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Abstract

We present notions of entity and entity-based model that are
applicable to artificial life. We illustrate these notions by giv-
ing an abstraction of Langton’s loops: loop-like structures
that reproduce in a cellular automaton (CA). Our abstrac-
tion takes as entities persistent configurations of the cellular
automaton, and shows how these entities may be combined
to form more complex entities. The resulting entity-based
model of Langton’s loops describes the functionality and in-
terrelationships of these components, abstracting from their
actual realisation in a cellular automaton. As well as provid-
ing a basis for the study of ecologies of interacting entities
in artificial life, our approach provides a useful intermediate
level of abstraction that can relate top-down and bottom-up
approaches to the study of life-like systems.

Introduction

One of the earliest results in the field of artificial life was

given by von Neumann (1966), in which an automaton on

a cellular automaton (CA) grid was shown to reproduce it-

self. Subsequent improvements by Codd (1968), Langton

(1986), and others (Sipper, 1998) showed an intriguing ap-

proach to the modelling of life that differed from much of

mainstream biology. In biology, abstract processes such as

reproduction, metabolism and evolution are specified based

on observation of existing life forms. We can characterise

this as a top-down approach, in which we attempt to under-

stand life and its systems through abstract models and clas-

sifications. The opposite approach is widely-adopted in arti-

ficial life, in which bottom-up models of life are generated.

This difference hs been well-documented (Langton, 1986;

Sipper, 1995; Bonabeau and Theraulaz, 1996), and is a key

characteristic of much work within the field of artificial life.

The question of which approach to use was also explored by

Bedau (1998) with the question, ‘Does the essence of life

involve matter or form?’

The work by Rosen (1991) on the modelling of life

has received attention recently in the artificial life commu-

nity (Chu and Ho, 2006; Louie, 2007; Wolkenhauer, 2007;

Chu and Ho, 2007). Rosen argued that reductionistic mod-

els of life were not adequate for giving a formal descrip-

tion of the organisation observed, i.e., life cannot be re-

duced to physical laws of the Universe. Instead, Rosen sug-

gested a high-level description of life based on systems con-

sisting of interacting components. This kind of approach

has been adopted elsewhere in the artificial life commu-

nity, including work by Adams and Lipson (2003) and our-

selves (Webster and Malcolm, 2007b,a).

The apparent disparity between top-down and bottom-up

approaches to modelling life presents a problem for the field

of artificial life. Both approaches have been proven to be

valuable, and many interesting results have been obtained in

both directions. However, the question of how these differ-

ing approaches are related is still an open question. In this

paper we present a way of relating these two levels. exem-

plified through a ‘reverse engineering’ of Langton’s loops, a

seminal example of implementing artificial life in a cellular

automaton. We take a paradigmatic artificial life reproducer,

Langton’s loop, and show how its interacting components

can be abstracted from the low-level state of the cellular au-

tomaton. We show that these components can be tied to-

gether using formal constraints that are based on observa-

tion of the cellular automaton itself. The result is a high-

level formal description of Langton’s loop, which abstracts

the functionality from the particular implementation details

of the loop, and captures the interaction of various compo-

nents within the reproducing whole. We describe how the

high-level abstract model can be fitted to a variety of low-

level models through a refinement process.

This relationship between high- and low-level models is

inspired by work in the field of software engineering, in

which high-level specifications of a software system are re-

fined to produce a low-level implementation. A typical ex-

ample of this would be the transition from a software de-

sign specification in an abstract modelling language (e.g.,

UML), which is refined to a software specification in a

high-level language (e.g., C++), which is then refined fur-

ther to a low-level language implementation (e.g., using In-

tel 64 assembly language) during the compilation process.

There may be several different low-level language imple-

mentations that match the higher-level specifications. Simi-



larly, the high-level component-based specification of Lang-

ton’s loop can be refined to a number of different low-level

specifications, in which the implementation details (such as

the transition rule, or number of states of the cells in the

cellular automaton) vary, but which all satisify the high-

level ‘reverse-engineered’ component-based description of

a reproducing loop. These refinements need not be triv-

ial alternatives, such as re-labelled states, as the high-level

component-based specification would essentially describe

any reproducing loop satisfying certain constraints. There-

fore, this specification could be refined to different cellu-

lar automata (with different states, topologies and transition

rules), or even non-discrete examples of cellular computa-

tion, in which the data-paths of Langton’s loop are contin-

uous or noisy communication channels in the vein of those

described by information theory (Shannon, 1948).

In the following section, we review the construction of

Langton’s loops, and present abstract entities that capture

the functionality of the various components that build up

these loops. We also illustrate how our approach allows for

a dynamic system in which entities are created and change

relationship between one another.

Langton’s Loops

Langton’s loops provide a simple example of self-repro-

duction in cellular automata (Langton, 1984). The ques-

tion of whether an automaton could reproduce, thereby

exhibiting at least one life-like trait, was first studied by

von Neumann (1966). He was able to provide a positive an-

swer by exhibiting a universal constructor: an automaton

which, given as input a description of any automaton, could

construct that automaton and copy the input description as

that automaton’s input. Therefore, given a description of it-

self, the universal constructor reproduces by building a copy

of itself with its own self-description. Von Neumann’s uni-

versal constructor required cellular automata with 29 states,

and was later simplified by Codd (1968). While universal-

ity is an interesting feature from the point of view of com-

putability, it is not, as Langton (1984) noted, a necessary fea-

ture of reproduction, and indeed it seems unlikely to figure

in biological reproduction. Langton’s loops were the result

of his search for a simpler example of a reproducer, though

not so simple as to become trivial. In particular, Langton re-

quired that the process of reproduction be ‘actively directed’

by the reproducer, and that the reproducer store informa-

tion directing its reproduction that is both interpreted (as in-

structions) and uninterpreted (as data that is copied or tran-

scribed).

Langton states1 that ‘the idea for this simple self-repro-

ducing configuration came out of a study of the components

of Codd’s universal constructor’, and it is our goal to eluci-

date in what sense both Langton’s and Codd’s configurations

1op. cit., p.137

can be said to have ‘components’.

A cellular automaton is an example of a deterministic

transition system: at a given moment each cell in the grid

is in a particular state; its state at the next moment of time is

determined by its own state and the states of its neighbours

(the 5-cell neighbourhood for Langton’s loops) according

to a transition function, which it is usually convenient to

present as a table listing transitions for all possible config-

urations of a neighbourhood’s states. Langton’s loops are

realised on a cellular automaton where each cell is in one

of eight states. Throughout the remainder of this paper we

will refer to this state set as S = {0, 1, 2, 3, 4, 5, 6, 7}. Each

of these states has a particular function: for example, state

0 represents ‘blank space’, though it also provides direction

for instructions such as state 7, which causes a ‘data-path’

to be extended; these data-paths are the basic structure of

Langton’s loops, as they were also in Codd’s universal con-

structor. They are formed from two rows of sheath cells with

a row of ‘core cells’ between, as pictured in Figure 1.

Figure 1: A data-path. The data signal ‘7 0’ travels along

the data-path. The state of cell x in the updated state is de-

pendent on the state of cell y. If y = 1, then in the updated

state x = 1.

The function of a data-path is the transmission of a data

signal along its length. For example, in Figure 1 the ‘7 0’

signal has been shifted one cell to the right. This process

continues as long as the data-path does. data-paths can be

‘capped’ using a cell in state 2, as seen in Figure 2.

Figure 2: A capped data-path.

The cap allows the data signal to effect the extension of

the data-path. This extension process is what allows Lang-

ton’s loop to extend an ‘arm’, which loops around to com-

plete the act of reproduction.

Another kind of data-path functionality in Langton’s loop

is the T-connection, as seen in Figure 3. The data-path sends

a signal to a point where two other data-paths are connected.

The intersection of the three paths is at a particular cell.



Figure 3: A T-connection. The image at the top shows a T-

connection as realised in a cellular automaton; the diagram

below describes the same connectivity in the schematic form

described in the following subsection.

When the data signal arrives at the cell, it is duplicated and

sent out through each of the other two connected data-paths.

Components

We want now to abstract, as far as we can, the functional-

ity described above from its realisation in a particular cellu-

lar automaton. Our goal is to be able to identify individual

components, such as data-paths, capped data-paths and T-

connections, and capture the way they interact.

The most important functional unit is the data-path, con-

sisting of a series of core cells sandwiched between two rows

of sheath cells. The function of such a component is to trans-

mit signals: it acts as a queue for the data in the core cells,

which move, cell by cell, along the data-path. To capture

this, we define a data-path to be a transition system (which

we shall call DP) whose states are pairs (n; d), where n > 0
and d is an n-tuple of states, d = d1, . . . , dn with di ∈ S;

and with the following schematic transition rule:

(n; d1, . . . , dn) 7−→ (n; x, d1, . . . , dn−1) . (1)

I.e., all the data values in the path move up one space (left

to right), and a new value x enters at the start-cell. Note that

this is non-deterministic: there are no constraints on what

this new value is, beyond x ∈ S. Thus, we might have both

(5; 1, 1, 0, 7, 1) 7−→ (5; 1, 1, 1, 0, 7) ,

as in Figure 1, and

(5; 1, 1, 0, 7, 1) 7−→ (5; 7, 1, 1, 0, 7) .

Insofar as a data-path represents an actual sequence of core

cells in the cellular automaton, the value that ‘enters’ the

data-path will be determined by the values of the cells in the

neighbourhood of the start-cell d1, but that is exactly what

we are abstracting from: functionally, a data-path allows ar-

bitrary signals to be transmitted.

We can ground a data-path in a cellular automaton by

means of a mapping h : CA → DP of the state-space of

the cellular automaton to the state-space of the data-path.

That is, if the state-space of CA consists of configurations

~s ∈ Spq, with pq the number of cells in the grid (which

we could allow to be infinite), then such a mapping would

project a pq-tuple ~s to an n-tuple (n; si1 , . . . , sin
). This

would allow projecting a configuration to a tuple of states

of an arbitrary collection of cells (i.e., they need not be con-

tiguous), which wouldn’t capture the intention of picking

out a particular data-path in the configuration. However,

we impose the condition that the mapping preserve transi-

tions, i.e., if ~s 7−→ ~s′ is a transition of the cellular automaton

(viewed as a transition system), then h(s) 7−→ h(s′) in DP.

This means that the mapping must pick out a tuple of cells

that acts as a data-path: we must be able to observe signals

moving cell-by-cell along those tuples.

The basic building block of all components, including

data-paths, is the individual cell. As a constituent part of

the cellular automaton grid, its functionality is dependent on

the states of the cells in its neighbourhood, so at an abstract

level, its functionality is simply to be in a particular state.

We define a cell to be a transition system (call it Cell) with

state set S and universal transition relation; i.e., s 7−→ s′ for

all s, s′ ∈ S. A grounded cell is a transition-preserving map

h : CA → Cell. Note that the requirement that h preserve

transitions is trivial, because any state can make a transition

to any state in Cell.

This gives us a means of glueing data-paths together. De-

fine ∂<, ∂> : DP→ Cell by

∂<(n; d1, . . . , dn) = d1

∂>(n; d1, . . . , dn) = dn

so that ∂< picks out the ‘start cell’ of a data-path, and ∂>

picks out the ‘end cell’. Again, these maps are trivially

transition-preserving.

Now, to join together two data-paths, let a data-path con-

nection, DP⇒ DP, be the transition system whose state-set

consists of pairs (p1, p2), with each pi a DP-state such that

∂>(p1) = ∂<(p2), i.e., p1 and p2 communicate by sharing a

cell which is both the end-cell of p1 and the start-cell of p2.

Let the transitions of DP⇒ DP be given by

((m; d1, . . . , dm), (n; dm = e1, . . . , en)) 7−→

((m; x, . . . , dm−1), (n; dm−1, dm = e1, . . . , en−1))

This effectively constrains the non-determinism in (1): the

new value that enters the second data-path p2 is determined

by the values at the end of the first data-path p1. For exam-



ple, we have

((3; 1, 0, 7), (4; 7, 1, 1, 0)) 7−→

((3; 7, 1, 0), (4; 0, 7, 1, 1)) .

Effectively, we can think of this as one long data-path, in

which the above transition could be rewritten as

(6; 1, 0, 7, 1, 1, 0) 7−→ (6; 7, 1, 0, 7, 1, 1) .

As with the previous components, a data-path connec-

tion can be grounded in a cellular automaton by providing

transition-preserving morphisms from the cellular automa-

ton to the individual subcomponents: the two data-paths

and their shared cell. Note that there is no requirement that

grounded connected data-paths be orthogonal.

Transcription of the data within Langton’s loops is

achieved by branches in the data-paths: as signals move

through a T-connection, they are copied along the two

branches, as in Figure 3. Abstractly, we have three data-

paths p1, p2, and p3, all sharing a single cell at their in-

tersection, which is the end-cell of p1 and the start-cell of

both p2 and p3 — a diagrammatic representation is given

in the lower half of Figure 3. Thus, a T-connection is set

up by two data-paths ∂<-connected to the end-cell of a

single data-path, and we define DP ⇒ DP|DP to be the

transition system whose states are triples (p1, p2, p3) with

∂>(p1) = ∂<(p2) = ∂<(p3). The transitions are given by

the fact that both (p1, p2) and (p1, p3) are data-path con-

nections: in brief, (p1, p2, p3) 7−→ (p′1, p
′

2, p
′

3) iff both

(p1, p2) 7−→ (p′1, p
′

2) and (p1, p3) 7−→ (p′1, p
′

3) as data-

path connections. It should be clear that the effect of these

definitions is to capture the data-flow and copying of the T-

connections pictured in Figure 3. Again, a T-connection is

grounded in a cellular automaton by grounding its subcom-

ponents.

Clearly, we can specify a great variety of structures built

from data-paths and shared cells in a diagrammatic way

along the lines of the T-connection shown in Figure 3. For

example, a loop is a loop of connected data-paths, as shown

in Figure 4. In more detail, we have data-paths p1, p2, p3

and p4 with structural constraints

∂>(p1) = ∂<(p2)

∂>(p2) = ∂<(p3)

∂>(p3) = ∂<(p4)

∂>(p4) = ∂<(p1) .

As with T-connections, the transitions are determined by the

fact that each pair pi, pi+1 (mod 4) is a data-path connec-

tion. It should be clear that the data in these paths continu-

ally circles around the loop. As with the other components

described above, a loop is grounded by grounding the sub-

components, as illustrated in Figure 4.

In fact, we have not quite modelled Langton’s loops: the

essential missing ingredient is the arm that ‘interprets’ the

Figure 4: Connections between data-paths and cells for

Langton’s loop. The outer square denotes the structure of

the component data-paths, while the dotted lines indicate a

grounding of the subcomponents of the loop in a cellular

automaton.

data in the loop, extending into the grid, turning, and even-

tually looping back on itself. Let us call such an interpreting

arm a capped data-path, and provide it with the structure of

a transition system, which we shall call CDP. The states of

CDP are the states of DP, but we shall use the suggestive

notation (n; d ], n > 0 and d = d1, . . . , dn a data-path of

length n. The transitions of CDP should capture the effects

of interpreting the signals in the data-path. For example, the

signal ‘7’ extends the path:

(n; d1, . . . , dn−1, 7 ] 7−→ (n+1; x, d1, . . . , dn−1, 1 ] (2)

Note also that this transition allows data to move along the

capped data-path, just as for data-paths themselves; in par-

ticular, a new value x non-deterministically ‘enters’ the data-

path. As with data-paths, capped data-paths can be ∂<-

connected to data-paths, giving a transition system DP ⇒
CDP, and so may also form T-connections. We shall give

further transitions in the following subsection; we end this

subsection by giving the abstract, functional form of Lang-

ton’s loops: an L-loop is a tuple (p1, p2, p3, p4, c), where the

pi form a loop of data-paths, and c is a capped data-path

∂<-connected to p4:

∂>(p1) = ∂<(p2)

∂>(p2) = ∂<(p3)

∂>(p3) = ∂<(p4)

∂>(p4) = ∂<(p1) = ∂<(c) .

With the definitions given above, we could fill an L-loop

with ‘7’ signals, and the transitions allow the capped data-

path to extend indefinitely.

Introduction of New Components

We have seen how we can model components of Langton’s

loops, building larger components from subcomponents in

a diagrammatic, hierarchical way. The configurations we

have seen are all static, in the sense that components are



related in a fixed way that never alters. Obviously, since the

purpose of Langton’s loops is to demonstrate reproduction

by the creation of one loop by another, we need to allow for

components that are created or destroyed, or even change

their structural relationships.

In the case of Langton’s loops, all the structural changes

are brought about by the actions of the interpreting arm: the

capped data-path attached to the loop. We saw in (2) above

how we could capture the effect of a ’7’ signal at the cap of

the data-path, namely by extending the length of the path.

The other relevant signal for Langton’s loop is a ‘4’ signal,

which is interpreted as an instruction to create a left-hand

turn in the data-path. In fact, we shall simplify things here,

as a left-hand turn in Langton’s cellular automaton is created

by two ‘4’ signals. However, this simplification is quite in

keeping with our goal of abstracting the functionality of the

relevant components. In accordance with this simplification,

when a ‘4’ signal reaches the cap of the interpreting arm, the

left-hand turn is achieved by turning the capped data-path

into a data-path, with a capped data-path ∂<-connected to

its end-cell. In our abstract, functional view, two things hap-

pen. The first is that the diagram representing the component

changes from

Cell
∂<

←− CDP
∂>

−→ Cell

to

Cell
∂<

←− DP
∂>

−→ Cell
∂<

←− CDP .

The second thing that happens is that the states of the transi-

tion system denoted by this diagram makes the correspond-

ing change:

(n; d1 . . . dn−1, 4 ] 7−→ ((n; x, d1, . . . , dn−1), (1; dn−1 ])

This transition turns a capped data-path into a data-path and

a new capped data-path; i.e., extending the notation above,

the transition system CDP becomes DP⇒ CDP.

A CA grid imposes constraints on what may happen in

components that are grounded in it, but there are purely

topological constraints that may be imposed on components,

whether or not they are grounded in a cellular automaton.

For example, and here we consider functionality rather than

topology, we may wish to state that, after turning three

times, an interpreting arm is heading back towards itself, and

will sever the umbilical cord that ties the parent to the child

loop. When it meets its original arm, the loop is closed and

the original data-path is split: the first part becomes a capped

data-path, while the remainder becomes a part of the child

loop. Diagrammatically, the state

Cell

Cell

Cell

CDP

DP Cell

CellDP

DP

becomes

Cell DP Cell

CellDPCellCellCell

CDP
DP DP

In accordance with this, the states of the relevant compo-

nents change as follows:

((m;~a), (n;~b), (m′;~c), (n; ~d ]) 7−→

(m−m′; m−m′ |~a], ((m′;~a|m−m′), (n;~b), (m′;~c), (n; ~d))

provided that m′ < m, and where p|~a denotes the first p

elements of ~a, and ~a|p denotes the ‘remainder’ of ~a from

the pth position on. Here again we simplify matters: in

Langton’s automaton, the capped data-path belonging to the

parent loop bears a ‘5’ signal that will close off the capped

data-path; also, the data-path in the child loop contains a ‘6’

signal that will cause a new capped data-path to be created,

causing the process of reproduction to begin anew. This ex-

tra functionality can be captured straightforwardly, using the

above techniques, so we omit the details. The main point is

that, even without these details, we have captured reproduc-

tion of loops in an abstractly functional, entity-based model.

Entities and Some Technical Details

In the preceding subsections, we have tried to avoid going

into too many technical details, preferring to keep the ex-

position at an intuitive level. From our use of diagrams

and transition-preserving mappings, it may be clear that cat-

egory theory provides a natural setting for our construc-

tions. Indeed, the constructions of transition systems such

as DP⇒ DP are limit constructions in a category of transi-

tion systems and transition-preserving morphisms, as shown

in (Malcolm, 2006). This is very much in keeping with the

slogan ‘Behaviour is Limit’ from the Categorical Systems

Theory of Goguen (1992). In this view, mappings between

transition systems can be seen as constraints: for example,

the two mappings in the configuration DP ⇒ DP state that

the end-cell of one data-path is the start-cell of the other, and

as noted above, this constrains the non-determinism in (1).

The limit of a configuration then consists of all possible be-

haviours that meet the given constraints; in the example of

DP⇒ DP, the limit gives all possible behaviours where the



‘output’ of the first data-path is the ‘input’ of the second’.

Thus our approach is quite general in that the limit construc-

tion captures all the ways in which components may interact.

In our functional model of Langton’s loops, we take an

entity to be a component, such as a data-path, which is a

transition system in a diagram, such as the diagram of Fig-

ure 3. We might say that an entity is necessarily ‘situated’:

it stands not alone (except in the case of a trivial diagram)

but in relationships with other entities, particularly any sub-

components it may have, and may share with other entities.

Since complex objects are created by limit constructions

from subcomponents, technically, our entities are sheaves:

see Malcolm (2008) for details. Again, this is in keeping

with the slogan ‘Objects are Sheaves’ of Goguen (1992).

Conclusion

As we described in the introduction, the aim of our work is

to create a formal bridge between top-down and bottom-up

models of life forms. We have shown how an abstract model

of cellular automaton-based artificial life forms can be con-

structed, based on a formal description of various interact-

ing components of the life form. We presented an entity-

based model of Langton’s loops that abstracts the function-

ality of the various components from their actual realisation

in a cellular automaton. Interactions between data-paths and

cells are formalised in terms of constraints on their transi-

tion systems. Our approach allows for entities to be con-

structed hierarchically from subcomponents, and to interact

with each other through shared subcomponents: for exam-

ple, two data-paths communicate values through a shared

cell in the DP ⇒ DP configuration. We can also model

dynamic configurations where entities may be created and

adopt varying relationships with other entities. This is use-

ful in modelling reproduction, as it is often the case that the

reproduction process involves creating various components

of the offspring. We gave an example of the introduction of

new components for Langton’s loops, in the case where a

data-path approaches a cell, and then branches off in a new

direction. This is a repeating process that results eventually

in the creation of a second loop, showing that our abstract

component-based model is able to model reproduction.

Therefore, we can see the different entities in the model

as different behaviours, which may combine to form more

complex behaviours. For example, a data-path is an entity

that propagates information; this can be combined with other

data-paths, cells and a capped data path in order to form a

conglomerate entity capable of reproduction.

We showed how these abstract models can be related

(‘grounded’) to a particular implementation of a loop,

through a mapping from the transition system of the for-

mer, to the transition system of the latter. This notion of

grounding allows an actual realisation of the model in a cel-

lular automaton to be viewed as a refinement of the model.

Conceptually, grounding can also be seen as the imposing

of constraints on the model by the cellular automaton and

its topology: in much the same way, a model grounded in a

real-life system would be constrained by the laws of physics.

Related Work

In this paper we have described an approach to the devel-

opment of entity-based models of artificial life systems. A

recent report by Wheeler et al. (2002) highlighted many of

the challenges in the area of artificial life modelling.

Entity-based models of reproduction, such as those de-

scribed earlier, have been used before in artificial life. For

example, Adams and Lipson (2003) give a formal universal

framework for reproduction based on ‘subsystems’ within

an environment. The subsystems are analogous to the en-

tities or components discussed in this paper. One possible

property of a subsystem is reproduction. Since Adams and

Lipson do not preclude the possibility of subsystems consist-

ing of other subsystems, we could re-frame the discussion of

Langton’s loop with each component as a subsystem. The

system consisting of these subsystems, i.e., the loop, has the

property of reproduction. Another example is the work by

Hordijk et al. (1998) on embedded-particle models, which

model emergent functionality in evolved cellular automata.

The approach is similar to our own in that an abstract de-

scription of organised behaviour is formed, although the em-

phasis is more on abstracting higher-level behaviour from an

existing CA configuration than on providing a general means

of describing the behaviour of hierarchical systems.

Abstract, high-level models of life-like phenomena have

also been explored in biology. Lazebnik (2002) describes

the fundamental differences between the language of biol-

ogy and engineering, and posits that the formalisms of en-

gineering permit a greater understanding of complex sys-

tems such as life. Discrete, top-down models of biological

processes have also been described, e.g., the approach of

Laubenbacher and Mendes (2006) to modelling biochemical

networks.

The work in this paper may be seen as an ‘intellectual

progeny’ of our earlier work on formal affordance-based

modelling of reproduction, in which we described a re-

production system in terms of a labelled transition system,

with entities present in various states, and affordances relat-

ing the entities which cooperate in various parts of the re-

productive process (Webster and Malcolm, 2007b,a). These

affordance-based models are therefore entity-based, and are

in this way related to the entity-based models presented here.

Our work is also influenced by the work of Rosen (1991,

1999) on modelling life-like processes. Rosen argues that a

reductionistic ‘machine metaphor’, in which life is seen sim-

ply as the result of the underlying physical laws of the Uni-

verse, is insufficient to capture the full complexity of life:

self-organisation, reproduction and so on. Rosen suggests

that a more holistic model of life is needed, and that a suf-

ficient model for life might be obtained at a natural level of



abstraction. For example, if a large conglomeration of cells

(e.g., an animal) appears to reproduce, then the natural way

to view that process is not in terms of the cells, but in terms

of the sub-components of the animal that enable reproduc-

tion, e.g., sex organs, nervous system, etc. Therefore, our

attempt to model artificial life forms like Langton’s loop is

in the same vein. Of course, Langton’s loop can be described

completely by its formal definition; however, it may also be

interesting to describe formally the same system at a differ-

ent level of abstraction, as the aim of abstraction is to pro-

vide greater insight than can be obtained through individual

case studies.

Future Work

We have presented Langton’s loops as a case study in our ap-

proach to modelling hierarchical artificial life systems. An

obvious question that arises is: what other systems can use-

fully be captured in this way? There are several candidate

systems in artificial life and in biology that seem to have

a natural hierarchical structure, and one thrust of future re-

search would be to construct entity-based models of these.

An example from artificial life is the mechanical repro-

ducing robots described by Zykov et al. (2005), in which a

number of modular robots interact in order to reproduce a

conglomerate multi-robot entity. The robots are constrained

to connect at certain points, mirroring the cells at which one

or more data-paths may be connected.

Another interesting application of our work would be to

model the component behaviour of more complex forms of

reproduction, including evolution (Sayama, 1999) and sex-

ual reproduction (Oros and Nehaniv, 2007). These seem

particularly feasible examples in that they are based on

the same conceptual mechanisms as Langton’s loops. In

the case of sexual reproduction, there is a link to our ear-

lier work (Webster and Malcolm, 2007b,a) on reproduction

modelling based on Gibson’s theory of affordances (Gibson,

1979). Sexual reproduction can be seen as a collaborative ar-

rangement, in which each partner affords the other the act of

reproduction, and therefore there is a possibility of extend-

ing the component-based models presented in this paper to

include a notion of affordances.

In the field of biological systems, we would expect to be

able to model simple ecologies such as those of bacterio-

phage viruses and host cells. There are obvious entities or

components which we may identify, such as viral RNA, gen-

eration of offspring based on proteins, cell walls, and so on.

We have given a simplified model of the T4 bacteriophage

lifecycle in (Webster and Malcolm, 2008), and we expect

the extension of this to a more realistic hierarchical model

to be reasonably straightforward. Other interesting biolog-

ical examples with significant hierarchical structure would

include meiosis, and possibly tissues: for example, hepatic

tissue has a rich structure that provides a rich functionality

(Teutsch, 2004).

A useful feature of our entity-based models is that they are

formal. In principle, it should therefore be possible to prove

formally that a certain group of entities in a given model is

capable of the act of reproduction. One way of doing so

would be to construct a ‘minimal’ model of reproduction,

and show that the given model is a refinement of it. A mini-

mal model would be purely schematic, consisting of just two

states, the first of which contains just one entity, and which

has a transition to the second state, which contains just two

entities: notionally, these would be the original entity and

its offspring. A refinement of this by another model would

relate these two entities to entities in the other model, for ex-

ample a loop and its offspring loop in the case of Langton’s

loops. In addition, the transition from the first schematic

state to the second would be related to a path in the other

model that leads from a state containing the progenitor to a

state containing the offspring. In general, a model may re-

fine this minimal model in more than one way, picking out

different entities that reproduce: as a ready example from bi-

ology, it may be possible to view an organism as reproducing

itself, while another view of the same process may see the

organism’s genetic material as the entity that is reproduced.

While the intuitions are clear, the technical details of refine-

ment for our hierarchical, entity-based models still need to

be spelt out.
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