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1. INTRODUCTION
In this article we consider the question: “how should au-

tonomous systems be analyzed?”. In particular, we describe
how the confluence of developments in two areas, autonomous
systems architectures and formal verification for rational
agents, can provide the basis for the formal verification of
autonomous systems behaviours.

We discuss an approach to this question that involves

1. modelling the behaviour and describing the interface
(input/output) to an agent in charge of making deci-
sions within the system;

2. model checking the agent within an unrestricted envi-
ronment representing the real world and those parts of
the systems external to the agent, in order to establish
some property, ϕ;

3. utilizing theorems or analysis of the environment, in
the form of logical statements (where necessary), to
derive properties of the larger system; and

4. if the agent is refined, modify (1), but if environmental
properties are clarified, modify (3).

We begin with an overview of autonomous systems, their
core attributes and uses, and the autonomous software that
(typically) controls them. Such systems are now being de-
ployed in safety, mission, or business critical scenarios, which
means a thorough analysis of the choices the core software
might make becomes crucial. But, should the analysis and
verification of autonomous software be treated any differ-
ently to ‘traditional’ software used in critical situations? Or
is there something new going on here? Before we tackle all
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these questions, we will first recap autonomous systems (in
Section 2) and formal verification (in Section 3).

2. AUTONOMY
Autonomous systems are systems that decide for them-

selves what to do and when to do it. Such systems might
seem futuristic, but they are closer than we might think.
Modern household, business, and industrial systems increas-
ingly incorporate autonomy. There are many examples, all
varying in the degree of autonomy used, from almost pure
human control to fully autonomous activities with minimal
human interaction. Application areas are broad, ranging
from health-care monitoring to autonomous vehicles.

But what are the reasons for this increase in autonomy?
Typically, autonomy is used in systems that:

1. must be deployed in remote environments where direct
human control is infeasible;

2. must be deployed in hostile environments where it is
dangerous for humans to be nearby, and so difficult for
humans to assess the possibilities;

3. involve activity that is too lengthy and/or repetitive
to be conducted successfully by humans; or

4. need to react much more quickly than humans can.

However, it may actually be cheaper to use an autonomous
system. After all, humans need training, monitoring, safe
environments, medical support, legal oversight, etc.

2.1 Examples
There are many autonomous systems that have either

been deployed or are in development. We clearly cannot
survey them all so only provide a broad selection below.

Robotics and Robot Swarms. As we move from the
restricted manufacturing robots seen in factories towards
robots in the home and robot helpers for the elderly, so the
level of autonomy required increases.

Human-Robot Teamwork. Once we move beyond just
directing robots to undertake tasks, they become robotic
companions. In the not too distant future, we can foresee
teams of humans and robots working together but making
their decisions individually and autonomously.

Pervasive Systems, Intelligent Monitoring, etc. As
sensors and communications are deployed throughout our
physical environment and in many buildings, so the oppor-
tunity to bring together a multiplicity of sensor inputs has



led to autonomous decision-making components that can,
for instance, raise alarms and even take decisive action.

Autonomous Road Vehicles. Also known as “driver-
less cars”, autonomous road vehicles have progressed beyond
initial technology assessments (e.g. DARPA Grand Chal-
lenges) to the first government-licensed autonomous cars [35].

As we can see from the above examples, autonomous systems
are increasingly being used in safety/mission/business crit-
ical areas. Consequently, they need rigorous analysis. One
traditional way to achieve this, at least in non-autonomous
systems, is to use formal verification. While applying for-
mal verification techniques to autonomous systems can be
difficult, developments in autonomous system architectures
are opening up new possibilities.

2.2 Autonomous Systems Architectures
Many autonomous systems, ranging over unmanned air-

craft, robotics, satellites and even purely software applica-
tions, have a similar internal structure, namely layered ar-
chitectures [23] as summarized in Figure 1. Although purely
connectionist/sub-symbolic architectures remain prevalent
in some areas, such as robotics [10], there is a broad realiza-
tion that separating out the important/difficult choices into
an identifiable entity can be very useful for development,
debugging, and analysis. While such layered architectures
have been investigated for many years [23, 3] they appear
increasingly common in autonomous systems.

Notice how the system in Figure 1 is split into real-world
interactions, continuous control systems, and discontinuous
control. For example, a typical unmanned air system might
incorporate an aircraft, a set of control systems encapsu-
lated within an autopilot, and a high-level decision-maker
that makes the key ‘choices’. Once a destination has been
decided, the continuous dynamic control, in the form of the
autopilot, will be able to fly there. The ‘intelligence’ only
becomes involved if either an alternative destination is cho-
sen, or if some fault or unexpected situation occurs.

But what is this ‘intelligent’ decision-making component?
In the past this has often been conflated with the dynamic
control elements, the whole being described using a large,
possibly hierarchical, control system, genetic algorithm, or
neural network. However, architectures are increasingly be-
ing deployed in which the autonomous, ‘intelligent’ decision-
making component is captured as an ‘agent’.

2.3 Agents as Autonomous Decision Makers
The development and analysis of autonomous systems,

particularly autonomous software, is different to ‘traditional’
software in one crucial aspect. In designing, analyzing, or
monitoring “normal” software we typically care about

• what the software does, and

• when the software does it.

Since autonomous software has to make its own decisions, it
is often vital to know not only what the software does and
when it does it, but also

• why the software chooses to do it.

This requirement – describing why a system chooses one
course of action over another – provides new entities to be

analyzed. But how shall we describe these new entities? A
very useful abstraction for capturing such autonomous be-
haviour within complex, dynamic systems turns out to be
the concept of an agent [22]. Since the agent concept came
into prominence in the 1980s, there has been vast develop-
ment within both academia and industry [4, 14, 20, 34]. It
has become clear that this agent metaphor is very useful for
capturing many practical situations involving complex sys-
tems comprising flexible, autonomous, and distributed com-
ponents. In essence, agents must fundamentally be capable
of flexible autonomous action [38].

However, it turns out that the ‘agent’ concept on its own
is still not enough! Systems controlled by neural networks,
genetic algorithms, complex control systems, etc., can all act
autonomously and thus be called agents, yet the reasons for
their actions are often quite opaque. Because of this, such
systems are very hard to develop, control and analyze.

So, the concept of a rational agent has become more pop-
ular. Again, there are many variations [9, 33, 39] but we
consider this to be an agent which

has explicit reasons for making the choices it does,
and should be able to explain these if necessary.

Therefore, a rational agent can be examined to discover why
it chose a certain course of action. Such agents are often pro-
grammed and analyzed by describing their motivations (for
example, ‘goals’), information (for example, ‘knowledge’),
and how these change over time; see Section 3.3. Ratio-
nal agents can adapt their autonomous behaviour to cater
for the dynamic aspects of their environment, their require-
ments and their knowledge. Typically, they can also modify
their decision-making following interactions with their en-
vironment. The predominant form of rational agent archi-
tecture is that provided through the Beliefs, Desires, and
Intentions (BDI) approach [33, 32]. Here, the beliefs rep-
resent the agent’s (probably incomplete, possibly incorrect)
information about itself, other agents, and its environment,
desires represent the agent’s long-term goals, and intentions
represent the goals that the agent is actively pursuing.

Before we move on to consider how we might verify au-
tonomous systems and, in particular the rational agent that
makes the core decisions, we first recap formal verification.
In particular we will motivate and outline the tools and tech-
niques for the agent verification that we have developed.

3. FORMAL VERIFICATION
So, we are clear now that autonomous systems are impor-

tant, that their key decision-making components can use-
fully be represented through the rational agent concept, and
that their increasing use in critical areas means that a deep
and comprehensive form of analysis will be desirable. These
concerns have led us to use formal logics for describing the
required properties of our rational agents and then formal
verification techniques to analyze how well the actual agents
match these requirements. Formal verification encompasses
a range of techniques that use mathematical and logical
methods to assess the behaviour of systems. The most com-
mon approach is to exhaustively assess all the behaviours of
a system against a logical specification [13]. But, how do
we logically specify what an agent should do? In particular,
how do we specify what decisions an agent can make and
what motivations it has for making those decisions?
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Figure 1: Typical Hybrid Autonomous System Architecture — With suitable analysis techniques noted.

3.1 Logical Agent Specification
Logics provide a well-understood and unambiguous for-

malism for describing the behaviours, requirements, and prop-
erties of systems. They have clear syntax and semantics,
well-researched structural properties and comparative ex-
pressive power. Importantly, from our viewpoint, there are
very many formal logics. This allows us to choose a logic ap-
propriate to the types of properties and level of abstraction
we require; for example:

• dynamic communicating systems −→ temporal logics

• information −→ modal logics of knowledge

• autonomous systems −→ modal logics of motivation

• situated systems −→ modal logics of belief and context

• timed systems −→ real-time temporal logics

• uncertain systems −→ probabilistic logics

• cooperative systems −→ cooperation/coalition logics

So, we can usually choose logics that have the properties we
require. Crucially, we can even construct new logics as the
combinations of simpler logics. This turns out to be very
useful for developing logical theories for rational agents as
these typically consist of several dimensions:

Dynamism — temporal or dynamic logic;

Information — modal/probabilistic logics of belief or
knowledge; and

Motivation — modal logics of goals, intentions, desires.

For example, the BDI approach combines [31]: a (branch-
ing) temporal/dynamic logic; a (KD45) modal logic of belief;
a (KD) modal logic of desire; and a (KD) modal logic of in-
tention. (For detail on different modal varieties, see [2].)

3.2 Formal Agent Verification
Once we have such a logical requirement, together with an

autonomous system architecture wherein rational agent(s)
encapsulate high-level decision-making, we have many op-
tions for carrying out formal verification, ranging across
model-checking [13], runtime verification [24], and formal
proof [21].

While there are also several approaches to agent verifi-
cation [7, 29], the particular approach we adopt involves
checking a BDI logical requirement against all practical ex-
ecutions of a program. This is termed the model check-
ing of programs [36] and depends on being able to extract
all these possible program executions, for example through
symbolic execution. This contrasts to many model check-
ing approaches in which an abstract model of the program
must first be constructed before it can be checked against a
property. In the case of Java, model-checking of programs is
feasible as a modified virtual machine can be used to manip-
ulate the program executions [26]. It is this last approach to
agent verification we adopt. In order to do so, we must also
give a very brief overview of agent programming languages.

3.3 Programming Rational Agents
We have seen how the rational agent approach provides

the key model for describing autonomous decision-making.
But, how can rational agents be programmed? Typically,
programming languages for rational agents provide:

• a set of beliefs, representing information the agent has;

• a set of goals, representing motivations the agent has;

• a set of rules/plans, representing the agent’s mecha-
nisms for achieving goals;

• a set of actions, corresponding to the agent’s external
acts (delegated to other parts of the system); and

• deliberation mechanisms for deciding between alterna-
tive goals/plans/actions.

A typical agent rule/plan in such a language is:

Goal(eat) : Belief(has_money), Belief(not has_food)
<- Goal(go_to_shop),

Action(buy_food),
Goal(go_home),
Action(eat),
+Belief(eaten).

The meaning of this rule is that, if the agent’s goal is to
‘eat’ and if the agent believes that it has money but does
not have food, then it will set up a new goal to go to the
shop. Once that goal has been achieved, it will buy some



food (delegated to a sub-system) and then set up a new goal
to get home. Once at home it will eat and then update its
beliefs to record that it believes it has eaten.

Such languages are essentially rule-based, goal-reduction
languages, with the extra aspect that deliberation, the abil-
ity to change between goals and change between plan selec-
tion strategies at any time, is a core component. Almost
all of these languages are implemented on top of Java, and
the large number of agent platforms now available [5, 6]
has meant that the industrial uptake of this technology is
continually increasing. The key ancestor of most of today’s
agent programming languages is AgentSpeak [30], which in-
troduced the programming of BDI agents using a modifi-
cation of Logic Programming. Of the many descendants
of AgentSpeak, we use Gwendolen [19], which is based
upon Jason [8], for programming our rational agents. Con-
sequently, it is such programs that we directly verify.

A full operational semantics for Gwendolen is presented
in [15]. Key components of a Gwendolen agent are a set,
Σ, of beliefs which are ground first order formulae and a set,
I, of intentions that are stacks of deeds associated with some
event. Deeds include (among other things) the addition or
removal of beliefs, the establishment of new goals, and the
execution of primitive actions. Gwendolen is event driven
and events include the acquisition of new beliefs (typically
via perception), messages and goals.

A programmer supplies plans that describe how to react
to events by extending the deed stack of the intention as-
sociated with the event. The main task of a programmer
working in Gwendolen is defining the system’s initial be-
liefs and plans, these then describe the dynamic behaviour of
the agent. A Gwendolen agent executes within a reasoning
cycle which includes the addition of beliefs from perception,
the processing of messages, the selection of intentions and
plans, and the execution of deeds.

3.4 Model-Checking Agent Programs
We begin with program model checking, specifically the

Java PathFinder 2 system (JPF2), an open source explicit-
state model checker for Java programs [36, 26]. Since the
vast majority of agent languages are built on top of Java, we
have extended JPF2 to the Agent JPF (AJPF) system [19]
incorporating the checking of agent properties. However, in
order to achieve this the semantics of the agent constructs
used must be precisely defined. Such a semantics can be
given using the Agent Infrastructure Layer (AIL) [16], a
toolkit for providing formal semantics for agent languages
(in particular BDI languages) built on Java. Thus, AJPF is
essentially JPF2 with the theory of AIL built in; see [19].

The whole verification and programming system is called
MCAPL and is freely available on Sourceforge1. As the
model-checker is based on JPF2, the modified virtual ma-
chine is used to exhaustively explore all executions of the
system. As each one is explored it is checked against the
required property. If any violation is found, that execution
is returned as a counterexample.

The Gwendolen language, mentioned above, is itself pro-
grammed using the AIL and so Gwendolen programs can
be model checked directly via AJPF.

4. VERIFYING AUTONOMOUS SYSTEMS
1http://cgi.csc.liv.ac.uk/MCAPL

Now we return to our original question: how do we go
about verifying autonomous systems? Recall the architec-
ture in Figure 1. For the ‘traditional’ parts there are well
known, recognized, and trusted approaches, such as testing
for real-world interaction and analytic techniques for con-
tinuous dynamics. But what about the agent that makes
high-level, ‘intelligent’ choices about what to do? As we
will explain next, it is our approach to use formal verifi-
cation of the potential choices the agent can take. This
is feasible since, while the space of possibilities covered by
the continuous dynamics is huge (and potentially infinite),
the high-level decision-making within the agent typically in-
volves navigation within a discrete state space. The agent
rarely, if ever, bases its choices directly on the exact values
of sensors, etc. It might base its decision on values reaching
a certain threshold, but relies on its continuous dynamics to
alert it of this, and such alerts are typically binary valued
(either the threshold has been reached or it has not). Thus,
we propose the mixture of techniques in Figure 1 to provide
the basis for formal verification of autonomous systems.

4.1 Verifying Autonomous Choices
How shall we verify autonomous decision-making? Our

main proposal is to use program verification to demonstrate
that the core rational agent always endeavours to act in line
with our requirements and never deliberately chooses options
that it believes will lead to bad situations (e.g. ones where
the agent believes something is unsafe). Thus, we do not try
to verify all the “real world” outcomes of the agent’s choices,
but instead verify the choices themselves. In particular, we
verify that the agent always tries to achieve its goals/targets
to the best of its knowledge/beliefs/ability. Thus, the agent
achieves situations it believes to be good and avoids situ-
ations it believes to be bad. Consequently, any guarantees
here are about the autonomous system’s decisions, not about
its overall effects.

This lets us distinguish between a rational agent know-
ingly choosing a dangerous/insecure option and a rational
agent unknowingly doing so based on an imperfect repre-
sentation of the actual environment. Indeed, we argue that
the most crucial aspect of autonomous system verification,
for example concerning safety, is to identify that the agent
never deliberately makes a choice it believes to be unsafe.
We wish to ensure that if an unsafe situation arises this is
because of unforeseen consequences of an agent’s actions (i.e.
its model of the environment was too weak) not because the
agent chose an option known to lead to a bad outcome.

Aside: Accidental or Deliberate?.
Are all dangerous situations equally bad? What if a robot

deliberately took an action that it knew would cause danger?
Is this more serious than a robot accidentally causing this
danger? This distinction can be important, not least to
the public, and if a robot is being ‘vindictive’, then few
safeguards can protect us. Importantly, our approach allows
us to distinguish between these cases. We can verify whether
the agent beliefs were simply not accurate enough (in which
case, the agent is ‘innocent’) or whether the agent knew
about the danger and decided to proceed anyway.

One reason for our approach of verifying what the agent
chooses, based on its beliefs, involves the purely practical
issue of trying to model the “real world”. We can never
have a precise model of the “real world” and so can never



say, for certain, what the effect of any action the system
could choose might be. We might construct increasingly
precise models approximating the “real world”, but they can
clearly never be perfect.

A second reason is to treat the agent, to some extent, as
we might treat a human. In assessing human behaviour, we
are happy if someone is competent and tries their best to
achieve something. In particular, we consider someone as
exhibiting ‘safe’ behaviour, if they have taken all the infor-
mation they have access to into account and have compe-
tently made the safest decision they consider possible. Just
as with humans, an agent’s beliefs capture its partial knowl-
edge about the “real world”. The agent’s beliefs might be
wrong, or incorrect, but we only verify that the agent never
chooses a course of action that it believes will lead to a bad
situation. The agent’s beliefs could be wrong and, of course,
these beliefs might be refined/improved providing a better
(more accurate) abstraction of the real situation.

We can contrast this with the traditional approach to for-
mal (temporal) verification where we verify that bad things
never happen and good things eventually happen. Instead,
we only need verify that the agent believes these to be the
case. This also has an impact upon the agent’s selection of
intentions/goals. As the agent is required to believe that
no bad thing should occur, then it should never select an
intention that it believes will lead to something bad, e.g.2.

B(ϕ⇒ ♦bad) ⇒ 2¬Iϕ

So, if the agent believes that achieving ‘ϕ’ eventually leads
to something bad, it will never intend to undertake ϕ.

In the context of the verifications discussed in this paper
we use the property specification language that is provided
with AJPF [19]. This language is propositional linear tem-
poral logic (PLTL), extended with specific modalities for
checking the contents of the agent’s belief base (B), goal set
(G), actions taken (A) and intentions — goals which are
associated with a deed stack — (I).

This approach is clearly simpler as we can carry out verifi-
cation without comprehensive modelling of the “real world”.
Thus, we verify the (finite) choices the agent has, rather
than all the “real world” effects of those choices. Clearly,
some parts of an agent’s reasoning are still triggered by the
arrival of information from the real world and we must deal
with this appropriately. So, we first analyze the agent’s pro-
gram to assess what these incoming perceptions can be and
then explore, via the AJPF model checker, all possible com-
binations of these. This allows us to be agnostic about how
the real world might actually behave and simply verify how
the agent behaves no matter what information it receives.
Furthermore, this allows us to use hypotheses that explic-
itly describe how patterns of perception may occur in reality.
Taking such an approach clearly gives rise to a large state
space because we explore all possible combinations of inputs
to a particular agent. However it also allows us to investigate
a multi-agent system in a compositional way. Using stan-
dard assume-guarantee (or rely-guarantee) approaches [25,
28], we need only check the internal operation of a single
agent at a time and can then combine the results from the
model checking using deductive methods to prove theorems

2Here, ‘B’ means “the agent believes”, ‘♦’ means “at some
future moment in time”, ‘2’ means “at all future moments
in time”, and ‘I’ means “the agent intends”.

about the system as a whole.

5. EXAMPLE SCENARIOS
To exemplify this approach, we review several different

scenarios that have been implemented using Gwendolen
and verified formally using AJPF [37, 17]. In all these exam-
ples, the distinction in Figure 1 is central. The agent makes
a decision, passes on to the continuous control to implement
the fine detail, and then monitors the activity. The agent
only becomes involved again if a new situation is reached,
if a new decision is required, or if the agent notices some
irregularity in the way the continuous control is working.

5.1 RoboCup Rescue Scenario
Imagine an“urban search and rescue”scenario, of the form

proposed in the RoboCup Rescue challenge [27], where au-
tonomous robots are searching for survivors after some nat-
ural disaster (e.g. an earthquake). A robot builds up beliefs
about some area using sensor inputs. Based on these beliefs,
the robot makes decisions about whether to search further.
So, we might verify [17]:

2(B can leave⇒ (B found ∨ B area empty))

meaning if the searching robot believes it can leave the area,
then it either believes a human is found or it believes the
area is empty. We can verify this, but need to provide some
abstraction of the sensor inputs. We model the environment
by supplying, randomly, all relevant incoming perceptions to
the robot. In this case it either detects a survivor or does not
detect a survivor, at any location. It is important to note
that the robot could be wrong. Its sensors might not detect
a survivor (e.g. buried under rubble). However, this does
not make the autonomous system incorrect ; it has made the
best decisions it can given the information it had.

When AJPF encounters a random choice in Java it treats
it as a branch in the possible execution of the model and
explores both branches – i.e. it checks the property holds
both in the situation where the perception was received by
the agent and the situation where the perception was not
received. We can extend this to proving properties given
simple assumptions about the behaviour of the real world.
These assumptions might be verified using other forms of
analysis. Given the verification above, we might assume
that the robot’s sensors accurately detect the human, and
that its motor control operates correctly. This allows us
to prove a stronger property that the agent will either find
the human or the area is actually empty. These deductive
aspects can be carried out by hand, or by using a suitable
prover.

In more sophisticated scenarios we may want to check prop-
erties of groups of systems/agents working together. Imag-
ine that we now have another robot, capable of ‘lifting’ rub-
ble. The two robots work as a team: the ‘searching’ robot
will find the human, then the ‘lifting’ robot will come and
remove the rubble. We will refer to the beliefs of the lifting
robot as Bl. Ideally, if these two work together as expected
then we would like to show that eventually the lifter believes
the human is free: ♦Blfree(human). However, this depends
on several things, for example that any communication be-
tween the robots is reliable. We can check the behaviours of
each agent separately, then combine these component prop-



erties with statements about communication, in order to
verify whether the robots can cooperate.

We have been verifying the beliefs agents form about their
environment in lieu of verifying actual facts. However, some
choices we may legitimately wish to verify depend upon the
outcomes of previous choices being as expected. Suppose
that our lifting agent does not deduce that the human is
free (because it has moved some rubble), but continues to
lift rubble out of the way until its sensors tell it the area is
clear. We cannot verify that the robot will eventually believe
the human is free since we cannot be sure that it will ever
believe that the human is clear of rubble. However, we can
establish (and have verified) that assuming that, whenever
the lifter forms an intention to free the human it will even-
tually believe the rubble is clear, then receipt of a message
from the searching robot that a trapped human is located will
eventually result in the lifter believing the human is free.

2(Ilfree(human)⇒ ♦Blclear) ⇒
(Blreceive(searcher, found)⇒ ♦Blfree(human))

While much simplification has occurred here, it should be
clear how we can carry out compositional verification, mix-
ing agent model checking and temporal/modal proof. The
input from sensors can be modelled in various ways to pro-
vide increasingly refined abstractions of the “real world”.
Crucially we can assess the choices the agent makes based
on its beliefs about its environment and not necessarily what
actually happens in its environment 3.

5.2 Autonomous Satellite Scenario
Consider a satellite orbiting the Earth and attempting

to keep on a particular path [18]. We want to establish
B2on path, i.e. the satellite believes it is always on the
path. Yet, we cannot establish this since the satellite’s agent
cannot be sure that it will never leave the path (since this
would be an impossibly strong assumption about the envi-
ronment). However, we can show that

1. if it does leave its path, then the satellite will eventu-
ally recognize this, and

2. once this situation is recognized, the satellite will have
a goal (i.e. ‘intends’) to move back onto the path as
soon as possible.

In other words, if anything goes wrong, the satellite will
recognize this and will try to fix it. It might fail, but all we
can show is that it always tries to succeed. Note that (1)
above is a property that needs to be established concerning
the satellite’s sensors, but (2) is indeed something we can
verify of the agent.

Engineers and mathematicians have developed strong tech-
niques for analyzing control systems and scenarios and ‘prov-
ing’ that a certain property holds. For example, we might
separately prove that a continuous path planning algorithm
works and so capture that as a behaviour in a simplified
model of the environment (here, ‘A’ means “the agent exe-
cutes the external action of”):

A go to path⇒ ♦on path

3Agent code written in Gwendolen for this scenario to-
gether with sample verified properties is available from the
MCAPL repository on Sourceforge.

Thus, if the agent executes some action based on continuous
path planning to reach some destination it will eventually
reach that destination. Again, notice how the verification of
this will be carried out using other methods; we will just use
this assumption during verification of the agent choices. As
examples, we can verify several different properties [17] 3:

1. Using a simple model of the environment where the
satellite simply receives information about its position,
we can verify that if, whenever an agent uses contin-
uous planning to move to a path, it eventually believes
it reaches the path and if, whenever it activates path
maintenance procedures it always believes it remains
on the path, then eventually the satellite always be-
lieves it is on the path:

2(A go to path⇒ ♦B on path) ∧
2(Amaintain path⇒ (Bon path⇒ 2B on path))
⇒ ♦2B on path

2. It is possible for venting from a broken fuel line to
knock a satellite off path. In this situation the satellite
first needs to correct the problem with the thruster
(e.g. by switching valves between fuel lines) and then
calculate a new path to its destination. So we can
verify if the satellite notices it is no longer on the path
then it will form an intention to return to the path:

2(B¬on path⇒ ♦I on path)

Note. If the satellite receives a message requesting
it to move to a different position during this process,
then subtle interactions between the agent’s goals and
plans can result in the the satellite attempting to move
to two locations at once. Attempting (and failing) to
verify that, under suitable conditions, the agent would
always eventually get on to the path led to the detec-
tion of a number of bugs such as this.

3. If we relax our hypotheses, for instance to allow the
possibility of unfixable errors in the thrusters, then we
can still verify some properties. For instance eventually
either the agent always believes it is on the path or it
has informed ground control of a problem.

♦(2B on path ∨B informed(ground , problem))

5.3 Autonomous Unmanned Aircraft Scenario
Unmanned aircraft are set to undertake a wide variety of

roles within civil airspace. For safety, and to obtain regula-
tory approval, unmanned aircraft must be shown to be equiv-
alent to manned aircraft and transparent to other airspace
users [12]. In essence, any autonomous systems in control of
an unmanned aircraft must be “human equivalent” or bet-
ter. Human equivalence is, clearly, difficult to specify. But
perhaps a good place to start extracting desirable human
behaviours are the statutory and regulatory documents de-
signed to specify and exemplify ideal human behaviours, e.g.
the “Rules of the Air” [11]. In order to begin to verify the
human equivalence of unmanned aircraft autonomy, we iden-
tified a very small (but salient) subset of the Rules of the
Air [37], including the following.

1. Detect and Avoid: “. . . when two aircraft are approach-
ing head-on .... and there is danger of collision, each
shall alter its course to the right.” (Section 2.4.10)



2. Navigation in Aerodrome Airspace: “[An aircraft in
the vicinity of an aerodrome must] make all turns to
the left unless [told otherwise].” (Section 2.4.12(1)(b))

3. Air Traffic Control Taxi Clearance: “An aircraft shall
not taxi on the apron or the manoeuvring area of an
aerodrome without [permission].” (Section 2.7.40)

A decision-making agent for an unmanned aircraft was writ-
ten. A simulated environment was also developed using
Gwendolen, consisting of: a sensor unit to generate alerts
related to intruder aircraft and other air traffic; a navigation
manager to generate alerts about the current flight path;
and an aerodrome air traffic controller unit to simulate aero-
drome air traffic control. In order to formally verify that the
agent controlling the unmanned aircraft will follow the three
rules above, they were translated into the logical formulae
and verified using the AJPF model checker [37]:

1. “It is always the case that if the agent believes that an
object is approaching head-on, then the agent believes
that the direction of the aircraft is to the right.”

2(B objectIsApproaching⇒ B direction(right))

2. “It is always the case that if the agent believes that it is
changing heading (i.e. turning as part of navigation)
and it believes it is near an aerodrome and it believes
it has not been told to do otherwise, then the agent will
not believe that its direction is to the right.”

2

 B changeHeading∧
B nearAerodrome∧
¬B toldOtherwise

 ⇒ ¬B direction(right)


3. “It always the case that if the agent believes it is taxi-

ing, then it believes that taxi clearance has been given.”

2(B taxiing⇒ B taxiClearanceGiven)

Verifying such requirements not only shows that the au-
tonomous system makes choices consistent with these“Rules
of the Air”, but can also highlight inconsistencies within the
rules themselves [37].

6. SUMMARY
Once autonomous systems have a distinguished decision

making ‘agent’, then we can formally verify this agent’s be-
haviour. In particular, we have developed model-checking
techniques for rational agents, allowing us to explore all pos-
sible choices the agent might make. Notably, the architec-
ture and the logical framework together allow us to verify
not only what the agent chooses but why it chooses it.

A central theme of our analysis of autonomous systems,
and of the agents that control them, is to verify what the
agent tries to do. Without a complete model of the real en-
vironment, then we cannot say that the system will always
achieve something, but we can say that it will always try (to
the best of its knowledge/ability) to achieve it. This is not
only as much as we can reasonably say, but is entirely jus-
tifiable as we wish to distinguish accidental and deliberate
danger. So, when considering safety, we cannot guarantee
that our system will never reach an ‘unsafe’ situation, but
we can guarantee the agent will never “knowingly” choose
to move towards such a situation. Thus, all the choices of

the agent/system are verified to ensure that it never chooses
goals/actions which it believes will lead to ‘bad’ situations.
Crucially, this analysis concerns just the agent’s internal de-
cisions and so verification can be carried out without hav-
ing to examine details of the “real world”. Thus, we verify
the (finite) choices the agent has, rather than the (continu-
ous/uncertain) real world effect of those choices.

Overall, we can see this as a shift from considering whether
a system is “correct” to considering two aspects of systems:

1. analysis of whether the (autonomous) system makes
only “correct” choices, given what it believes about its
environment, together with

2. analysis of how accurate and reliable the system’s be-
liefs are about its environment.

We have considered (1) in this article. However, (2) may be
discrete, if abstractions are used, or continuous and uncer-
tain, requiring more complex analytical techniques.

6.1 Future Work
This work is only just at the beginning, and the theme of

verifying what autonomous systems try to do, rather than
the effects they have, has much potential. However there
are many avenues of future work, the foremost currently be-
ing incorporation of uncertainty and probability. So, rather
than verifying the agent never chooses a course of action
that it believes will lead to a ‘bad’ situation, we would like
to verify that the agent

never chooses a course of action that it believes is more
likely to reach a ‘bad’ situation than its other options.

In addition, there are clearly various different forms of ‘bad’
situation, with different probabilities and measures concern-
ing their seriousness. Again, these measures and probabili-
ties should be incorporated into the properties verified.

Similarly there are important aspects of truly autonomous
behaviour, such as the ability to plan and learn that we have
not considered in any detail. We are interested in exploring
how an agent might reason about new plans, for instance,
to ensure that their execution did not violate any important
properties and so provide guarantees about the agents over-
all behaviour even in the face of changing internal processes.

It is also important to assess if, and how, other approaches
to the formalization of autonomous behaviours, e.g. [1], can
be involved in our verification.

6.2 Towards Certification
Certification can be seen as the process of negotiating with

a certain legal authority in order to convince them that rel-
evant safety requirements have been explored and mitigated
in an appropriate way. As part of this process, various items
of evidence are provided to advance the applicant’s safety ar-
gument. This approach is widely used for the certification
of real systems, from aircraft to safety critical software.

Clearly, we are mainly concerned with the certification of
autonomous systems. As above, systems might generally
be analyzed with respect to the question, “Is it safe?” If
there is a human involved at some point, e.g. a pilot or
controller, then some view must be taken on whether the
human acts to preserve safety or not. For example, within
aircraft certification arguments, it is usually assumed that
a pilot, given appropriate information and capabilities, will



act to preserve the aircraft’s safety. Yet in a safety analysis,
we rarely go any further. Essentially, the human is assumed
to be benevolent.

Our approach provides a mechanism for analyzing the
agent choices in the case of autonomous systems. Thus,
while a standard safety argument might skip over human
choices, assuming the pilot/driver/operator will endeavour
to remain safe, we can formally verify that the agent indeed
tries its best to remain safe. In this way, our approach allows
wider analysis — while the intentions and choices of a pi-
lot/driver/operator must be assumed to be good, we can ac-
tually examine the intentions and choices of an autonomous
system in detail.
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