Formal Verification of an Autonomous Personal Robotic Assistant

Matt Webster, Clare Dixon and Michael Fisher

Centre for Autonomous Systems Technology
University of Liverpool, Liverpool, L69 3BX, UK
matt@liverpool.ac.uk

Maha Salem, Joe Saunders, Kheng Lee Koay and Kerstin Dautenhahn
Adaptive Systems Research Group
University of Hertfordshire, Hatfield, Hertfordshire, AL10 9AB, UK
m.salem @herts.ac.uk

Abstract

Human-robot teams are likely to be used in a variety
of situations wherever humans require the assistance
of robotic systems. Obvious examples include health-
care and manufacturing, in which people need the as-
sistance of machines to perform key tasks. It is essen-
tial for robots working in close proximity to people to
be both safe and trustworthy. In this paper we examine
formal verification of a high-level planner/scheduler for
autonomous personal robotic assistants such as Care-
0-bot®. We describe how a model of Care-O-bot and
its environment was developed using Brahms, a multi-
agent workflow language. Formal verification was then
carried out by translating this to the input language of
an existing model checker. Finally we present some for-
mal verification results and describe how these could
be complemented by simulation-based testing and real-
world end-user validation in order to increase the prac-
tical and perceived safety and trustworthiness of robotic
assistants.

1 Introduction

Robotic assistants — robots which help people in particular
tasks — are likely to be used for a variety of applications in-
cluding personal healthcare, exploration within remote en-
vironments, and manufacturing. These robots will operate
in close proximity to their human operators and therefore
must be safe and trustworthy in their operations. One of the
aims of the EPSRC-funded Trustworthy Robotic Assistants
(TRA) project! is to develop tools and techniques for the
verification and validation of robotic assistants. The TRA
project uses three different methodologies for this: formal
verification, simulation-based testing and end-user valida-
tion. In this paper we consider the application of formal
verification to the Care-O-bot®: an autonomous robotic as-
sistant deployed at the University of Hertfordshire’s Robot
House (see Figure 1).

Copyright (© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.
"http://www.robosafe.org/

Figure 1: The Care-O-bot® Robotic Assistant operating in
the University of Hertfordshire’s Robot House.

Formal verification is the application of formal (i.e.,
mathematical) methods to the verification of systems. The
approach used in this paper is based on model check-
ing (Clarke, Grumberg, and Peled 1999), in which a model
of a program or process is constructed. This model is typi-
cally non-deterministic, so that each “run” (or simulation) of
the model can be different from the last. A program called
a model checker exhaustively analyses all possible execu-
tions of the model in order to establish that some property
holds. These properties can be derived from system require-
ments. Therefore it is possible, for example, to use a model
checker to formally verify that in every execution of a given
program, the program will always do something desirable.
In other words, we can formally verify that a given require-
ment holds.

The model checker used in this paper is called
SPIN (Holzmann 2003). SPIN has been publicly avail-
able since 1991 and has been used for the formal verifi-
cation of a wide variety of systems, including flood con-
trol barriers, telecommunications switches and several space
missions (Holzmann 2013). SPIN, which stands for Sim-
ple PROMELA Interpreter, verifies programs and processes
written in PROMELA, the Process Meta-Language. Rather
than writing in PROMELA directly, we utilise an intelli-

gent agent modelling language and simulation environment
called Brahms (Sierhuis and Clancey 2002) to develop mod-
els of the Robot House and Care-O-bot. Brahms can be
used to develop detailed models of systems with multiple
interacting agents and has been used to model human-robot
teams (Clancey et al. 2002) and complex workflows (Sier-
huis and Clancey 2002) for space exploration. We trans-
late the Brahms models automatically into PROMELA us-
ing the BrahmsToPromela translator software developed by
Stocker et al. (2012), which is based on a formal semantics
for Brahms (Stocker et al. 2011). As we shall see in Sec-
tion 2, the autonomous control systems used in the Robot
House were written at a similar level of abstraction to con-
structs in the Brahms modelling language. Therefore it was
sensible to encode these autonomous systems using Brahms
to minimise modelling errors due to changes in abstraction
level, as well as to minimise the cost of developing the mod-
els.

In the remainder of this section we examine the Care-
O-bot and the Robot House in more detail. In Section 2
we describe the way in which a model of the Care-O-
bot’s high-level planner/scheduler for autonomous decision-
making system was developed using Brahms. Then, in Sec-
tion 3, we show how that model was formally verified us-
ing the SPIN model checker. In Section 4 we compare our
approach to related work, and in Section 5 we offer conclu-
sions and directions for future research.

1.1 The Robot House and Care-O-bot®

The University of Hertfordshire’s Robot House is a typical
UK-suburban three-bedroom house near Hatfield in Hert-
fordshire, UK (see Figure 1). While offering a realistic do-
mestic environment along with typical house furnishings
and décor, the Robot House is further equipped with more
than 50 sensors which provide real-time episodic informa-
tion on the state of the house and the individuals occu-
pying it. These sensors include electrical (e.g. refrigerator
door open/closed sensor), furniture (e.g. cupboard drawers
open), services (e.g. detect when toilet flush is being used)
and pressure (e.g. chair sensors to detect when someone is
seated) devices (Saunders et al. 2013; Duque et al. 2013).

The Robot House hosts a number of different robots that
are frequently used to conduct Human-Robot Interaction
(HRI) experiments in a setting that is more natural and real-
istic than a university laboratory (e.g. (Syrdal et al. 2013)).
One of these robots is the commercially-available Care-O-
bot® robot manufactured by Fraunhofer IPA (Reiser et al.
2009). It has been specifically developed as a mobile robotic
assistant to support people in domestic environments, and
is based on the concept of a “robot butler.” (Reiser et al.
2013) The Care-O-bot robot is equipped with a 7 degrees-
of-freedom manipulator arm extended with a gripper with
three fingers and is further comprised of an articulated torso,
stereo sensors serving as “eyes”, LED lights and a tray. Ac-
cordingly, the robot’s sensors include its current location,
the state of the arm, torso, eyes and tray. By means of a text-
to-speech synthesising module, the robot is also capable of
expressing given text as audio output.

The robot’s software is based on the Robot Operat-

ing System (ROS) and a number of ROS packages (e.g.,
drivers, navigation and simulation software) are available
online?. For example, to navigate to any designated location
within the house, the robot uses the ROS navigation pack-
age® in combination with its laser range-finders to perform
self-localisation, map updating, path planning, and obstacle
avoidance in real-time while navigating along the planned
route.

High-level commands are sent to the robot via the ROS
script server mechanism which are then interpreted into
low-level commands by the robot’s software. For example,
these high-level commands can take the form “raise tray”,
“move to location x”, “grab object on tray”, “say hello”, etc.

The Care-O-bot’s high-level decision making is deter-
mined by a set of rules which are stored in a MySQL
database. Rules take the form:

Guard

RobotAction*

where Guard is a sequence of propositional statements that
are either true or false, linked by Boolean AND (&) and
OR (|) operations. RobotActionx is a sequence of ac-
tions which the Care-O-bot will perform only if the Guard
is true. In practice, the Guard is implemented as a set
of SQL queries and the RobotActions are implemented
through the ROS-based cob_script_server package,
which provides a simple interface to operate Care-O-bot. For
example, take the following rule which lowers the Care-O-
bot’s tray:

SELECT % FROM Sensors WHERE sensorId=500
AND value = 1 &

SELECT % FROM Sensors WHERE sensorId=504
AND value = 1

light,0,yellow

tray, 0,down, ,wait

light, 0,white, ,wait

cond, 0,500,0

cond, 0,501,1

Here, the guard checks whether sensors 500 (which moni-
tors whether the Care-O-bot’s tray is raised) and 504 (which
monitors whether the tray is empty) have the value of 1 or
not by performing the SQL SELECT queries. (The Sensors
table stores the values of all sensors in the Robot House.)
If both sensors have the value 1 (i.e., “true”), then the five
prescribed actions will be performed and will have the fol-
lowing effects: (i) turn the Care-O-bot’s light to yellow; (ii)
lower the tray and wait; (iii) turn the light to white; (iv) set
sensor 500 to false; and (v) set sensor 501 to true.

The Care-O-bot’s rule database is composed of multiple
rules for determining a variety of autonomous behaviours,
including checking and answering the front doorbell, re-
minding a person to take their medication, and so on. The
full Robot House rule database used for this paper (which

2http://wiki.ros.org/care-o-bot
*http://wiki.ros.org/navigation

includes a set of 31 default rules) can be obtained from the
EU ACCOMPANY project’s Git repository®.

2 Modelling the Care-O-bot using Brahms

The high-level autonomous decision making within the
Robot House and Care-O-bot® at the University of Hert-
fordshire is carried out by a high-level planning/scheduling
system described in the previous section. The code base in-
cludes a database of 31 default rules for the Robot House
and Care-O-bot to follow. Careful examination of these rules
revealed that the they are similar in structure to the vari-
ous constructs within the Brahms multi-agent workflow pro-
gramming language.

The first step in modelling was to convert the full set of
Care-O-bot rules into a more convenient if-then rule repre-
sentation. For example, the rule in the previous translation
was rewritten as:

IF tray_is_raised AND tray_is_empty
THEN set_light (yellow)
move_tray_and_wait (lowered_position)
set_light (white)
wait ()
set (tray_is_raised, false)
set (tray_is_lowered, true)

Once translated into this format, these rules could then be
straightforwardly translated into Brahms. A key concept in
Brahms is the workframe, which specifies a set of things to
be done when a given condition holds. The Robot House
rules were translated into Brahms workframes within the
Care-O-bot agent, with the IF a THEN b rules translated
into the when a do b construct in Brahms. For exam-
ple, the rule above was translated into a Brahms workframe
called wf_lowerTray:

workframe wf_lowerTray {
repeat: true;
priority: 10;

when (knownval (current.trayIsRaised = true)
and
knownval (current.trayIsEmpty = true))
do{
conclude ((current.lightColour =
current.colourYellow));
lowerTrayAndWait () ;
conclude ((current.lightColour
current.colourWhite));
waitForLightColourChange () ;
conclude ((current.trayIsRaised =

false));
conclude ((current.trayIsLowered =
true));

}
}

This workframe is set to repeat, which means that it
can be used more than once by the agent in which it
exists. Multiple workframes can be eligible for execu-
tion by the Brahms interpreter at the same time, so the
priority sets the importance of the workframe relative

*https://github.com/uh-adapsys/accompany

to other workframes (with larger numbers being more
important). The when a do b construct is intuitive,
and says that when a set of conditions are true, in this
case the trayIsRaised and trayIsEmpty variables
are true, then the agent should do the actions that follow.
In the action list, the conclude () construct is used
to determine when beliefs should be updated within
the Brahms agent. The lowerTrayAndWait () and
waitForLightColourChange () are programmer-
defined primitive actions, whose function is to denote that
something has happened and has taken a certain amount of
time, e.g.:

primitive_activity lowerTrayAndWait () {
max_duration: 4;

}

In general, Robot House rules were translated into Brahms
workframes on a one-to-one basis. However, in some cases it
was necessary to use more than one Brahms workframe for
arule. This generally happened when a rule contained inter-
action with the user via the GUI. For instance, when the per-
son sits down and watches television (detected via sensors
in the sofa seats and the television power outlet) the Care-O-
bot approaches the person and asks whether they would like
to watch the television together. At this point the person has
three options which are presented to the person by the Robot
House via a GUI on a tablet computer: to tell the Care-O-bot
to watch television, return to its charging station, or con-
tinue with its current task. This behaviour is modelled using
a Brahms workframe within the Care-O-bot agent, in which
these options are communicated to the person using the
announceQueryToUser_ThreeOptions () activity:

workframe wf_watchTV { // cob rule 28
repeat: true;
priority: 10;
when (knownval (robotHouse.sofaSeatOccupied =
true)
and
knownval (robotHouse.televisionWattage > 10)
and ...)
do{
conclude ((current.queryUserOptionl
current.activityWatchTV));
conclude ((current.queryUserOption2
current.activityReturnHome)) ;
conclude ((current.queryUserOption3 =
current.activityContinue));
conclude ((current.userQueried = true));
conclude ((current.queryUser_ThreeOptions =
true));
announceQueryToUser_ThreeOptions();
conclude ((current.askedToWatchTV = true));
}
}

The “person” agent then selects a response and sends it
back to the Care-O-bot model. This then causes one of three
workframes to trigger: which one depends on the user re-
sponse. For example, the following workframe is triggered
if the person agent tells the Care-O-bot to watch television:

workframe wf_optionSelectedWatchTV {

repeat: true;
priority: 10;
when (knownval (Person.userRespondedToQuery =
true)
and
knownval (Person.queryResponse =
current.activityWatchTV))
do{
conclude ((Person.userRespondedToQuery =
false));
conclude ((Person.guiSetWatchTV = true));
conclude ((current ..userQueried = false));
}
}

2.1 Modelling a Scenario

After translating the Robot House rules into Brahms it was
necessary to set up a model of the Robot House environ-
ment, or scenario. The scenario determines the range of pos-
sibilities within the Robot House environment. This environ-
ment consists primarily of the Care-O-bot®, the person be-
ing assisted by Care-O-bot, and the Robot House itself. For
example, the scenario consists of a model of the person and
the Robot House, where each is defined as an agent within
Brahms. Another agent, the “Campanile Clock”, measures
the passage of time in the model and keeps the other agents
updated of the current time.

Our scenario lasts from 12pm to 6pm on a typical day in
the Robot House. At any given point in the day the person
may choose to sit down and watch TV, move into the living
room area, or move into the kitchen (e.g., to prepare food to
eat), or may choose to send the Care-O-bot into the kitchen
or the living room. At 5pm the person will need to take their
medication.

The person in the scenario can act non-deterministically,
that is, they can behave in a manner which is unpredictable
within the model of the scenario. This non-determinism is
implemented in Brahms as a set of five workframes within
the person agent, all of which will fire at a given point. Each
workframe has a priority. The highest priority workframe is
executed, and a belief is modified within the agent (using
the “conclude” keyword in Brahms). This belief is modi-
fied with a level of certainty (known as the belief-certainty)
which states that the belief will be updated with a given
probability. If the belief is updated, this information is com-
municated to the Care-O-bot agent or the Robot House agent
(depending on the workframe) which causes these agents
to know that the person has done something, e.g., sent the
Robot to the kitchen via the GUI, or that the person has
moved into the living room. If the belief is not updated, then
the next workframe fires, and so on. It is possible for none
of the five workframes to update a belief within the person
agent, and this special case models the ability of the person
to do nothing.

Based on this simple scenario we can establish a number
of high-level requirements of the Care-O-bot. For example,
the Care-O-bot should remind the person to take their med-
ication at Spm. Another requirement is that the Care-O-bot
should go into the living room if it is told to go into the liv-
ing room by the person. As we shall see in the next section,

we can formalise these kinds of requirements using temporal
logic and verify them using the SPIN model checker.

3 Formal Verification of Brahms Models
Using BrahmsToPromela and SPIN

Brahms refers to a multi-agent workflow specification lan-
guage, as well as a software package consisting of an agent
simulation toolkit and an integrated development environ-
ment. The Brahms software does not come with formal ver-
ification tools built-in, so for formal verification we used
the BrahmsToPromela translator developed by Stocker et
al. (2012) at the University of Liverpool. BrahmsToPromela
allows models written using a subset of Brahms to be
automatically translated into Promela, the process meta-
language used by the SPIN model checker. Once trans-
lated, SPIN can be used for the automatic formal verifi-
cation of the Brahms model with respect to particular re-
quirement. In our case, we formalise these requirements
using linear temporal logic (LTL), which allows the for-
malisation of concepts relating to time, e.g., “now and at
all points in the future” ([J), “now or at some point in
the future” () and “in the next state” (O) (Fisher 2011).
This enables formalisation of safety requirements (some-
thing bad never happens, []—bad), liveness properties (e.g,
something good always happens, [Jgood), fairness proper-
ties (e.g., if one thing occurs infinitely often so does another,
e.g., [J0send = [JQreceive) and reachability properties
(e.g., eventually something happens, ()something).

To explore possibilities, the following sample require-
ments were translated and their formalised properties ver-
ified using SPIN for the Brahms model described in Sec-
tion 2. Within these, the belief operator, “B”, is parame-
terised by the agent that holds the belief — so Bcare-0-bot®
means that the Care-O-bot believes x is true.

1. It is always the case that if the Care-O-bot believes that
the person has told it to move into the kitchen, then it will
eventually move into the kitchen.

0 B care-0-bot (BrersonguiGoToKitchen)
= (Bcarc-0-bor(l0cation = Kitchen)

2. It is always the case that if the Care-O-bot believes that

the person has told it to move to the sofa in the living
room, then it will eventually move into there.
] Bcare-0-bot (Bperson glliGOTOSOfa)
= ()Bcuare-0-vac(lOCation = LivingRoomSofa)

3. Itis always the case that if the Robot House believes that

the sofa seat is occupied, and if the Robot House believes
that the television wattage is higher than 10 watts, then
eventually the Care-O-bot will move to the living room
sofa and ask the person if they want to watch the television
with the Care-O-bot.

BrobottousesofaSeatOccupied A
BrobotHousctelevisionWattage > 10
Bcare-0-votlocation = LivingRoomSofa A

Bcare-0-boraskedToWatchTV

O :><><

4. Itis always the case that if the time is Spm, then the Care-
O-bot will believe that the medicine is due.

0 BCampanile,Clocktime : 5pm -
O Bcare-0-bormedicineDue

The first two requirements are derived from a higher-level
requirement that, in general, the Care-O-bot should follow
instructions given to it by the person. The third property is
important for maintaining the social activity of the person
within the Robot House, who is temporarily under the care
of the Care-O-bot. The fourth property is derived from a
higher-level requirement that the Care-O-bot should remind
the person to take their medication at the correct time.

The computational resources of the formal verification of
the four properties above are as follows:

Prop. | States | Depth | Memory (MB) | Time (s)

1 652,573 | 46,617 10,132 20.7
2 652,573 | 46,617 10,132 20.7
3 746,497 | 53,009 11,596 30.7
4 652,573 | 46,617 10,132 20.3

The formal verification was carried out on an eight-core
Intel® Core™ i7-3720QM CPU (2.60GHz) laptop with 16
GB of memory running Ubuntu Linux 12.04 LTS.

In each case the same Promela model was used. Therefore
any difference in the number of states or time taken is due to
the complexity of the property being verified and the result-
ing automaton used by the model checker. It can be seen that
for requirements 1, 2 and 4 the resources used were almost
identical, and this is to be expected as these properties were
similar in structure and produced similar automata. Property
3 produced a slightly more complex automaton and there-
fore required more resources to verify.

4 Comparisons With Related Work

Stocker et al. (2012) describe the development of the
BrahmsToPromela software tool, which is used in this work
to automatically translate a model of the Care-O-bot® writ-
ten in Brahms into a PROMELA specification which can
then be formally verified using the SPIN model checker.
The authors examine an assisted living scenario similar to
the Robot House system tackled in this paper. However, the
work in this paper expands on the work of Stocker et al. by
modelling a real-life robotic system and scenario where the
rules are directly derived from actual code used in practice.
This further demonstrates the validity of formal verification
of autonomous robotic assistants using Brahms, BrahmsTo-
Promela and SPIN.

Saunders et al. (2012) and Duque et al. (2013) de-
scribed the University of Hertfordshire Care-O-bot and
Robot House systems which are used as a basis for this work.
More information on the development of these systems can
be found on the ACCOMPANY project website’.

Formal verification has been used before for robotic
systems. For example, Mohammed, Furbach, and Stolzen-
burg (2010) used hybrid automata and hybrid statecharts for
formal modelling and verification of multi-robot systems;

>http://accompanyproject.eu

Cowley and Taylor (2011) used dependent type theory and
linear logic for the formal verification of assembly robots;
and Kouskoulas et al. (2013) formally verified control al-
gorithms for surgical robots. However, very little work has
been conducted to formally verify the safety and trustwor-
thiness of robotic home companions. This is where our work
aims to complement existing research in the area of formal
verification of autonomous and robotic systems.

5 Conclusions and Future Work

We have shown how it is possible to formally verify an
autonomous decision making planner/scheduler system for
the Robot House assisted living environment and the Care-
0-bot® robotic assistant. This was done by converting the
Robot House planner/scheduler rules into Brahms: a work-
flow language for defining the behaviour of multiple agents.
Crucially, these rules matched the Brahms style very closely.
Brahms was also used to model the Robot House environ-
ment, including the Care-O-bot, the Robot House and a per-
son living within the Robot House. The Brahms model was
then translated into the Promela language using the Brahms-
ToPromela tool developed by Stocker et al. (Stocker et al.
2012). Once in Promela, the Brahms workflows (and, by
implication, the Care-O-bot’s decision making system) was
formally verified. As proof-of-concept, a small selection of
key properties were formally verified, demonstrating that
this process can be used for verification of autonomous de-
cision making systems for robotic systems.

5.1 Future Work

A common challenge when using model checkers is scala-
bility. Model checking can be resource-intensive, especially
when models are complex. For instance, in this paper around
10* MB of memory was needed per property verified. It is
likely that increasing the complexity of the model (to add
more Care-O-bot® rules, for example) would result in the
model checker running out of memory, therefore preventing
formal verification using the model checker. However, it is
likely that we can reduce the complexity of these models
through improvements to the BrahmsToPromela translator,
which is at an early stage of development and has not been
optimised to a high degree.

As described in Section 1, the formal verification of the
Robot House Care-O-bot is taking place within a wider
project aimed at developing a practical approach to verify-
ing and validating robotic assistants with regard to safety
and trustworthiness. Model checking — the kind of formal
verification used here — is exhaustive and automatic, and
can therefore provide a level of assurance that a computer
system is safe and trustworthy. However, formal verification
is often based on models of the system being verified, as
well as models of its environment. In order to trust the re-
sults of formal verification one needs to validate the system
and environment models to make sure that they are accu-
rate. For this reason the TRA project will use simulation-
based testing (Wile, Goss, and Roesner 2005) as well as real-
world testing by end users in order to complement the formal
verification approach. Furthermore, simulation-based test-
ing and real-world testing will complement each other: the

former providing large numbers of automatically-generated
tests that would be impossible in the real world, and the latter
providing the essential grounding in reality that is ultimately
essential to develop trust in autonomous systems.

One way to improve the validity of the formal verifica-
tion results presented in this paper is to increase the fidelity
of the Robot House model by making it more realistic. This
could be done in a number of ways. For example, the per-
son agent model at present is basic: the person can do any
one of five actions at any given point. However, a real person
within the Robot House can do much more than this. A real-
istic model of the behaviour of the person within the Robot
House would be a significant step forward with respect to
verifying the safety of the Robot House and the Care-O-bot.
The fidelity of the model could also be increased by mod-
elling environmental changes such as the doorbell ringing
or another person entering the house. Another way in which
the formal verification results could be improved is in the
development of interesting properties to verify. The proper-
ties in this paper were derived from the engineering require-
ments of the Care-O-bot and the Robot House. However, it is
likely that many requirements will come from the end-users
of robotic systems. Further research is needed to determine
ways in which the requirements of users (rather than engi-
neers) can be obtained and formalised.

Simulation-based testing could be used to analyse sys-
tems which are difficult to formally verify, e.g., control sys-
tems which control the Care-O-bot’s arm. A simulation-
based model of the arm’s control system and environment
could be developed to enable verification of arm movements
within safe parameters. For instance, it could be determined
that the arm would not collide with objects during the hand-
over of a object from the Care-O-bot to the person.

Real-world tests could involve human—-robot interaction
experiments in which human participants interact with the
Care-O-bot in the Robot House by exploring its functional-
ities in the dedicated home environment. For example, par-
ticipants could add new robot behaviours to the database,
such as “remind me to take my medicine at 10pm”, or call
pre-existing robot commands such as “move to the living
room.” The system would then need to verify that a given
behaviour or command does not violate the set of existing
rules. As a long-term goal of this project, formally verified
and validated robotic assistants will not only result in safer
machines, but also in more trustworthy robot companions.

Acknowledgments The authors were partially supported
by EPSRC grants EP/K006193, EP/K006320, EP/K006509,
and EP/K006223.

References

Clancey, W. J.; Sierhuis, M.; Kaskiris, C.; and van Hoof, R.
2002. Brahms mobile agents: Architecture and field tests. In
Human—Robot Interaction: Papers from the AAAI Fall Sym-
posium. ISBN 978-1-57735-174-0.

Clarke, E. M.; Grumberg, O.; and Peled, D. A. 1999. Model
Checking. USA: MIT Press.

Cowley, A., and Taylor, C. J. 2011. Towards Language-
based Verification of Robot Behaviors. In Proc. IEEE/RSJ

International Conference on Intelligent Robots and Systems
(IROS), 4776—4782.

Duque, I.; Dautenhahn, K.; Koay, K. L.; Willcock, I.; and
Christianson, B. 2013. Knowledge-driven User Activity
Recognition for a Smart House — Development and Vali-
dation of a Generic and Low-Cost, Resource-Efficient Sys-
tem. In Proc. Sixth International Conference on Advances
in Computer-Human Interactions.

Fisher, M. 2011. An Introduction to Practical Formal Meth-
ods Using Temporal Logic. Wiley.

Holzmann, G. J. 2003. The SPIN Model Checker: Primer
and Reference Manual. USA: Addison-Wesley.

Holzmann, G. 2013. Inspiring applications of Spin.
http://spinroot.com/spin/success.html. Accessed 2013-10-
10.

Kouskoulas, Y.; Renshaw, D. W.; Platzer, A.; and
Kazanzides, P. 2013. Certifying the Safe Design of a Virtual
Fixture Control Algorithm for a Surgical Robot. In Belta,
C., and Ivancic, F., eds., Proc. Hybrid Systems: Computa-
tion and Control (HSCC), 263-272. ACM.

Mohammed, A.; Furbach, U.; and Stolzenburg, F. 2010.
Multi-robot systems: Modeling, specification, and model
checking. Robot Soccer 241-265.

Reiser, U.; Connette, C.; Fischer, J.; Kubacki, J.; Bubeck,
A.; Weisshardt, E.; Jacobs, T.; Parlitz, C.; Higele, M.; and
Verl, A. 2009. Care-O-bot® 3: Creating a Product Vision
for Service Robot Applications by Integrating Design and
Technology. In Proc. IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), 1992—-1998.

Reiser, U.; Jacobs, T.; Arbeiter, G.; Parlitz, C.; and Dauten-
hahn, K. 2013. Care-O-bot® 3 — Vision of a Robot Butler.
In Trappl, R., ed., Your Virtual Butler — The Making-of, vol-
ume 7407 of LNAI. Springer. 97-116.

Saunders, J.; Burke, N.; Koay, K. L.; and Dautenhahn, K.
2013. A User Friendly Robot Architecture for Re-ablement
and Co-learning in A Sensorised Home. In Proc. 12th Euro-
pean AAATE Conference.

Sierhuis, M., and Clancey, W. J. 2002. Modeling and Simu-
lating Work Practice: A Method for Work Systems Design.
IEEE Intelligent Systems 17(5):32—41.

Stocker, R.; Sierhuis, M.; Dennis, L. A.; Dixon, C.; and
Fisher, M. 2011. A Formal Semantics for Brahms. In
Proc. 12th International Workshop on Computational Logic
in Multi-Agent Systems (CLIMA), volume 6814 of LNCS,
259-274. Springer.

Stocker, R.; Dennis, L. A.; Dixon, C.; and Fisher, M. 2012.
Verification of Brahms Human—Robot Teamwork Models.
In Proc. 13th European Conf. on Logics in Artificial Intelli-
gence, volume 7519 of LNCS, 385-397. Springer.

Syrdal, D.; Dautenhahn, K.; Koay, K. L.; Walters, M.; and
Ho, W. 2013. Sharing Spaces, Sharing Lives — The Impact of
Robot Mobility on User Perception of a Home Companion
Robot. In Proc. Fifth International Conference on Social
Robotics (ICSR), volume 8239 of LNAI. Springer.

Wile, B.; Goss, J. C.; and Roesner, W. 2005. Comprehensive
Functional Verification. Morgan Kaufmann.

