[V2]] = S[[V2]]

if V1 =/= V2 and V2 =/= ip .
eq S ; pop V [[ip]] = S[[ip]] + 1 .

cq S ; nop [[V]] = S[[V]]
if V =/= ip .

eq S ; nop [[stack]] = S[[stack]] .

eq S ; nop [[ip]] = S[[ip]] + 1 .

*** Stack helper operations semantics
eq stackPush(I,ST) = I next ST .
eq stackPop(I next ST) = ST .
eq stackPop(stackBase) = emptyStackError1 .

eq stackTop(I next ST) = I .
eq stackTop(stackBase) = emptyStackError2 .

endo

Appendix B Proof of Lemma 1 for IA-32

Lemma 1 For all instructions θ and for all p1, p2:

p1 ≡Vin(θ) p2 implies p1; θ ≡Vout(θ) p2; θ .

Proof For any IA-32 assembly language instruction θ ,
the following generalised proof script (based on the OBJ
specification of IA-32) can be used to prove Lemma 1.
First, two store constants are defined:

ops s1 s2 : -> Store .

Next, we specify that p1 ≡Vin(θ) p2 is true for arbitrary
stores s1 and s2, by adding, for each v ∈ Vin(θ), the
equation:

eq s1[[v]] = s2[[v]] .

Then we check that p1; θ ≡Vout(θ) p2; θ is implied. This is
done by checking for each v ∈ Vout(θ) that the following
reduction evaluates to true when interpreted by the
OBJ term-rewriting engine:

reduce s1; θ [[v]] is s2; θ [[v]] .

For example, the following proof script proves Lemma 1
for θ = mov v1,v2. From the IA-32 Manual speci-
fication [5] we define Vin(mov v1,v2) = {v2,ip} and
Vout(mov v1,v2) = {v1,ip}.
ops v1 v2 : -> Variable .
eq s1[[v2]] = s2[[v2]] .
eq s1[[ip]] = s2[[ip]] .
reduce s1 ; mov v1, v2 [[v1]] is s2 ;
mov v1, v2 [[v1]] .

reduce s1 ; mov v1, v2 [[ip]] is s2 ;
mov v1, v2 [[ip]] .

When the above proof script is run, the output after the
reductions should be, and is, true:

OBJ> reduce s1 ; mov v1, v2 [[v1]]
is s2 ; mov v1, v2 [[v1]] .

result Bool: true
OBJ> reduce s1 ; mov v1, v2 [[ip]]

is s2 ; mov v1, v2 [[ip]] .
result Bool: true

References

1. Filiol, E.: Computer Viruses: from Theory to Applications,
chapter 5, pp. 151–163. Springer, (2005). ISBN 2287239391

Detection of metamorphic computer viruses 161

2. Filiol, E., Helenius, M., Zanero, S.: Open problems in com-
puter virology. J. Comput. Virol. 1:55–66, (2006)

3. Goguen, J. A., Malcolm, G.: Algebraic Semantics of Impera-
tive Programs. Massachusetts Institute of Technology, (1996).
ISBN 026207172X

4. Goguen, J. A., Walker, T., Meseguer, J., Futatsugi, K., Jouan-
naud, J-P.: Introducing OBJ. In: Joseph A. Goguen, Grant
Malcolm, (eds.), Software Engineering with OBJ: Algebraic
Specification in Action. Kluwer Academic Publishers, (2000)
ISBN 0792377575

5. Intel Corporation: IA-32 Intel®Architecture Software Devel-
oper’s Manual, March 2006. http://www.intel.com/design/
pentium4/manuals/index_new.htm Accessed 21st June 2006.

6. Kaspersky Lab: Win95.Zmorph. http://www.avp.ch/avpve/
newexe/win95/zmorhp.stm. Accessed 22nd June 2006

7. Lakhotia, A., Mohammed, M.: Imposing order on pro-
gram statements to assist anti-virus scanners. In: Proceedings
of Eleventh Working Conference on Reverse Engineering.
IEEE Computer Society Press, (2004)

8. José Meseguer and Grigore Roşu: The rewriting logic
semantics project. In: Proceedings of Structural Oper-
ational Semantics 2005, Electronic Notes in Theoret-
ical Computer Science. Elsevier, (2005). To appear.
http://fm.cs.uiuc.edu/∼grosu/download/sos05.pdf

9. Moinuddin Mohammed. Zeroing in on metamorphic com-
puter viruses. Master’s thesis, University of Louisiana at
Lafayette, (2003)

10. Peter Ször and Peter Ferrie. Hunting for metamorphic. In:
Virus Bulletin Conference Proceedings, (2001)

11. Matt Webster: Algebraic specification of computer viruses
and their environments. In: Peter Mosses, John Power, Mon-
ika Seisenberger, (eds.), Selected Papers from the First Con-
ference on Algebra and Coalgebra in Computer Science
Young Researchers Workshop (CALCO-jnr 2005). Univer-
sity of Wales Swansea Computer Science Report Series CSR
18-2005, pp. 99–113, 2005. http://www.csc.liv.ac.uk/∼matt/.

12. In Seon Yoo, Ulrich Ultes-Nitsche: Non-signature based virus
detection: Towards establishing a unknown virus detection
technique using SOM. J. Comput. Virol. 2(3), (2006)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

