
G

B

R

R
a

M
a

b

a

A
R
R
A

K
M
R
C
A

1

e
a
a
a
K
o
(
p

e
g
d
1
s
o
w
m
s
p

(

0
h

ARTICLE IN PRESS Model

IO-3319; No. of Pages 11

BioSystems xxx (2012) xxx– xxx

Contents lists available at SciVerse ScienceDirect

BioSystems

journa l h o me  pa g e: www.elsev ier .com/ locate /b iosystems

esearch  Article

-Models:  A  mathematical  framework  for  capturing  notions  of  abstraction  and
ssistance  in  reproductive  systems

att  Webstera,  Grant  Malcolmb,∗

Virtual Engineering Centre, Daresbury Laboratory, Warrington WA4  4AD, UK
Department of Computer Science, University of Liverpool, Liverpool L69 3BX, UK

 r  t  i  c  l  e  i  n  f  o

rticle history:
eceived 30 May 2012
eceived in revised form 25 July 2012
ccepted 30 July 2012

eywords:

a  b  s  t  r  a  c  t

R-Models  are  an  approach  to capturing  notions  of assistance  and  abstraction  in  reproductive  systems,
based  on  labelled  transition  systems  and  Gibson’s  theory  of  affordances.  R-Models  incorporate  a  labelled
transition  system  that  describes  how  a  reproductive  system  changes  over  the  course  of  reproduction.
The  actors  in  the  system  are  represented  by a set of  entities  together  with  a relation  describing  the  states
in  which  those  entities  are  present,  and  an  affordance-modelling  function  mapping  actions  to  sets  of
odelling
eproduction
lassification
ffordances

entities  which  enable  those  actions  to be  performed.  We  show  how  R-models  can  be classified  based  on
whether  the  reproducer  is assisted  or  unassisted  in reproduction,  and  whether  or not  the  reproducer  is
active during  reproduction.  We  prove  that all assisted  and  unassisted  R-models  have a  related  R-model
which  has  the opposite  classification.  We  discuss  the  relevance  to the  field  of artificial  life, give  a  potential
application  to the  fields  of computer  virology,  and  demonstrate  reproduction  modelling  and  classification
in action  using  examples.
. Introduction

In this paper we introduce affordance-based reproduction mod-
ls, or R-models, as a way of capturing notions of assistance and
bstraction in reproductive systems. The ability to reproduce is
t the heart of what it means to be alive, both for biological and
rtificial life systems (see, e.g., Weber, 2006; Schrödinger, 1944;
oonin, 2012). Indeed, a great deal of the early work in the field
f artificial life, such as von Neumann’s reproducing automaton
von Neumann, 1966) and Langton’s loops (Langton, 1984), focuses
recisely on reproduction.

There are many clear and paradigmatic examples of reproduc-
rs, both artificial and biological: biological organisms and the
enes that control them (Dawkins, 1990), von Neumann’s repro-
ucing automaton (von Neumann, 1966), computer viruses (Cohen,
987) and other forms of reproducing malware (Filiol, 2005), and
o forth. There are other examples that stretch intuitive definitions
f reproduction: photocopies (Hofstadter, 2000), gliders in Con-
ay’s game of life (Gardner, 1970), seeding crystals, fixed points of
Please cite this article in press as: Webster, M., Malcolm, G., R-Models: A
assistance in reproductive systems. BioSystems (2012), http://dx.doi.org/1

athematical functions, or even a pen on a desk which, being in a
table state, ‘reproduces’ from one instant to the next thanks to the
hysical laws of the universe.
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The wide variety of reproducing systems has led many
researchers to develop taxonomies and classifications of reproduc-
tion, e.g., (Sipper, 1998; Freitas and Merkle, 2004; Taylor, 1999,
1999; Luksha, 2003). A recurring theme in these classifications
is how much the reproducer relies on its surroundings, the envi-
ronment, in order to reproduce. For example, Freitas and Merkle
categorise reproducers based on whether information for repro-
duction (such as a self-description in the case of a von Neumann
self-replicating automaton) is based within the reproducer or
somewhere in its environment, and the degree to which a repro-
ducer is “parasitic”, i.e., the degree to which it is reliant on external
agency in order to complete the act of reproduction (Freitas and
Merkle, 2004, Chapter 5). In another example, Taylor divides the
reproducer space into two: reproduction occurs either with or
without reliance on external agency (Taylor, 1999, 1999). A third
example comes from Luksha’s categorisation of reproducers, in
which the relative complexities of the reproducer and its environ-
ment come into play (Luksha, 2003).

However, such classification can be confusing as in many cases
it looks as though there can be more than one classification for a
given reproducer. For example, we could say that von Neumann’s
self-reproducing automaton could not operate without the cellular
automaton environment in which it exists. Alternatively, we can
 mathematical framework for capturing notions of abstraction and
0.1016/j.biosystems.2012.07.003

take the environment for granted if we  decide that its involvement
is unimportant, and then we can attribute to the reproducer every-
thing that the environment previously did for the reproducer. In
this case reproduction occurs simply as a result of the reproducer’s

dx.doi.org/10.1016/j.biosystems.2012.07.003
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http://www.sciencedirect.com/science/journal/03032647
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wn agency. (In the first case we could say that von Neumann’s
utomaton is “assisted” by its environment, and in the latter case it
s “unassisted”.) Similar confusion can occur in other examples of
eproduction, from bacteria to Langton’s loops to computer viruses.

e  call this the “assistance problem” of reproductive system clas-
ification.

Another point of contention when classifying and comparing
eproduction systems is the “abstraction problem”. It is possible
o talk about a reproducer at many different levels of abstraction.
or example, we could say that bacteriophage viruses reproduce
n a 5-step process corresponding to the stages of attachment to
he host cell, insertion of the viral RNA, synthesis of various parts
hat will make up the offspring, maturation of the offspring and
nally release of the offspring into the environment. Alternatively,
e could view the bacteriophage’s reproduction in terms of the

iochemical reactions taking place during the reproductive pro-
ess, from the use of enzymes to inject viral DNA to the creation
f necessary proteins. This could involve many thousands of differ-
nt reproductive steps. We  could also say that the bacteriophage
eproduces in one step, that the entire reproduction process is sim-
ly a single indivisible event—we may  use this view if, for example,
e are more interested in how quickly the virus spreads through

 population of host cells. All three of these abstraction levels are
ifferent, yet they all describe the same reproductive system. In
hat ways (if any) are these three views of the same reproductive
rocess related?

In this paper we hope to clarify what is meant by “assistance”
nd “abstraction” using R-models, and therefore help to tackle the
ssistance and abstraction problems for reproduction classification.
e introduce the R-model mathematical framework to compare

ifferent “views” of the same reproductive act, e.g., bacteriophage
irus reproduction and computer virus reproduction, and show
hat different views of the same reproductive process correspond
o different R-models. Our main results suggest that the notion of
ssistance is a property not of a reproductive system, but of a model
f that system. We  are able to show that for every R-model in which
n entity’s reproduction is unassisted, there is an R-model of the
ame system in which the entity’s reproduction is assisted, and
ice versa.

.1. Structure of the paper

In Section 2 we begin by introducing two of the main ideas on
hich R-models are based: labelled transition systems and affor-
ances. Next we give a formal definition of R-models, and show
ow they can be used to describe different types of assistance and
bstraction for reproductive systems. We  introduce “refinements”
s a way of relating R-models to each other, and give examples
howing how R-models can be constructed and related. In Section

 we explore the “space” of R-models in more detail by describing
 number of theoretical results on R-models, the most of impor-
ant of which lets us find corresponding assisted R-models for any
nassisted R-model and vice versa (the significance and meaning
f these terms will be given in the appropriate sections). We follow
his with some practical examples of how these formal results can
e applied. We  conclude with comparisons with related work, and
ive directions for future work.

. Formal models of reproduction

As stated in Section 1, our goal is to be able to relate different
Please cite this article in press as: Webster, M., Malcolm, G., R-Models: A
assistance in reproductive systems. BioSystems (2012), http://dx.doi.org/1

iews of a reproductive act in a rigorous way, in order to clarify
hat is meant by “abstraction” and “assistance” within reproduc-

ive systems. In this section we specify precisely what we mean
y an R-model: on the one hand, we want R-models to be general
 PRESS
tems xxx (2012) xxx– xxx

enough to cover as many examples as possible, while on the other
hand, we  want the notion to have enough structure to allow us
to capture relevant similarities and differences between specific
R-models. Since any model of reproduction necessarily identifies
some reproducer that reproduces, it seems reasonable to take an
entity-based approach to modelling reproduction, and we will
assume that reproductive models identify a set of entities that play
some role in the reproductive process, and that the reproducer
itself is a particular entity in this set. We  also require that an
R-model specifies a state space and the events that occur to move
from one state to another. We  now examine in detail the theoret-
ical tools used to specify reproduction in terms of state spaces and
entities, namely labelled transition systems and affordances.

2.1. Labelled transition systems

A set of states together with events or ‘actions’ that move the
system from one state to another form a labelled transition system,
which consists precisely of a set S of states, a set A of actions, and
a ternary relation �→ ⊆ S × A × S specifying the transitions between
states. Given such a labelled transition system, we usually write
s

a�→ s′ instead of (s, a, s′)∈ �→,  to indicate that action a may  move the
system from state s to state s′.

It is important to note at this stage that labelled transition sys-
tems, whilst based on discrete mathematical structures, are capable
of modelling continuous-time phenomena. One way of doing so is
to incorporate continuous time into the state space. States would
then be pairs (t, s), where t is a real value denoting time, and s is the
state of the system at time t. Transitions would then be of the form
(t1, s1)

a�→ (t2, s2), provided that t1 < t2 and s1 �→ s2 is a valid evolution
of the system over the time-interval [t1, t2] (as a simple exam-
ple, if s1 and s2 are intended to represent velocities, then requiring
s2 = s1 + k(t2 − t1)s1 would represent a constant acceleration).

As an example of a labelled transition system, consider an
abstract view of the life cycle of a bacteriophage virus, which con-
sists of five stages: (i) attachment of the virus to the host cell; (ii)
introduction of the virus’s genome to the interior of the cell; (iii)
synthesis of new virus parts; (iv) maturation of these parts into
mature offspring; and (v) release of these offspring back in the envi-
ronment. At this schematic level, there are five actions: A = {a, i, s, m,
r}, and the state space has six states: S = {s1, s2, s3, s4, s5, s6}, where
s1 represents the initial state before the bacteriophage attaches to
the cell, s2 represents the state after attachment, and so forth. The
labelled transition system as a whole can be pictured thus:

s1
a�→ s2

i�→ s3
s�→ s4

m�→ s5
r�→ s6 (1)

2.2. Affordances

Using labelled transition systems we can formalise an act of
reproduction in terms of a sequence of events taking place over
time. Using Gibson’s theory of affordances we  can say that one or
more of the entities present in a reproduction model assist in a
particular action.

Note that our models are ecological, in the sense that we specify
an act of reproduction that involves some number of entities within
the environment of the reproducer. We do not place restrictions on
what these entities can be; they can be animate or inanimate, logi-
cal or physical. For this reason we use Gibson’s theory of affordances
(Gibson, 1977, 1979) to describe the way in which one or more enti-
ties assist in particular actions in the reproduction model. Gibson
 mathematical framework for capturing notions of abstraction and
0.1016/j.biosystems.2012.07.003

presented affordance theory as an “ecological theory of perception”,
in which animals perceive objects in their environment as being
able to assist in some action. For instance, for a mouse a cave might
afford shelter, or running water may  afford nourishment. We  can

dx.doi.org/10.1016/j.biosystems.2012.07.003
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tretch this notion even further; the mouse might perceive another
ouse of the opposite sex which affords it reproduction. The mouse
ight perceive three stepping stones, which afford it safe passage

cross a stream. The mouse may  even perceive a predator, which
ffords death. In each case, the notion of affordance binds some
ctor (e.g., the mouse) with some entities in its environment. The
ctor requires the entities to perform an action, e.g., a mouse needs

 cave to perform the act of shelter.
In our models we  can consider the reproduction of any

eproducer. The reader should note that we  therefore only use
ffordances as a metaphor; we do not suggest that a reproducer like

 computer virus perceives its environment in any non-trivial way,
or example. We  could have just as easily used words like “assis-
ance”, “collaboration” or “cooperation” in place of “affordance”;
owever, we  chose “affordance” for its ecological connotations.

.3. R-Models: affordance-based models of reproduction

We  can formalise affordances within reproduction models by
sing a function Aff that assigns to any action a in the reproductive
ct a set of entities, Aff(a), that together afford the action a, i.e.,
hose entities without whose presence a could not be performed.

e make this formal as follows.

efinition 1. An affordance-based reproduction model,  or R-model,
s a tuple

S, A, �→,  Ent, r, ε, p, Aff ),

here

(S, A, �→)  is a labelled transition system;
Ent is a set of ‘entities’ with the reproducer r ∈ Ent the particular
entity that reproduces in the model;
ε ⊆ Ent × S is a binary relation, with e ε s indicating that entity e is
present in the state s;
p is a path through the transition system representing the repro-

duction of r, i.e., p consists of a sequence s0
a1�→ s1

a2�→ . . .
an�→ sn with

si−1
ai�→ si for 0 < i ≤ n, and with r ε s0 and r ε sn; and

Aff : A → P(Ent) is a function from actions to sets of entities, such
that, for all states s, if a is possible in s (i.e., s

a�→ s′ for some state
s′), then e ε s for all e in Aff(a).

As an example, we consider bacteriophage reproduction as
escribed above.

xample 1. An R-model for bacteriophage reproduction might
ook as follows:

The labelled transition system, (S, A, �→), is

s1
a�→ s2

i�→ s3
s�→ s4

m�→ s5
r�→ s6,

as in (1),  with the actions {a, i, . . . } corresponding to attachment,
insertion, etc.;
Ent = {virus, host} where virus is the bacteriophage virus and host
is the host cell which gets infected;
ε is defined as follows: host ε si for 1 ≤ i ≤ 5, meaning that the host
cell is present in all states of the reproductive process except the
final one (as it has been destroyed in the virus release stage).
Please cite this article in press as: Webster, M., Malcolm, G., R-Models: A
assistance in reproductive systems. BioSystems (2012), http://dx.doi.org/1

We also specify virus ε s1 and virus ε s6 as the virus is present in
the first state, i.e., before it injects itself into the host cell, and
in the final state, after “copies” of the virus are released into the
environment;
 PRESS
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• p  = (S, A, �→)  in this case as the transition system contains only the
states, actions and transitions of the bacteriophage’s reproductive
process;

• Aff(a) = {virus, host} as the virus and host must both be present in
order for this action to take place, and Aff(˛) = {host} for all  ̨ ∈ {i,
s, m,  r} as the host cell must be present for all of these actions to
take place.

In this schematic model of the bacteriophage, we  posit just two
entities: the host cell, which is present in all states except the final
state, and the bacteriophage, which, as the reproducer, is present
in at least the first state s1, and final states s5 and s6. This gives us
a very simple model of bacteriophage reproduction, in which we
identify the bacteriophage with its own  offspring.

It is important to stress that this is not the only possible R-model
for bacteriophage reproduction. We  could use a different labelled
transition system consisting of any number of states in the repro-
ductive process, including branches, cycles and disjoint graphs. We
could specify any number of entities, for example, we could include
the substrate on which the host cell exists, or the food on which it
feeds, or another virus in the system, etc. (Note that we require at
least one entity, the reproducer.) Likewise we can specify the pres-
ence relation ε, the path p and the affordances in the model however
we want (subject to the restrictions given in Definition 1). Indeed,
we give a more detailed version of bacteriophage reproduction in
Example 5 below.

This flexibility makes R-models a convenient mathematical
framework for describing reproductive systems, and in particular
for capturing notions of abstraction and assistance those systems,
as we  shall see in the following sections.

2.4. Assistance and refinements for R-models

We  will use R-models as a tool for reasoning about abstraction
and the ecology of assistance in reproductive systems. Before we
do so, we  need to formalise notions of assistance and refinement.

2.4.1. Assistance in R-models
In order to formalise assistance with respect to reproduction, it

is useful to identify the set of all entities which assist in the overall
act of reproduction. We  call this set the ecology of a model.

Definition 2. The ecology of an R-model M, E(M), is the union of
the sets Aff(ai) for all actions ai in the path p.

In other words, the ecology of an R-model is the set of all the
entities that assist in the act of reproduction. We  can then classify
an R-model M as assisted or unassisted, depending on the ecology
of M:

Definition 3. An R-model M is unassisted iff there is no entity e in
E(M) that is different from the reproducer r. Conversely, an R-model
M is assisted iff there is some entity e in E(M) that is different from
r.

Note that M is unassisted iff E(M) ⊆ {r}; in general, this need
not be an equality, and we can also classify models according to
whether or not the reproducer participates in its own reproduction.
The idea of a reproducer not participating in its own reproduction
might seem paradoxical at first, but is quite natural in some cir-
cumstances. For instance, a photocopy (considered by some to be a
reproducer; Hofstadter, 2000) apparently does little in the act of its
 mathematical framework for capturing notions of abstraction and
0.1016/j.biosystems.2012.07.003

own reproduction. It is likely that many such “trivial” examples of
reproduction involve reproducers that do not seem to participate
in their own  reproduction, e.g., gliders within Conway’s game of
life (Gardner, 1970). We  summarise this distinction in

dx.doi.org/10.1016/j.biosystems.2012.07.003
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efinition 4. An R-model model M is trivial iff the reproducer
 /∈ E(M). Conversely, M is non-trivial iff r ∈ E(M).

Note that the trivial/non-trivial classification is orthogonal to
he assisted/unassisted classification.

We now demonstrate how an R-model for a copier computer
irus can be defined and classified as assisted or unassisted, or as
rivial or non-trivial.

xample 2. The following copier computer virus reproduces
hen it is executed by the Bash interpreter in Unix:

p $ 0 $ 0.copy

he command cp takes as arguments two filenames, and copies the
ontents of the first file, if it exists, into the second file, which will
e created if it does not already exist. The expression $0 is a special
ariable that is set to the name of the command which invoked
he shell script. As shell scripts are commonly invoked using their
wn filename, this computer virus is able to make a copy of the file
ontaining itself.

In general, for a computer virus, we would like to base an
-model on an operational semantics (Plotkin, 2004) for the pro-
ramming language in which the virus is written. That is, the
abelled transition system has programs as labels, and the states are
hose of an abstract machine that executes the language. An opera-

ional semantics formally specifies the transition relation s
p�→ s′ by

pecifying which states s′ may  be reached by executing program p
n starting state s.

In this case, we can represent the state of a computer running
he Bash interpreter as a tuple FS | B | CS,  where FS represents
he filestore, B represents the state of the Bash interpreter, and
S represents a sequence of shell script commands that are to be
xecuted. For the sake of simplicity, we will assume that the file-
tore is just a sequence of shell scripts, and we will represent each
cript as [FH: CS], where FH is the name of the script and CS is
he sequence of shell-script commands in the script. The state of
he Bash interpreter would consist of variable–value pairs for all
f Bash’s environmental variables; since for our example we are
nterested only in the variable $0,  we will represent the state of the
nterpreter simply as $0: FH,  where FH is the value of the variable
0.  As for the commands, we will restrict attention to names of shell
cripts and commands of the form cp E1 E2,  where E1 and E2 are
xpressions. Thus, for example,

[virus : cp $ 0 $0 . copy]|[$0 : null]|virus

epresents a state where the only script in the filestore is the copier
irus, the variable $0 has value null, and the command about to
e executed is a call of the shell script virus.

Now a simplified operational semantics for the Bash interpreter
tates that there are three actions get,  subst, and cp,  and permits the
ollowing path:

[virus : cp $ 0 $0 . copy]|[$0 : null]|virus
get�→

[virus : cp $ 0 $0 . copy]|[$0 : virus]|cp $ 0 $0 . copy
subst�→

[virus : cp $ 0 $0 . copy]|[$0 : virus]|cp virus virus . copy
cp�→

[virus . copy : cp $ 0 $0 . copy] [virus : cp $ 0 $0 . copy
Please cite this article in press as: Webster, M., Malcolm, G., R-Models: A
assistance in reproductive systems. BioSystems (2012), http://dx.doi.org/1

]|[$0 : virus]  |

his path shows that executing the virus causes its code to be repro-
uced in the file virus.copy.
 PRESS
tems xxx (2012) xxx– xxx

We  now construct an R-model Mcv in which we  identify three
entities: the copier computer virus (cv), which is the reproducer in
this R-model; the string rewriting agent (sra), which rewrites $0 to
the name of the script currently executing; and the cp command,
which creates the copy of the virus. Therefore Ent = {cv,  sra,  cp}.
Since substitution for $0 and copying file contents are basic func-
tions of the Bash interpreter, we  let sra and cp be present in all
states—this is a reasonable choice for our simplified operational
semantics; in a more detailed semantics, we might, for example,
specify that cp is not present in certain ‘error’ states arising from
hardware or software failures. We  further specify that cv is present
in all states where the command cp $0 $0.copy, or the result of
substituting for $0 in this, is present either in the filestore or as a
command about to be executed by the interpreter.

Thus far, we  have defined a basic reproduction model; we  make
this an R-model by specifying:

Aff (subst) = {sra}
Aff (cp) = {cp}

Aff (get) = {cv}
It is readily checked that these equations satisfy the constraint of
Definition 1, and that the result is a non-trivial assisted model.

Several variations on this R-model may  be given by changing
the definition of the function Aff.  For example, if one feels that sub-
stitution for $0 is a freely available resource that can be taken for
granted, one may  set Aff(subst) =∅. Similarly, one may  have Aff(cp)  =∅
if one feels that copying files may be taken for granted. Together,
these two changes would give an R-model in which the entities sra
and cp may  be considered surplus to requirements and dropped
from the set Ent. This model would then be a non-trivial unassisted
R-model.

2.4.2. Refinements of R-models
It should be clear from the preceding examples that we are not

classifying reproducers per se;  rather, we  are classifying R-model s
of reproducers, and we allow for the possibility that a reproductive
process may  be modelled in many different ways using as many
different R-models. It is possible that this permissiveness might
seem inappropriate. After all, it might be argued, the primary goal
of a model is verisimilitude: things are one way  or another, and the
obligation on a model is to say which way things are; so if there are
two different models of the same thing, then at least one model is
wrong.

Our view, which may  show a bias towards practices in Com-
puter Science, is that it is often useful to allow different models
of the same process, perhaps at different levels of abstraction, or
reflecting different states of understanding of the process being
modelled. In software engineering, for example, it is common to
start with a very abstract specification of a system, and repeatedly
refine this by adding more details and constraints, until a final, very
concrete specification is reached. Each version of the specification
can be seen as a model of the not-yet-realised system, at varying
levels of abstraction. The important relationship between the dif-
ferent models is a form of consistency: the more concrete models
impose more constraints on admissible behaviours; in other words,
every behaviour allowed by the concrete models is also allowed in
the more abstract models. In this section we present a notion of
refinement for R-models that captures the idea that one R-model
provides a more concrete view of the same process modelled by
another R-model.
 mathematical framework for capturing notions of abstraction and
0.1016/j.biosystems.2012.07.003

Definition 5. For R-models M = (SM, AM, �→ M, EntM, rM, εM, pM,
AffM) and N = (SN, AN, �→ N, EntN, rN, εN, pN, AffN), a refinement M � N
is a triple (R, g, h), where R ⊆ SM × SN is a relation, and g : AM → AN,
and h : EntM → EntN are functions such that

dx.doi.org/10.1016/j.biosystems.2012.07.003
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Fig. 1. Reproduction of Langton’s loop. The arrow represents time.

. s
a�→M s′ and s R t implies there is t′ ∈ SN with t

g(a)�→ N t′ and s′ R t′,
. s0 R t0 where s0 and t0 are the starting states in pM and pN respec-

tively,
. e εM s implies h(e) εN t whenever s R t,
. h(rM) = rN, and
. h(AffM(a)) ⊆ AffN(g(a)) for all actions a ∈ AM.

Note we write h(X) for the set resulting from applying h to every
lement of the set X.

Intuitively, a refinement M � N indicates that M and N model the
ame process, but N provides a more detailed or concrete model, i.e.,

 refines M.  Since transitions, occurrences and affordances are all
reserved, all of the behaviour, entities, and affordances described

n M also occur in N, although N may  provide more states, actions,
nd entities than figure in M.  The following sections give some
xamples of refinements.

.4.3. Comparing abstraction formally using refinements
Langton’s loops reproduce on a two-dimensional cellular

utomaton grid. A loop consists of an outer “sheath” which con-
ains the self-description: a series of symbols encoded in the states
f the sheathed cells. The self-description causes an “arm” to be
xtended from one corner of the loop, which then turns perpen-
icularly, before repeating the process a further three times until a
hild loop is constructed after 151 time steps (Langton, 1984), as in
ig. 1.

One way of modelling the reproductive process of the loop
ould be to take explicitly the states of the cellular automaton grid,

.g.:

1
a1�→ s2

a2�→ . . .
a151�→ s152, (2)

e will see that this model can be refined in two  different ways.

xample 3. Let M be an R-model in which SM, AM and �→M and
he path pN are defined by (2);  i.e., this is the “schematic” transition
ystem consisting of just that path. Let the set of entities EntM = {L,
}, where L represents Langton’s loop (and is also the reproducer

n this model), and G represents the cellular-automata grid. In this
odel, we consider this grid as affording reproductive actions to L,

.e., AffM(a) = {L, G} for all actions a. We  also specify that L εM s and
 εM s for all s ∈ SM, so that this model meets the requirements of
efinition 1.

Now let N be the model that contains the entire state-space of
he cellular automaton grid, so that SN consists of all possible con-
gurations of the grid, with a transition from one state to another iff
he first state evolves in one step to the second. Similarly to Example
, this R-model is therefore based on the operational semantics of
he cellular-automaton grid. We  set EntN = EntM, and for simplicity,
Please cite this article in press as: Webster, M., Malcolm, G., R-Models: A
assistance in reproductive systems. BioSystems (2012), http://dx.doi.org/1

e let L and G be present in all states (though it would be possible to
estrict L’s presence to only those states where a region of the grid
ontains one of the configurations of a loop). Clearly, N “contains”
, and we have a refinement M � N, where the relation between
 PRESS
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states is the inclusion SM ⊆ SN, and with the identity functions on
transitions and entities.

A rather more surprising refinement is given by another
“schematic” transition system that picks out the middle and end
of the act of reproduction, e.g.,

(3)

In the following example we  show that this is also a refinement of
M.

Example 4. Let P be a model in which SP, AP and �→P and the path
pP are defined by (3),  i.e., this is the transition system with only
two states s and s′, and transitions s

m�→P s and s
e�→P s′. Let the set of

entities EntP = {L}, with L present in both states, and let both actions
be afforded by the loop, L.

We now define a refinement (R, g, h) : M � P. Let R be defined by:
si R s for all i with 1 ≤ i < 152 and s152 R s′. Let g : AM → AP be defined
as follows:

g(ai) = m for 1 ≤ i ≤ 150, and

g(a151) = e.

Finally, we set h : EntM → EntP as the function mapping both G and
L to L.

It is straightforward to check that the conditions of Definition 5
hold.

It is clear that the refinement in this example is only possible
because of the schematic nature of the model M,  which is just a
path in a larger model (cf. Example 3). Indeed, we could take the
existence of a refinement to P as the definition of what it means to
be “schematic”.

The following example gives a more standard view of refine-
ment, using the bacteriophage model of Example 1.

Example 5. We use terms to represent individual cells, bacte-
riophages, and bacteriophage RNA. For example, we  use b-rna to
name a particular bacteriophage RNA sequence, and write T4[b-
rna] to denote an individual T4 bacteriophage with that sequence
(we are not concerned with any specific mechanics of RNA repro-
duction in this model, so we  need do no more than name the RNA
here). Similarly, we  write Cell[] for an individual cell, and we
denote states where several individuals coexist by simply juxta-
posing the terms for the individuals; thus, for example,

Cell[ ] T4[b- rna] Cell[ ] T4[b- rna] T4[b- rna]

denotes a state containing two  cells and three bacteriophages. We
consider this state to be equivalent to any permutation of its con-
stituent entities. Technically, we mean that juxtaposition is an
associative and commutative operation; semantically, we think of
this state as a ‘soup’ in which the constituent entities can ‘move
around’ in order to interact with one another. We  also allow a sim-
ilar sort of soup to exist within a cell’s membrane; for example,

Cell[b- rna T4[b- rna] b- rna b- rna]

denotes a single cell that contains three bacteriophage RNA strands,
 mathematical framework for capturing notions of abstraction and
0.1016/j.biosystems.2012.07.003

and one mature bacteriophage.
Such a situation can come to pass by a bacteriophage attach-

ing to a cell and injecting its RNA. We  write C-T for a cell C with
attached bacteriophage T, and postulate two  rewrite rules that allow

dx.doi.org/10.1016/j.biosystems.2012.07.003
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ttachment and injection of RNA (we omit the labels of the actions):

C T �→ C- T

Cell [S]- T4[R] �→ Cell[S R]

hich say, respectively, that bacteriophage T can attach to cell C,
nd that when a bacteriophage with RNA R is attached to a cell that
ontains ‘internal soup’ S, the RNA R can be injected into that inter-
al soup. Similarly, we give rewrite rules that allow bacteriophage
NA to be replicated inside a cell, and that allow bacteriophage RNA
o mature into T4 bacteriophages:

Cell[R S] �→ Cell[R S R]

Cell[b- rna S] �→ Cell[S T4[brna]]

inally, in the life-cycle of the bacteriophage, we  allow cells to
upture, releasing matured bacteriophages into the environment:

ell[S] �→ S

learly, these five rewrite rules correspond to the five schematic
tages of the bacteriophage life-cycle. Moreover, we can see these
tages applied to individuals, as in the following example:

T4[b-rna] Cell[] T4[b-rna]
�→

T4[b-rna] Cell[]-T4[b-rna]
�→

T4[b-rna] Cell[b-rna]
�→

T4[b-rna] Cell[b-rna b-rna]
�→

T4[b-rna] Cell[T4[b-rna] b-rna]
�→

T4[b-rna] T4[b-rna] b-rna

hich shows a T4 bacteriophage attaching to a cell, injecting its
NA, that RNA being copied, maturing, and then being released as
he cell ‘ruptures’ (albeit after minimal reproduction and maturing
f the T4 RNA). The states of this model are the terms of sort ‘soup’,
nd the rewrite rules given above determine the actions and tran-
itions. We  can postulate entities comprising a cell, Cell, which is
resent in a state iff that state has a subterm of the form Cell[...],
nd bacteriophages, present in a given state iff the RNA, b-rna
ccurs as a subterm. Furthermore, we can take the condition in
efinition 1 to define affordances, which gives us that all the actions

attachment, injection, etc.) are afforded jointly by the cell and the
acteriophages (and hence this model is an assisted reproduction
odel).
To see that this model refines the bacteriophage model of

xample 1, define the relation R so that s1 is related to all terms
hat contain a cell and a bacteriophage (so that the attach action is
ossible); s2 to all terms where a bacteriophage is attached to a cell
so that the inject action is possible); and so forth. It is straightfor-
ard to see that this gives a refinement of the schematic model of

xample 1.

.4.4. Comparing assistance formally using refinements
It is also possible to compare the assistance of two R-models

f the same reproductive act using refinements. In the following
xample we show how two different R-models of the same repro-
Please cite this article in press as: Webster, M., Malcolm, G., R-Models: A
assistance in reproductive systems. BioSystems (2012), http://dx.doi.org/1

uctive process can be related using a refinement.

xample 6. Let us define Ncv as an R-model based on the copier
omputer virus R-model Mcv from Example 2:
 PRESS
tems xxx (2012) xxx– xxx

• SNcv , ANcv , �→Ncv , rNcv (= cv) and pNcv are identical to those in Mcv;
• EntNcv = {cv, sra + cp};
• Aff Ncv

(subst) = Aff Ncv
(cp) = {sra + cp}; and

• sra + cp εM′
cv

s iff sra εMcv s or cp εMcv s.

A refinement (R, g, h) : Mcv � Ncv can be constructed as follows. Let R
and g be the identities 1SMcv

: SMcv → SMcv and 1AMcv
: AMcv → AMcv ,

respectively, and let h be the function mapping cv to cv and both
sra and cp to sra + cp.  Note that in this case, both Mcv and Ncv are
assisted R-models.

Even though Ncv and Mcv are both assisted R-models, the way in
which assistance is defined differs in the two  models. In Mcv, there
are two  assisting entities, sra and cp,  whereas in Ncv there is only one
assisting entity sra + cp.  (The entity sra + cp is notionally the result
of “amalgamating” the entities sra and cp.) In this way  R-models
with differing kinds of assistance can be related using refinements.
We shall see in the next section how unassisted R-models can be
related to assisted R-models using refinements.

3. Formal results: exploring the R-model “space”

In this section we give some formal results on R-models. In
particular we show that for every assisted R-model, there is a cor-
responding R-model describing the same reproductive act that is
classified as unassisted, and vice versa:

. The unassisted reproduction theorem: every R-model can be
refined by an unassisted R-model; and

2 The assisted reproduction theorem: every non-trivial R-model
refines an assisted R-model.

These theorems apply to every R-model regardless of whether
it is unassisted or assisted.

If we  consider R-models to be a reasonable model of assistance in
reproduction, then we can take these theorems as proof that every
view (assisted or unassisted) of a reproductive act can be related
to another view with the opposite classification. The significance of
this will be discussed in more detail in Section 4.

3.1. The unassisted reproduction theorem

The idea of the proof is that, given an R-model M,  we amalgamate
the ecology of the reproducer into one entity, giving an R-model
that refines M.  In Definition 6 we construct this R-model M#, and
in Proposition 1 we  show that M# is, indeed, an R-model. We  then
prove in Proposition 2 that M# is always classified as unassisted.
Finally, we show that there is always a refinement M � M#, which
completes the proof.

Definition 6. Given an R-model M = (S, A, �→ , Ent, r, ε, p, Aff), we
define

M# = (S, A, �→,  Ent#, r, ε#, p, Aff #)

where

1. Ent# = (Ent \ E(M)) ∪ {r};
2. r ε# s iff e ε s, for some entity e ∈ E(M) ∪ {r}; and for all

e ∈ Ent \ E(M),  e ε# s iff e ε s; and
3. Aff#(a) = h(Aff(a)), where h : Ent → Ent# maps c ∈ E(M)  to r; other-

wise h(e) = e, for e ∈ Ent \ E(M).

#

 mathematical framework for capturing notions of abstraction and
0.1016/j.biosystems.2012.07.003

Proposition 1. For any R-model M, M is also an R-model.

Proof. By Definition 1, we require that for all e ∈ Aff#(a), and for all
states s, if action a is possible in s then e ε# s. Suppose that action a
is possible in state s, and e ∈ Aff#(a). By Definition 6(3), e = h(e0) for

dx.doi.org/10.1016/j.biosystems.2012.07.003
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Fig. 2. Refinement arrows between M, M# and N.

ome e0 ∈ Ent, and because M is an R-model, it follows that e0 ε s. If
0 ∈ E(M),  then e = h(e0) = r and e ε# s by Definition 6(2); if e0 /∈ E(M),
hen e = h(e0) = e0 ε s and so e ε# s as desired. �

Now that we have established that both M and M# are R-models,
e must check that M# is in fact unassisted.

roposition 2. For any R-model M,  M# is unassisted.

roof. The only entities which afford reproductive actions (i.e.,
hose in p) to r in M are those in E(M).  Therefore, for any ai in p, if

 ∈ Aff#(ai), then e = h(c) for some c ∈ E(M)  and so e = r. �

Next we show that M# refines M.

roposition 3. For all R-models M,  there is a refinement M � M#.

roof. The refinement M � M# consists of the triple (1S, 1A,
), where 1S and 1A are identities on states and actions, and

 : Ent → Ent# is as defined in Definition 6. Clearly, transitions are
reserved (Definition 5(1)), and preservation of occurrences of enti-
ies (Definition 5(3)) follows immediately from Definition 6(2), and
e need show only h(Aff(a)) ⊆ Aff#(a) for all actions a, but this is

mmediate from Definition 6(3). �

This gives us our main result for this section:

heorem 1 (Unassisted reproduction theorem). For every R-model,
, there is an unassisted R-model, M#, such that M � M#.

n other words, for any R-model, be it assisted or not, there is
nother R-model which captures the same reproductive process
ut with modified entities, and which is classified as unassisted.

.1.1. Further results relating to the unassisted reproduction
heorem

If an R-model M is an unassisted model, then our construction
f M# just yields the original model M:

roposition 4. If M is unassisted, then M = M#.

his is proved by inspection of Definition 6, noting that if M is unas-
isted, then E(M) ⊆ {r}. A slightly stronger statement says that the
onstruction of M# is the smallest change to M that is needed to
btain an unassisted reproduction model. This is a common idea in
athematics and is known in category theory as a universal prop-

rty (Lane, 1971). Consider the situation shown in Fig. 2, where � is
he refinement of Proposition 3. If there is some other unassisted R-

odel N that refines M,  then it makes a larger change than M# does,
nd it refines M# as well; moreover, it does so in a unique way—to
e precise, there is a unique refinement  ̌ such that the composi-
ion of � and  ̌ is equal to ˛. The existence of a refinement  ̌ can
e thought of as saying that the changes made to M to construct
# are minimal changes, and that N must also incorporate those

hanges. The fact that ˇ is unique intuitively says that there is effec-
ively only one way of making those changes to get an unassisted
efinement of M.  This property is stated formally in the following
Please cite this article in press as: Webster, M., Malcolm, G., R-Models: A
assistance in reproductive systems. BioSystems (2012), http://dx.doi.org/1

roposition 5. For all R-models M,  M# is the least unassisted refine-
ent of M;  i.e., if  ̨ = (˛R, ˛g, ˛h) is a refinement of M by an unassisted

eproduction model N = (SN, AN, �→ N, EntN, rN, εN, pN, AffN), then there
s a unique refinement  ̌ = (ˇR, ˇg, ˇh) : M# � N such that  ̨ is the
 PRESS
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composition of � and ˇ, where � = (1S, 1A, h) is the refinement M � M#

of Proposition 3.

Proof. Since � is the identity on states and actions, we  clearly
require ˇR = ˛R and ˇg = ˛g, and all that remains is to define ˇh. By
the definition of refinement, we  require ˇh(rM# ) = rN , and for all
other e ∈ Ent# (i.e., e ∈ Ent \ E(M)), we  set ˇh(e) = ˛h(e). This clearly
satisfies the requirement that  ̌ be the unique refinement whose
composition with � is equal to ˛, and we  need only show that
the refinement  ̌ does indeed exist; i.e., we need to show that
˛h(e) = rN for all e ∈ E(M). If e ∈ E(M), then there is some ai in pM with
e ∈ AffM(ai), and so ˛h(e) ∈ AffN(˛g(ai)), but since N is unassisted, this
must mean that ˛h(e) = rN, as desired. �

3.2. The assisted reproduction theorem

From Theorem 1 we  know that all R-models can be refined by
an unassisted R-model, and therefore all R-models can be viewed
as unassisted. In this subsection we  show that the converse is also
possible for non-trivial R-models: i.e., every non-trivial R-model is
a refinement of an assisted R-model.

The idea of the proof is, given an R-model M,  to construct an
R-model M# with a new entity that affords all the actions that are
afforded by the reproducer in M.  We define the construction of
M# for an arbitrary R-model M in Definition 7. In Proposition 6 we
show that M# is an R-model and that it is refined by M.  Finally, we
demonstrate that M# is an assisted R-model whenever M is non-
trivial, which completes the proof of Theorem 2.

Definition 7. Given an R-model, M = (S, A, �→ , Ent, r, ε, p, Aff), we
define

M# = (S, A, �→,  Ent#, r, ε#, p, Aff #)

where

• Ent# = Ent ∪ {G};
• Aff#(a) = Aff(a) if r /∈ Aff(a), and Aff#(a) = Aff(a) \ {r} ∪ {G} if

r ∈ Aff(a);
• for all states s, G ε# s iff r ε s;
• e ε# s iff e ε s for all entities e /= G.

Proposition 6. For all R-models M, M# is an R-model and there is a
refinement M# � M.

Proof. The entity G has adopted all of the actions afforded by r in
M,  and is present in all of the states in which r was  present in M,
and so it is clear from the construction that M# is an R-model. The
refinement M# � M consists of the triple (1S, 1A, h), where 1S and
1A are identities, and h is defined as follows: h(G) = r, and h(e) = e
for e ∈ Ent. We  must check that the conditions from Definition 5
hold. Conditions (1) and (2) hold trivially, because S, A and �→ are
identical in M and M#. Condition (3) holds by construction of M#,
as does condition (4). The final condition, that h(Aff#(a)) ⊆ Aff(a),
holds because Aff# replaces r by G and h maps G to r. �

The assisted reproduction theorem follows from this, with one
provision: that the original R-model M is non-trivial (cf. Definition
1), as this entails that M# is an assisted R-model.

Theorem 2 (Assisted reproduction theorem). For every non-trivial
R-model M,  there exists an assisted R-model M# such that M# � M.
 mathematical framework for capturing notions of abstraction and
0.1016/j.biosystems.2012.07.003

Proof. This follows directly from Proposition 6, noting that if
r ∈ Aff(ai), then Aff#(ai) = Aff(ai) \ {r} ∪ {G}, so r /= G ∈ Aff#(ai), and
therefore M# is an assisted R-model. �

dx.doi.org/10.1016/j.biosystems.2012.07.003
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efinements exist between R-models of those classes (where the refinement arrow
 is in the same direction as the arrow shown), and the absence of an arrow indicates

hat no such refinements exist.

.3. Allowed refinements between classes of R-models

The definitions of assistance and triviality are independent
ichotomies, which means that we can divide the space of R-models

nto four disjoint parts, depending on the assistance and triviality
f an R-model, cf. Fig. 3. It is interesting to note that refinement
etween these four parts is limited in certain directions, which

mplies a structured space of R-models. Firstly, there are no refine-
ents from non-trivial R-models to trivial R-models.

roposition 7. If M and N are R-models, and there is a refinement
 � N, then M being non-trivial implies that N is non-trivial.

roof. If M is non-trivial then we know that rM ∈ E(M). By
efinition 5, we  know that h(rM) = rN and h(AffM(a)) ⊆ AffN(g(a)).
herefore rN ∈ E(N) and N is non-trivial, as desired. �

Secondly, there are no refinements to trivial, unassisted R-
odels.

roposition 8. For all trivial, unassisted R-models, N, there is no
efinement M � N, where M is trivial and assisted.

roof. Proof is by contradiction. Suppose that a refinement M � N
xists. Since M is assisted, then by Definition 3 there must be
ome entity x ∈ EntM, different from the reproducer r, such that

 ∈ AffM(b) for some action b in the path. By Definition 5 we know
hat h(AffM(b)) ⊆ AffN(g(b)) and therefore h(x) ∈ AffN(g(a)). However,
ffN(b′) =∅ for all actions b′ in the path, because N is trivial and unas-
isted. Therefore, there can be no such function h, and therefore the
efinement cannot exist. �

It is straightforward to demonstrate that refinements are
llowed in all other directions, and therefore these proofs are omit-
ed. The resulting structure of the space of R-models is summarised
n Fig. 3.

.4. Examples of applying the theoretical results

In order to illustrate the Unassisted Reproduction Theorem, we
ive an example of the R-model M#

cv that is a refinement of the
opier computer virus R-model Mcv (cf. Examples 2 and 6). We
ecall that Mcv was an assisted reproduction model, but apply-
ng the unassisted reproduction theorem gives us an unassisted
-model of the same copier computer virus.

#

Please cite this article in press as: Webster, M., Malcolm, G., R-Models: A
assistance in reproductive systems. BioSystems (2012), http://dx.doi.org/1

xample 7. Let Mcv be constructed from the R-model Mcv of
xample 2, as in Definition 6. This gives us:

SM#
cv

,AM#
cv

, �→M#
cv

, rM#
cv

(= cv) and pM#
cv

are identical to those in Mcv;
 PRESS
tems xxx (2012) xxx– xxx

• EntM#
cv

= {cv}
• cv εM#

cv
s for all s ∈ S

• Aff M#
cv

(a) = {cv} for all actions a.

The refinement Mcv � M#
cv consists of the identity functions on

states and actions, and the function that maps all entities to cv.

We can now use the R-model M#
cv, classified as unassisted,

to demonstrate the assisted reproduction theorem in action. The
result is another assisted R-model of the copier computer virus,
(M#

cv)#:

Example 8. Let the R-model, (M#
cv)#, be constructed from the unas-

sisted R-model M#
cv following Definition 7. We  have

• Ent(M#
cv)#

= {cv, G};
• G ε(M#

cv)#
s for all s ∈ S

• Aff (M#
cv)#

(a) = {G} for all actions a.

In other words, G alone affords all the actions of the copier virus’s
reproductive cycle, making (M#

cv)# an assisted R-model.

These examples show that our approach does not say that
assisted and unassisted models are the same thing: the construc-
tions of Definitions 6 and 7 are not bijections, as Mcv and M# are
different. What our approach does say is that a reproductive pro-
cess may  be viewed in qualitatively different ways. Moreover, the
notion of refinement serves to rank these qualitatively different
approaches to modelling the same reproductive process.

4. Conclusion

In this paper we  have introduced R-models as a method for
modelling assistance and abstraction in reproductive systems, with
examples including bacteriophages, computer viruses and Lang-
ton’s loops. R-Models are based on transition systems, and while
this does allow the modelling of continuous processes, the real
strength of our approach lies in individual-based models (Giavitto
et al., 2004; Fisher et al., 2000). As our examples of computer
viruses and artificial-life systems suggest, R-models can be built on
top of operational semantics for programming languages; indeed,
Examples 2 and 5 use the notation of Maude, an executable lan-
guage which has been used to describe operational semantics for a
large number of programming systems (Meseguer and Roş u, 2007).

This formal approach also allows us to address the issue of
modelling systems at different levels of abstraction. The notion of
refinement exactly captures the situation where one model con-
cretely describes the same process described more abstractly in
another model. This in turn allows us to address the issue of assis-
tance in reproductive systems. Our approach to assistance is based
on the notion of affordance of actions in transition systems, in anal-
ogy with Gibson’s theory of affordances (Gibson, 1977). Our main
results construct two  refinements M# � M � M# for any R-model
M, where M# is assisted (if M is non-trivial), and M# is unassisted.
Because of the refinement relationship, all three R-models are mod-
els of the same reproductive system. The assisted model, M#, is
obtained by adding an entity which affords all the actions afforded
by the reproducer in M.  Notionally, this new entity could be thought
of as ‘the laws of physics’, or of the cellular-automata grid in the case
of Langton’s loops: some very basic entity that enables the actions
performed by the reproducer in the model M.  On the other hand, the
unassisted R-model M# is obtained by amalgamating all the entities
 mathematical framework for capturing notions of abstraction and
0.1016/j.biosystems.2012.07.003

in the ecology of the model M,  i.e., all the entities that afford at least
one of the actions in the reproductive path in M. Notionally, this
takes the entire ecology of the model M as one super-organism that
affords all the actions necessary for reproductions, and allows one

dx.doi.org/10.1016/j.biosystems.2012.07.003
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ay out of the philosophical quandary as to whether the genome
ses the phenotype, or vice versa. These notional interpretations
f the constructions may  be debatable, but the neatness of the for-
al  results shows that affordance and assistance make the space

f reproductive systems quite highly structured.
We  emphasise that our approach does not classify reproduc-

ive processes; rather, we classify models of such processes. Our
pproach is therefore only formalistic insofar as we assume that
odels of such processes already exist; given these models, our

esults apply, regardless of the quality of the model. It may  be
hat modelling a process in one particular way throws “half of the
roblem out of the window, and it may  be the more important
alf” (von Neumann, 1966, p. 77),  but our notion of refinement
llows for modelling processes in different ways, and at different
evels of abstraction. It may  seem that this ‘pluralistic’ approach to

odelling makes the classification as assisted or unassisted some-
hat arbitrary, but the important point is that the refinements
# � M � M# have a direction, from unassisted to assisted as ‘most

efined’. Moreover, the notion of ecology used in the construction
f the unassisted model M# seems to have useful counterparts
n many models. For example, in Kauffman’s autocatalytic sets
Kauffman, 1986), the ecology would consist of the entire auto-
atalytic set. An analogue of this in the area of computer viruses
s given by Filiol’s k-ary viruses (Filiol, 2007), which consist of k
rograms p1, . . .,  pk, where pi makes a copy of pi+1 (mod k). Here
gain, the ecology of each reproducer pi consists of all k programs.
n both cases, our notion of refinement allows the construction of an
nassisted R-model that captures the mutual dependencies of these
ntities. However, it seems likely that our approach is best suited
o scenarios where formal models really do capture the intended
ehaviour of the reproductive process being modelled; we briefly
ketch some cases in the sections below on related and future work.

.1. Related work

Classification of reproduction based on the reliance of a repro-
ucer on the environment can also be found in the works of Freitas
nd Merkle (2004, chapter 5),  Taylor (1999, 1999) and Luksha
2003). Freitas and Merkle give categories for the location of repli-
ation information (i.e., self-description) and replicator parasiticity
i.e., reliance on external agency for the reproductive machinery).
aylor divides the reproducer space into two: reproduction occurs
ither with or without reliance on external agency (auto- and
ssisted-reproduction respectively). Luksha offers a categorisation
f reproducers based on the relative complexities of the repro-
ucer and its environment, from ‘quasi-self-reproducers’ with no
ormal reproductive structures ‘fully capable reproducer’ which is
eproduces independently.

The distinction between assisted and unassisted reproduction
s, therefore, a recurrent theme in reproduction classification.
ur approach offers formal models of reproduction systems, and

educes the problem of classification to a purely formal exercise.
f course, the process of encoding a reproduction system within
n R-model remains subjective; however, with the unassisted and
ssisted reproduction theorems we have shown that unassisted
nd assisted R-models are related in refinements, and therefore
ny bias is mitigated by the fact that any unassisted R-model has

 corresponding R-model which describes essentially the same
eproduction system, but is actually classified as assisted, and vice
ersa. In this way we have given a formal first step towards elimi-
ating bias in the subjective act of reproduction modelling.

Formal models of reproduction have also been given by
Please cite this article in press as: Webster, M., Malcolm, G., R-Models: A
assistance in reproductive systems. BioSystems (2012), http://dx.doi.org/1

cMullin (2000) and Rosen (1991, 1999),  who given formalisa-
ion of the act of reproduction based on mathematical functions.
haitin (1979) works towards a formal definition of life based on
lgorithmic information theory. The works of von Neumann, Codd,
 PRESS
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Langton and others (Sipper, 1998) on cellular automaton-based for-
mulations of reproductive behaviour are formal, but are largely
constructive proofs of the existence of purely formal descriptions
of reproduction. In contrast, we  have presented a means of creating
formal models of reproduction at the ecological level, in which the
reliance of the act of reproduction on entities external to the repro-
ducer can be specified, and classification and refinement of models
is possible.

Our approach to reproduction modelling is based on an assump-
tion that entities are recognisable in order to generate a set of
symbols representing them, but this is not necessarily the case.
In particular, Henz and Misra (2007) have given an interesting
approach to recognising evolving artificial life forms based on the
recurrence of similar patterns due to evolutionary reproductive
behaviour.

Our related work (Webster and Malcolm, 2008) gives an account
how entities can be combined formally to produce more complex
entities; this is an example of how the “amalgamation” of entities,
as in the Unassisted Reproduction Theorem might work in practice.
In particular we  focus on Langton’s loop, in which the reproducing
loop is modelled as a composite entity built from its constituent
“data-paths”.

4.1.1. Löfgren’s assisted reproduction
A version of this “amalgamation” of entities was given by Löfgren

(1968), who  states that there are two  different forms of reproduc-
tion: symbiotic reproduction, in which a set of entities reproduce
each other; and atomic reproduction, in which a single entity repro-
duces itself. We  can see symbiotic reproduction as a kind of assisted
reproduction, as each of the entities is assisted by one or more
entities in the set. Furthermore, atomic reproduction is unassisted
reproduction, as the reproducer is not assisted by any other entities.
Interestingly, Löfgren notes that “atomic self-reproduction shall
result from the symbiotic self-reproduction when all the distinct
entities of the symbiotic case coalesce.” This makes intuitive sense.
If we  take the assisted view of the reproduction of von Neumann’s
reproducing automaton, in which there is another entity (the cel-
lular automaton) which assists in the act of reproduction, then (by
following Löfgren’s method) we can form an unassisted view of
von Neumann’s reproducing automaton if we  coalesce the automa-
ton with the cellular automaton, resulting in a single entity which
reproduces in an unassisted way.

4.1.2. Rosen’s paradox
As we  have seen, it is possible to classify a reproductive act as

assisted or unassisted, depending on the way in which the repro-
ductive act is specified as an R-model. However, there is a logical
paradox in the idea of assisted reproduction that was first described
by Rosen (1959) (see also Cárdenas et al., 2010).

Rosen’s paradox is based on a functional view of reproduction.
We  assume we  can characterise a reproducer r as a mathematical
function, r : A → B. The reproducer, r, takes input from its domain,
A, and produces outputs in its range, B. If r is capable of reproducing
itself entirely, that is, it contains all that is necessary to make a copy
of itself, then it is logical that r(x) = r (for some input x). Therefore r is
in the range B. However, in order to define a mathematical function
we must first know the contents of its domain and range, A and B
respectively. However, as B is a well-founded set, we cannot define
it until we have first defined r. Therefore we  have a paradox: to
define r we must first define B, but to define B we  must first define
r. Therefore r cannot be defined.

Therefore, if we allow a functional view of reproduction, which
 mathematical framework for capturing notions of abstraction and
0.1016/j.biosystems.2012.07.003

would seem reasonable, then we  have to conclude that unassisted
reproduction is paradoxical, and therefore unacceptable. In con-
trast, there is no paradox associated with assisted reproduction,
i.e., when there is some “assisting entity” in the environment of the

dx.doi.org/10.1016/j.biosystems.2012.07.003
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eproducer that assists in the act of reproduction. Rosen showed
hat his paradox was absent in this situation by defining an assisting
ntity, a function E, which assists another entity ab which repro-
uces. We  can characterise this assisted reproduction as follows.
et

 : A × B × (A × B) → (A × B) × (A × B)

hich takes a construct ab and components a and b, and produces
 copy of ab,  i.e., E(a, b, ab)  = (ab,  ab).  In other words, ab is the
eproducer, which is assisted in reproduction by the function E.

Rosen’s paradox gives us a new insight into unassisted and
ssisted versions of a reproductive act, and lets us distinguish
etween them. Perhaps, if unassisted reproduction is paradoxical,
ut assisted reproduction is not, should never consider unassisted
eproduction again. We  might think of all reproduction as assisted,
nstead. However, there are many cases in which unassisted repro-
uction appears to be the natural way of framing things, e.g., von
eumann’s self-reproducing automaton or the case of a bacterium
hich takes in materials from its environment in order to produce

 copy of itself. In both of these cases we can avoid Rosen’s paradox
y including in our conceptual model the assisting environments
e had not previously considered (the cellular automaton and the

nvironmental materials, for example); by doing this reproduction
s no longer unassisted, and therefore there is no logical contradic-
ion.

.2. Future work

We conclude by sketching out some areas for future research.

.2.1. Metrics for reliance on external agency
Above, we described how R-models can be classified as assisted

r unassisted, or classified using arbitrary predicates on the actions
n the reproduction model (i.e., aspects). However, there may
e further opportunities to create metrics to compare unassisted
eproduction models, based on other factors. For example, if we
ee the act of reproduction as a computational process of a cer-
ain minimal complexity, then if the actions that a reproducer
ffords itself together are less than the complexity of the whole
eproductive process, then there must necessarily be some other
external) entity that compensates for this. Therefore, when com-
aring two unassisted R-models that require a similar environment
e.g., two computer viruses), then we can compare their repro-
uctive reliance on external agency by comparing the complexity
f those reproductive actions that are afforded to the computer
iruses, or those that the computer viruses afford themselves. For
xample, we could assume that the more complex a particular
eproducer’s self-afforded actions, the less the reliance on exter-
al agency. Of course, this presupposes the existence of some level
f abstraction at which we can compare the complexity of actions,
ut in several cases, such as computer viruses, Tierran organisms,
ellular automaton reproducers, etc., such a comparison would
eem possible. Different methods of complexity could be used, e.g.,
pace/time complexity, or the Kolmogorov complexity of the repro-
ucer itself.

There is also empirical evidence of differing degrees of reliance
n external agency with respect to biological viruses. It is known
hat, ‘[viruses] with large genomes depend less on host functions
epend less on host functions than those with small genomes’
Granoff and Webster, 1999). This effectively states that the infor-
Please cite this article in press as: Webster, M., Malcolm, G., R-Models: A
assistance in reproductive systems. BioSystems (2012), http://dx.doi.org/1

ation content in the self-description (genome) is related to the
eliance on external agency (the host cell). Another possible exten-
ion of this work would be use the methods described above to
ormalise this statement within our ontology.
 PRESS
tems xxx (2012) xxx– xxx

4.2.2. Strategies for reproduction
In December 2000, a relatively unprolific virus on the Windows

32-bit platform was able to infect executable files containing rela-
tively prolific network worms  (Symantec Press Centre, 2000). The
destructive payload of the virus combined with the infectiousness
of the worms  created dangerous hybrids that were not predicted
by the vendors of anti-malware software. These hybrids were an
emergent property of a complex “ecology” of reproducers, in which
reproduction processes could overlap.

A useful extension of this work would be to be able to analyse
these ecologies of reproducers, i.e., systems where more than one
reproducer is present. Such ecologies could be constructed using
affordances common between entities, for example, a bacterium
might afford a site of infection for a bacteriophage virus, without
necessarily specifying which virus might infect the bacterium. The
labelled transition systems of the different reproductive processes
could be combined using techniques such as those developed in
process algebra (Baeten, 2005). In real-life ecologies, reproducers
are capable of interesting behaviours such as crossing a species gap
(e.g., biological viruses), or spontaneous virus–worm hybridisation
(see above). In being able to build models of ecologies of repro-
ducers by combining their models in a formal way, we could begin
to analyse and predict interesting emergent properties of multi-
reproducer systems.

4.2.3. Computer virology: anti-virus applications
In computer virology, computer viruses and network worms

spread within computer systems whilst anti-virus software scans
for suspect behaviours typical of reproducing malware in a process
known as dynamic analysis (Filiol, 2005). As discussed in Section
2.4, we can classify reproduction models as assisted or unassisted,
depending on how we  model the entities and affordances in those
models. In (Webster, 2008) we  have shown that a practical applica-
tion of such classification is in prioritisation of dynamic analysis on
systems where resources are limited, e.g., on PDAs, smartphones,
PCs, or other pervasive computing applications. Dynamic analysis
depends on the ability of anti-virus software to intercept commu-
nications between reproducing malware and external entities such
as the operating system, daemons/services, the filestore, network
protocols, etc. Malware typically must enlist the help of these other
entities in its reproductive process. Antivirus software is able to
analyse this behaviour and flag it as suspicious in order to detect
files infected by malware. In order to apply our ontology, we  can
say that the act of dynamic analysis by the antivirus software
places constraints on the reproduction model that we construct.
For example, if the antivirus software is able to intercept calls by
a computer virus to the file store (during disk input/output opera-
tions, for example), then it is logical to classify the virus and the file
store as separate entities. If the anti-virus software cannot intercept
calls to the operating system, then effectively it cannot ‘distinguish’
between the virus and the OS, and within the reproduction model
we should treat them as one entity. So, when malware is afforded
an action by an external entity, and the anti-virus software is able to
detect this, the anti-virus scanner has a better chance of detecting
the malware than if it could not detect this behaviour.

By classifying malware in this way, we will know that the most
difficult malware to detect at run-time will be those whose R-
models are classified as unassisted, because the anti-virus software
cannot detect the behaviour of these viruses and worms, because
it cannot intercept the calls made by the virus to external enti-
 mathematical framework for capturing notions of abstraction and
0.1016/j.biosystems.2012.07.003

ties. The viruses whose reproduction models are assisted will have
behaviours that are detectable by the anti-virus software. So, on a
system where resources are limited, the anti-virus analysis scanner
can focus its static analysis attentions on the ‘unassisted’ malware,

dx.doi.org/10.1016/j.biosystems.2012.07.003
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ecause this cannot be detected at run-time, and should therefore
e high priority.
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