
Formal Verification of Astronaut-Rover Teams for
Planetary Surface Operations
Matt Webster

Department of Computer Science
University of Liverpool

Ashton Street, Liverpool, L69 3BX, UK
matt@liverpool.ac.uk

Louise A. Dennis
Department of Computer Science

University of Liverpool
Ashton Street, Liverpool, L69 3BX, UK

L.A.Dennis@liverpool.ac.uk
Clare Dixon

Department of Computer Science
University of Liverpool

Ashton Street, Liverpool, L69 3BX, UK
cldixon@liverpool.ac.uk

Michael Fisher
Department of Computer Science

University of Liverpool
Ashton Street, Liverpool, L69 3BX, UK

mfisher@liverpool.ac.uk
Richard Stocker

Department of Computer Science
University of Chester

Pool Lane, Chester, CH2 4NU, UK
r.stocker@chester.ac.uk

Maarten Sierhuis
Ejenta, Inc.

181 2nd Street,
San Francisco, CA 94105, USA

sierhuis@ejenta.com

Abstract— This paper describes an approach to assuring the
reliability of autonomous systems for Astronaut-Rover (ASRO)
teams using the formal verification of models in the Brahms
multi-agent modelling language. Planetary surface rovers have
proven essential to several manned and unmanned missions to
the moon and Mars. The first rovers were tele- or manually-
operated, but autonomous systems are increasingly being used
to increase the effectiveness and range of rover operations on
missions such as the NASA Mars Science Laboratory. It is
anticipated that future manned missions to the moon and Mars
will use autonomous rovers to assist astronauts during extra-
vehicular activity (EVA), including science, technical and con-
struction operations. These ASRO teams have the potential
to significantly increase the safety and efficiency of surface
operations. We describe a new Brahms model in which an au-
tonomous rover may perform several different activities includ-
ing assisting an astronaut during EVA. These activities compete
for the autonomous rover’s “attention” and therefore the rover
must decide which activity is currently the most important and
engage in that activity. The Brahms model also includes an as-
tronaut agent, which models an astronaut’s predicted behaviour
during an EVA. The rover must also respond to the astronauts
activities. We show how this Brahms model can be simulated
using the Brahms integrated development environment. The
model can then also be formally verified with respect to system
requirements using the SPIN model checker, through automatic
translation from Brahms to PROMELA (the input language
for SPIN). We show that such formal verification can be used
to determine that mission- and safety-critical operations are
conducted correctly, and therefore increase the reliability of
autonomous systems for planetary rovers in ASRO teams.

TABLE OF CONTENTS

1. INTRODUCTION . 1
2. MODELLING ASTRONAUT–ROVER TEAMS 2
3. FORMAL VERIFICATION . 4
4. CONCLUSIONS . 6
ACKNOWLEDGMENTS . 7
REFERENCES . 7
BIOGRAPHY . 8

978-1-7281-2734-7/20/$31.00 c©2020 IEEE

1. INTRODUCTION
Planetary surface rovers have proven essential to several
manned and unmanned missions to the moon and Mars. The
first rovers were tele- or manually-operated, but autonomous
systems are increasingly being used to increase the effec-
tiveness and range of rover operations on missions such as
the NASA Mars Science Laboratory [1]. It is anticipated
that future manned missions to the moon and Mars will use
autonomous rovers to assist astronauts during extra-vehicular
activity (EVA), including science, technical and construc-
tion operations. These ASRO teams have the potential to
significantly increase the safety and efficiency of surface
operations [2], [3], [4].

In this paper we examine an ASRO team scenario in which
an autonomous rover performs (i) teamwork operations to
directly and indirectly assist an astronaut in a variety of activ-
ities, and (ii) solo operations when the astronaut is otherwise
engaged, e.g., during rest periods. Our analysis is based on
a formal model of the scenario written in Brahms [5], [6],
a general-purpose multiagent workflow language developed
at NASA Ames Research Center, and used previously for
ASRO team modelling as part of the NASA Mobile Agents
Architecture [7]. We describe a new Brahms model in which
an autonomous rover may perform several different activi-
ties including assisting an astronaut in geological surveys,
carrying tools and materials for an astronaut during habitat
maintenance and construction, solo geological surveying,
habitat integrity monitoring, and recording video to document
astronaut EVA. These activities compete for the autonomous
rovers “attention” and therefore the rover must decide which
activity is currently the most important and engage in that
activity. The Brahms model also includes an astronaut agent,
which models an astronaut’s predicted behaviour during an
EVA. The rover must also respond to the astronaut’s activi-
ties.

We show how this Brahms model can be simulated using
the Brahms integrated development environment. The model
can then also be formally verified with respect to system
requirements using the SPIN model checker [8], through
automatic translation from Brahms to PROMELA (the input
language for SPIN). The automatic translation is based on

1

Figure 1. Astronaut, rover and habitat on Apollo 17 [10].

a formalisation of the semantics of the Brahms modelling
language [16], and system requirements are formalised using
linear temporal logic [9]. We show that such formal verifica-
tion can be used to determine that mission- and safety-critical
operations are conducted correctly, and therefore increase
the reliability of autonomous systems for planetary rovers
in ASRO teams. The Brahms control software developed in
this way, and assessed at this higher level of integrity, can
then be translated to resilient, effective, and correct software
agents that can directly control the rover. These high-level
agent control systems can additionally be formally verified in
the practical robotic context, providing further assurance and
confidence.

This paper contributes the following:

• A methodology to assure the reliability and correctness of
autonomous rover behaviour within astronaut–rover teams.

• A high-level Brahms model of an astronaut–rover team sce-
nario in which the rover autonomously assists the astronaut
in a range of tasks.

• Formal verification of key requirements of the autonomous
rover within the scenario, encoded as logical properties that
are used during model checking.

• The potential to extend this model to control simulated or
real-life rovers using a Brahms–Java interface.

The structure of the paper is as follows. In Section 2 we
describe the astronaut–rover scenario and show how it was
modelled using Brahms. Section 3 describes the formal ver-
ification technique used to assess the reliability and correct-
ness of the rover’s behaviour within the ASRO team. Finally,
in Section 4 we provide conclusions and discuss directions for
future work. We end this section with an overview of related
work.

Related Work

Astronaut–rover teams were first used in practice on the
Apollo 15, 16 and 17 missions (see Figure 1). The lunar
roving vehicle used minimal autonomy: an autonomous
guidance system would continually monitor and report the
direction and distance to the lunar module “habitat”. More
recently, ASRO teams have been simulated and analysed
for use in future space exploration missions. Ransan &
Atkins [11] describe a multiagent planning system for dis-
tributing tasks to astronaut-rover teams. Medina et al. [12]
describe the development of a prototype autonomous rover

for planetary outpost assembly. Heiskanen et al. [13] devel-
oped a dynamic mobile robot simulator for astronaut–rover
teams using a centaur-like robot. Fong & Nourbakhsh [14]
describe an approach to developing human–robot teams for
space exploration. However, none of these papers use formal
verification to determine the reliability of ASRO teams, as we
do here.

This paper is based on our previous work on Brahms for
astronaut–rover teams and multiagent modelling and verifi-
cation. Sierhuis et al. [7] used Brahms as the basis of the
Mobile Agents Architecture at NASA Ames Research Center,
which enabled the autonomous operation of rovers, spacesuits
and habitats in a simulated Mars environment. Stocker et
al. [15] used Brahms to model and formally verify human–
robot teamwork for domestic robotic assistants based on a
formal semantics of the Brahms language [16]. Webster
et al. [17] used Brahms to model and formally verify the
behaviour of a domestic robotic assistant deployed at the
University of Hertfordshire. Bordini et al. [18] described
an approach to formal verification of Brahms models of
human–robot teams through translation into the Jason agent
programming language. However, this paper is the first use
of formal verification to analyse the behaviour of Brahms
multiagent systems for ASRO teamwork.

2. MODELLING ASTRONAUT–ROVER TEAMS
Brahms is a general-purpose multiagent workflow language.
Multiagent systems allow autonomous systems to be spec-
ified in terms of multiple interacting autonomous agents.
Brahms models generally consist of a set of agents. Each
agent consists primarily of workframes and thoughtframes,
in which the agent’s behaviours are defined. Agents also
possess beliefs which represent their current view of the
world. The actual state of the world may also be encoded
using facts. Facts and beliefs in Brahms resemble typical
programming language variables such as Booleans and in-
tegers. Workframes are triggered by a Boolean guard that,
when true, will cause a sequence of deeds to be performed.
These deeds can include belief modifications, communica-
tion, movements and primitive activities. Communication
allows beliefs to be sent between agents. Agents can also
possess beliefs about other agents’ beliefs. Movements take
place with reference to an optional geography defined in the
Brahms model. Both movements and primitive activities
can take a variable amount of time set within minimum and
maximum parameters. Thoughtframes are special cases of
workframes in which there are no activities or movement, but
during which deductions can take place based on information
received by an agent. Brahms is supported by the Brahms
Composer integrated development environment (IDE) which
allows agents to be compiled, simulated, debugged and anal-
ysed (see Figure 2).

A Brahms model of an astronaut–rover team was developed
based on a scenario in which an astronaut and a rover work
together to conduct science and construction activities at a
newly-established outpost on a planetary surface such as the
moon or Mars. The outpost consists of a habitat which
allows the astronaut to rest and work without the use of a
spacesuit, and an EVA area in which the astronaut and rover
work together. Astronaut–Rover (ASRO) team operations
within the scenario are based on the first field experiments of
simulated ASRO teams conducted by the NASA Ames and
Johnson Research Centers in the Mojave Desert in 1999 [2].
Specifically, the rover is used in the following roles, adapted

2

Figure 2. Simulation of the Brahms astronaut–rover model using the Brahms Composer IDE.

for use in our scenario:

1. Rover as a scout: the rover examines the traverse area to find
potential favourable sites for geological surveying.

2. Rover as a video coverage assistant: the rover is used to doc-
ument the astronaut’s activity during extra-vehicular activity
(EVA), i.e., activity outside the habitat.

3. Rover as a field science assistant: the rover assists the
astronaut during a geological survey, by collecting and docu-
menting samples identified by the astronaut.

4. Rover as a field technical assistant: the rover is used to carry
tools and materials for construction activity undertaken by the
astronaut.

In addition, our scenario includes the following roles:

5. Rover as a monitor: the rover monitors the astronaut during
potentially hazardous or interesting activity. In our scenario,
this corresponds to the times within the simulation when the
astronaut leaves (egresses) or enters (ingresses) the habitat
from the external environment, which involves pressurising
or depressurising the habitat airlock.

6. Rover as a guard: the rover performs structural integrity
checks on the habitat during the periods of time in which the
astronaut is inside the habitat.

The astronaut moves between the habitat and the EVA area on
a typical work day. The rover detects the astronaut’s activities
and responds autonomously to assist the astronaut. During
times that the astronaut does not need or want to be directly
assisted, the rover can conduct solo operations for geological
surveying or habitat monitoring. At the start of the work
day the astronaut leaves the habitat and conducts a number
of surface operations, before retiring to the habitat at the end
of the work day. The astronaut may also return to the habitat
during the work day, if needed. The astronaut may conduct
any of the following behaviours:

1. Maintenance and construction of structures, e.g., for extend-
ing the habitat or expanded science experiments.

2. Video EVA, in which the astronaut requests the rover to video
them while they perform an activity, e.g., to document the
completion of a key mission objective.

3. Geological surveying, in which the astronaut collects rock
samples and is assisted by the rover.

4. Returning to the habitat from the work or survey areas.
5. Leaving and entering the habitat.
6. Miscellaneous behaviour. The astronaut may wish to conduct

activities that do not directly involve the rover. In this case the
astronaut can “dismiss” the rover to perform solo activities for
a period of time.

The Brahms model consists of three agents: the Astro-
naut, the Rover, and the Campanile Clock. The latter
agent is used to help maintain a consistent definition and
flow of time within the model by sending regular updates
to agent regarding the current time. The astronaut agent
consists of workframes corresponding to the behaviours
described above. For example, the following workframe,
wf considerPerformConstruction specifies how the astro-
naut agent chooses to perform a construction activity:
workframe wf_considerPerformConstruction {
repeat: true;
priority: 99;

when(knownval(Campanile_Clock.time < 9)
and
knownval(current.location != Habitat)
and

knownval(current.
consideredPerformConstruction = false)

)
do {
conclude((current.consideredPerformConstruction
= true));
conclude((current.goalPerformConstruction = true

),bc:25,fc:0);
}
}

3

The first line declares the name of the workframe. The work-
frame is set to repeat (repeat: true;), which means that
the workframe can be selected by the agent more than once.
The next line sets the priority. Workframes can be prioritised,
with higher priority workframes being selected first. The
when (G) do Ds construct states that when the guard G is true
the deeds Ds should be executed. In this case, the workframe
will execute at any point in the first 8 hours of the work day,
when the astronaut is outside the habitat, and the astronaut
has not previously considered doing construction. When the
workframe executes, the agent updates its beliefs to represent
that it has now considered performing construction, and that
it has a goal to perform construction. The latter belief is
annotated with belief-certainty (bc) and fact-certainty (fc),
which will be described below.

After the astronaut agent has considered doing construction,
and has chosen to do it, the next step is to actually perform
the construction activity. This is done in the following
workframe:

workframe wf_performConstruction {
repeat: true;
priority: 99;

when(knownval(current.goalPerformConstruction =
true))

do {
announcePerformConstruction();
moveToWorkSite();
performConstruction();
conclude((current.goalPerformConstruction =

false));
}
}

This workframe states that when the agent believes that it
has a goal to perform construction, it will communicate with
the rover agent to announce that it has decided to perform
construction. Next, a movement is executed to update the
location of the astronaut to the work site. The following
deed is the primitive activity for “performing construction,”
which is modelled as taking 60 minutes. After construction is
complete, the agent concludes that it no longer has a goal
to perform construction, as construction is now complete.
When the campanile clock agent updates the time for the
astronaut agent, the astronaut agent resets its beliefs above
having considered performing construction, which allows the
wf considerPerformConstruction workframe to be selected
again, potentially allowing the astronaut agent to continue
performing construction.

Earlier we described how the belief to have a goal to perform
construction is updated with a belief-certainty. In this case,
the belief-certainty is set to 25%, which means that there is
a 25% probability that the belief is set to true, and a 75%
probability that the belief will remain false. This means
that there is a 25% probability that the astronaut agent will
actually perform construction. This is to prevent the astronaut
agent from doing construction constantly. Each of the astro-
naut agent’s behaviours can be selected with a 25% probabil-
ity, allowing behaviours to be chosen non-deterministically.
Without the use of belief-certainties, the astronaut agent’s
behaviours would be completely deterministic and every run
of the simulation would result in an identical sequence of
behaviours being selected. In order to model our scenario
more accurately it is important that the astronaut agent be-
haves non-deterministically so we can analyse a range of
possibilities during verification. Note that the probability of
25% was chosen to allow an interesting range of behaviours
to be viewed during simulation. From a formal verification

perspective, the exact value of this probability is not relevant.
As long as it is not set to 0% or 100%, and is set to some
other value, the astronaut agent will choose its behaviours
non-deterministically.

As described above, the astronaut agent communicates with
the rover agent by sending it a message saying that it intends
to begin construction. In reality, the astronaut would not nec-
essarily communicate this directly to the rover. For example,
a monitoring system could determine from the astronaut’s
location and behaviour that they are engaged in construction,
and notify the rover on behalf of the astronaut. Either way,
this can be modelled as a message from the astronaut agent to
the rover agent in our model.

When the rover agent receives this message, a workframe,
wf considerAssistConstruction, is triggered. This is
similar in content to the wf considerPerformConstruction
workframe, and states that once the rover agent believes
that the astronaut agent believes that it has a goal to per-
form construction, that the rover agent will itself form a
goal about assisting construction. This is then handled by
another workframe, wf assistConstruction, which is simi-
lar to wf performConstruction in the astronaut agent, with
one significant difference. The rover’s workframes contain
detectables which allow the rover to interrupt its behaviour if
the astronaut changes their mind and chooses to do something
else. These detectables have the following form:
detectable detectGeoSurvey {
when(whenever)
detect((Astronaut.goalPerformGeoSurvey = true),

dc:100)
then abort;
}

This detectable states that whenever the rover agent detects
that the astronaut agent has decided to perform a geological
survey, then the rover agent will abort its current activity,
allowing it to respond to the astronaut’s change in behaviour.
The rover agent’s workframes contain up to five detectables
that allow the rover agent to detect various astronaut be-
haviours and adapt to them.

3. FORMAL VERIFICATION
Formal verification describes an approach to verification of
computer systems, processes, and protocols using formal
methods. Formal methods involve mathematical models of
systems which can be analysed using proof-based methods.
The use of proofs gives a higher level of confidence in the
results of the verification than running tests or simulations.
However, there is a trade-off in that formal models can
be time-consuming to construct and automatic proofs often
require large amounts of time and memory to execute.

The approach to formal verification used in this paper is
called model checking. Model checking involves checking
the full state space of a non-deterministic model, and is
therefore described as exhaustive. Model checkers have a
long history of successful use in verification of high-integrity
systems dating back to the early 1980s [19]. We used
the SPIN model checker to verify the astronaut–rover team
described in the previous section. SPIN verifies models
constructed using the process meta-language PROMELA.
PROMELA lets us model systems of concurrently-executing
and communicating automata. It would be possible to con-
struct a PROMELA model of the Brahms model from the
previous section by hand. However this would be laborious

4

and error-prone. Instead we use a software translator called
BrahmsToPromela [15], which lets us automatically translate
Brahms models into PROMELA models. The PROMELA
models can then be formally verified using the SPIN model
checker. Of course, there is a trade-off in using automatic
translation. Automatically-generated models are often larger
and less efficient than manually-generated models, and re-
quire more time and memory to verify.

Model checking typically takes place with respect to prop-
erties, which are formulae encoded in a logical language.
These properties are based on system requirements. If the
properties can be shown to hold for a model, then we take this
as evidence that the system satisfies its requirements. In our
case, we use linear temporal logic (LTL), which allows the
formalisation of concepts relating to time, e.g., “now and at
all points in the future” (via the 2 operator), “now or at some
point in the future” (3) and “in the next state” (©) [9]. This
enables formalisation of safety requirements (something bad
never happens, 2¬bad), liveness properties (e.g, something
good eventually happens, 3good) and fairness properties
(e.g., if one thing occurs infinitely often so does another, e.g.,
23send =⇒ 23receive). Using BrahmsToPromela extends
SPIN’s property specification language with a belief operator,
“B”. This allows us to specify that an agent has a belief, e.g.,
BRoverx means that the Rover agent believes x is true.

After using BrahmsToPromela to translate the Brahms model
to PROMELA, the property in question is appended to the
file containing the PROMELA model. Next, SPIN is used
to generate ‘C’ code representing a finite state automaton
representing the ASRO teamwork model. This automaton
is then compiled and executed. The results of the execution
reveal whether there are any errors in the model, i.e., cases
where the property is found to not be true. If this is the
case, a counter-example highlighting the error is generated
and exported to a file for later examination. If errors are
found they can usually be traced back to the point in the
Brahms model that caused the problem. This allows bugs to
be fixed before starting the process again. Eventually we aim
to obtain an error-free model that satisfies all of the properties
representing the requirements of the system being modelled.

The first version of the model was based on a 12 hour work
day in which the astronaut spent eight hours conducting
activities inside and outside the habitat, before retiring to the
habitat at the end of the day. However this model was found
to be too complex to model-check in a reasonable amount
of time. In order to reduce the complexity of the model the
work day was shortened to five hours. This resulted in a
more manageable model that could be model-checked using
less time and memory. This modification of the model was
essentially an abstraction, and reduced the size of the model
by discarding unnecessary details. In this case we discarded
seven hours of the work day in which the astronaut and
rover were simply repeating their non-deterministic choice a
number of times. The primary aim of the formal verification
was to determine the correctness and reliability of the rover’s
responses to the astronaut’s non-deterministic behaviours. By
removing repetitious behaviour in the model we were able to
make the formal verification tractable and achieve the key
aim of verifying the astronaut–rover team and the rover’s
autonomous behaviour. Results of the formal verification of
the Brahms astronaut–rover model are as follows.

Model Validation: Astronaut Behaviour

Before we begin to formally verify the autonomous be-
haviours of the rover, it is important to validate that the

model accurately depicts the behaviour of the astronaut in
our scenario. As mentioned in Section 2, the astronaut
can choose non-deterministically from a range of possible
behaviours. This non-deterministic choice can be validated
using the following properties:

3BAstronaut(goalPerformLeaveHabitat) (1)

3BAstronaut(goalPerformGeoSurvey) (2)

3BAstronaut(goalPerformMisc) (3)

3BAstronaut(goalPerformVideoEVA) (4)

3BAstronaut(goalPerformReturnToHabitat) (5)

3BAstronaut(goalPerformConstruction) (6)

These six properties were formally verified using BrahmsTo-
Promela and SPIN, and were found to hold for the model.

Verification of Mission-Critical Rover Behaviour

Performing solo geological surveys—This requirement con-
cerns the ability of the robot to perform a solo geological
survey when the astronaut does not need the direct assistance
of the rover. This is encoded as follows:

2
[

BAstronaut(goalPerformMisc) =⇒
3BRover(goalSoloGeoSurvey)

]
(7)

This property states that it is always the case that if the
astronaut agent believes that it is performing a miscellaneous
activity (i.e., an activity that doesn’t require the assistance
of the rover), then the rover will perform a solo geological
survey after a period of time. This property was found to
hold for the model, and therefore this requirement has been
verified.

Assisting astronaut during construction— The rover is re-
quired to assist the astronaut during construction tasks. This
is formalised as follows:

2
[

BAstronaut(goalPerformConstruction) =⇒
3BRover(goalAssistConstruction)

]
(8)

This property states that it is always the case that if the
astronaut agent believes that it has a goal to start construction,
then the rover agent will form a corresponding goal to assist in
the construction task after a period of time. This property was
found to hold for the model, and therefore this requirement
has been verified.

Verification of Safety-Critical Rover Behaviour

Astronaut monitoring during habitat egress— One of the
rover’s safety-critical requirements is to monitor the astronaut
during high-risk activities, such as habitat egress, which
involves airlock depressurisation. We form the following
property corresponding to this requirement:

2
[

BAstronaut(goalLeaveHabitat) =⇒
3BRover(cameraStream)

]
(9)

5

This property states that it is always the case that if the
astronaut decides to leave the habitat, that the rover will
start monitoring by setting the camera stream variable to
true, indicating that a video stream is being sent back to the
habitat (and then back to the ground station for monitoring, if
needed). This property was found to hold for the model, and
therefore this requirement has been verified.

Habitat monitoring during astronaut rest periods— In our
scenario the rover is required to monitor the integrity of the
habitat while the astronaut is inside. This is the basis for the
following property:

2
[

Astronaut.location = Habitat =⇒
3BRover(goalSoloMonitorHab)

]
(10)

This states that if the astronaut is in the habitat, then the rover
will form a goal to autonomously monitor the habitat. This
property uses the location feature of the Brahms language that
allows each agent to be associated with a particular geograph-
ical location identified in the model. This property was found
to hold for the model, and therefore this requirement has been
verified.

Computational Demands

The computational demands for the properties verified are
given in Table 1. The columns refer to the property number,
the number of states in the model, the maximum depth
reached by the model checker, and the amount of memory
and time used. It can be seen that the six “reachability-style”
properties (1–6) used for model validation were the least
demanding overall. The four other properties for the mission-
and safety-critical requirements (7–8 and 9–10 respectively)
were more demanding. This is likely to be a result of the more
complex formulae used in these properties, combined with a
need to examine the entire state space in order to demonstrate
that they hold for the model.

Table 1. Computational Demands for Formal
Verification of Properties.

Prop. States Depth Mem. (MB) Time (s)
1 650 1, 298 187 0.01

2 1, 874 3, 746 199 0.05

3 440, 960 35, 087 3,284 11.7

4 18, 475 16, 691 331 0.49

5 2, 321 4, 198 202 0.07

6 4, 275 5, 710 218 0.12

7 1, 348, 495 37, 569 9,420 37.9

8 1, 160, 503 37, 569 8,140 31.7

9 1, 498, 157 37, 569 10,439 70.3

10 1, 105, 121 37, 569 7,762 30.4

4. CONCLUSIONS
In this paper we have shown how a high-level model
of astronaut–rover teamwork can be constructed using the
Brahms multiagent workflow language, and verified using
the BrahmsToPromela software tool and the SPIN model
checker. The model was based on a scenario in which an
astronaut and a rover worked together in a range of activities
including construction, geological surveys, video EVAs and
miscellaneous activities. The rover responds autonomously

to the astronaut’s behaviour and will assist wherever needed.
When the rover is not needed, for example when the astronaut
has specified that this is the case, or when the astronaut is rest-
ing in the Habitat, the rover performs autonomous solo func-
tions including habitat integrity modelling and geological
surveying. We showed that this model could be translated to
PROMELA, the input language for the SPIN model checker,
using a software tool called BrahmsToPromela. Once the
model is translated it is straightforward to use SPIN to model-
check the PROMELA code representing the Brahms model
of the astronaut–rover teamwork scenario. It was shown that
requirements for key mission- and safety-critical behaviours
could be encoded using linear temporal logic, as well as re-
quirements that were used for validation of the model. These
requirements were found to be satisfied by the PROMELA
code, indicating that the Brahms model on which it was
based was correct with respect to those requirements. Model
checking of the requirements was also shown to be tractable,
requiring ∼ 70 seconds in the worst case.

Future Work

While this paper establishes an approach to formal verifica-
tion of high-level descriptions of astronaut–rover teamwork,
there is much that remains to be done. An obvious extension
of the work would be to increase the accuracy of the model
by incorporating even more behaviours for the astronaut and
rover that may conflict and overlap, as would presumably be
the case in a real-life astronaut–rover scenario, or even to
expand the model to include multiple astronauts and rovers.
This would potentially increase the complexity of the model,
and the time and space required to formally verify it. There-
fore it may be useful to investigate the use of abstraction
techniques to reduce complexity, e.g., by dividing up the
scenario into different parts, thereby effectively partitioning
the state space. Another way to improve execution times
would be to optimise the BrahmsToPromela software tool,
which is at a relatively early stage of development. Yet
another option would be to use the formal semantics of
Brahms and the parser within the BrahmsToPromela tool to
generate code for a different model checker that has a closer
level of abstraction than SPIN. An obvious choice might be
the Agent JPF model checker, which we have developed in
previous work [20], [21]. Another avenue for future work
would be to modify BrahmsToPromela to translate Brahms
into the input languages of different model checkers that
support probabilistic [22] or real-time model checking [23].

This paper uses a high-level model of astronaut–rover team-
work to enable formal verification, but there is much to be
gained from combining this kind of approach with other,
more complex and non-exhaustive, verification methods. For
example, 3D physical simulators like Gazebo1 can be used
to examine the behaviour of robots in much greater detail.
However, simulators can rarely explore the system exhaus-
tively as formal verification does. Likewise, physical real-
world tests are even more accurate than simulations, but
can be very costly. We advocate an approach in which all
of these verification methods, as well as hybrid methods
like hardware-in-the-loop can be leveraged together and their
results checked with respect to each other, in a process known
as corroborative verification and validation [24]. In addition,
the Brahms model in this paper could be used to direct the
autonomous behaviour of a real or simulated astronaut–rover
team, e.g., through a Brahms–Java interface using the Robot
Operating System2.

1http://gazebosim.org/
2https://www.ros.org/

6

ACKNOWLEDGMENTS
This work was supported by (i) the EPSRC under the Future
AI and Robotics Hub for Space (EP/R026092/1), and (ii) the
Royal Academy of Engineering.

REFERENCES
[1] J. P. Grotzinger, J. Crisp, A. R. Vasavada, R. C.

Anderson, C. J. Baker, R. Barry, D. F. Blake,
P. Conrad, K. S. Edgett, B. Ferdowski, R. Gellert,
J. B. Gilbert, M. Golombek, J. Gómez-Elvira, D. M.
Hassler, L. Jandura, M. Litvak, P. Mahaffy, J. Maki,
M. Meyer, M. C. Malin, I. Mitrofanov, J. J.
Simmonds, D. Vaniman, R. V. Welch, and R. C.
Wiens, “Mars science laboratory mission and science
investigation,” Space Science Reviews, vol. 170,
no. 1, pp. 5–56, Sep 2012. [Online]. Available:
https://doi.org/10.1007/s11214-012-9892-2

[2] R. C. Trevino, J. J. Kosmo, A. Ross, and N. A. Cabrol,
“First Astronaut - Rover Interaction Field Test,” in In-
ternational Conference On Environmental Systems, July
2000, pp. 2000–01–2482.

[3] G. A. Landis, “Robots and Humans: Synergy in Plane-
tary Exploration,” in AIP Conference Proceedings, vol.
654, no. 853, 2003.

[4] L. Pedersen, “Field Demonstration of Surface Human-
Robotic Exploration Activity,” in AAAI Spring Sympo-
sium, 2006, p. 9.

[5] M. Sierhuis, “Modeling and Simulating Work Practice.
BRAHMS: a multiagent modeling and simulation lan-
guage for work system analysis and design,” Ph.D. dis-
sertation, Social Science and Informatics (SWI), Uni-
versity of Amsterdam, SIKS Dissertation Series No.
2001-10, Amsterdam, The Netherlands, 2001.

[6] M. Sierhuis and W. J. Clancey, “Modeling and simulat-
ing work practice: A method for work systems design,”
IEEE Intelligent Systems, vol. 17, no. 5, pp. 32–41,
2002.

[7] M. Sierhuis, W. J. Clancey, R. L. Alena, D. Berrios,
S. B. Shum, J. Dowding, J. Graham, R. van Hoof,
C. Kaskiris, S. Rupert, and K. S. Tyree, “NASA’s
Mobile Agents Architecture: A Multi-Agent Workflow
and Communication System for Planetary Exploration,”
in Proc. of The 8th International Symposium on Artif-
ical Intelligence, Robotics and Automation in Space -
iSAIRAS, Munich, Germany., 2005.

[8] G. J. Holzmann, The Spin Model Checker. Addison-
Wesley, November 2003.

[9] M. Fisher, An Introduction to Practical Formal Methods
Using Temporal Logic. Wiley, 2011.

[10] NASA. (1972) Apollo 17 first test of the lunar
rover. Accessed 17 Oct 2019. [Online]. Available:
https://commons.wikimedia.org/wiki/File:Apollo 17 -
first test of the lunar rover AS17-147-22527HR.jpg

[11] M. Ransan and E. M. Atkins, “A Collaborative Model
for Astronaut-Rover Exploration Teams,” in AAAI
Spring Symposium, 2006, pp. 52–58.

[12] A. Medina, C. Pradalier, G. Paar, A. Merlo, S. Ferraris,
L. Mollinedo, P. Colmenarejo, and F. Didot, “A
servicing rover for planetary outpost assembly,” in
Proceedings of Advanced Space Technologies for
Robotics and Automation (ASTRA) 2011, 2011,

https://www.esa.int/Enabling Support/Space Engin-
eering Technology/Automation and Robotics/Proceed-
ings of ASTRA Accessed 15 Oct 2019.

[13] P. Heiskanen, S. Heikkilä, and A. Halme, “Development
of a Dynamic Mobile Robot Simulator for Astronaut
Assistance,” Proc. 10th ESA Workshop on Advanced
Space Technologies for Robotics and Automation (AS-
TRA), p. 9.

[14] T. Fong and I. Nourbakhsh, “Peer-to-Peer Human-
Robot Interaction for Space Exploration,” in AAAI Fall
Symposium: The Intersection of Cognitive Science and
Robotics: From interfaces to Intelligence, 2004, p. 4.

[15] R. Stocker, L. A. Dennis, C. Dixon, and M. Fisher, “Ver-
ification of Brahms Human–Robot Teamwork Models,”
in Proc. 13th European Conf. on Logics in Artificial
Intelligence, ser. LNCS, vol. 7519. Springer, 2012,
pp. 385–397.

[16] R. Stocker, M. Sierhuis, L. A. Dennis, C. Dixon, and
M. Fisher, “A Formal Semantics for Brahms,” in Proc.
12th International Workshop on Computational Logic
in Multi-Agent Systems (CLIMA), ser. LNCS, vol. 6814.
Springer, 2011, pp. 259–274.

[17] M. Webster, C. Dixon, M. Fisher, M. Salem, J. Saun-
ders, K. L. Koay, K. Dautenhahn, and J. Saez-Pons,
“Toward reliable autonomous robotic assistants through
formal verification: A case study,” IEEE Transactions
on Human-Machine Systems, no. 99, pp. 1–11, 2015.

[18] R. H. Bordini, M. Fisher, and M. Sierhuis, “Formal
verification of human-robot teamwork,” in 2009 4th
ACM/IEEE International Conference on Human-Robot
Interaction (HRI), Mar. 2009, pp. 267–268.

[19] G. Holzmann, “Inspiring applications of Spin,”
http://spinroot.com/spin/success.html, 2019, accessed
11 Oct 2019.

[20] L. A. Dennis, M. Fisher, M. Webster, and R. H. Bordini,
“Model Checking Agent Programming Languages,” Au-
tomated Software Engineering, vol. 19, no. 1, pp. 5–63,
2012.

[21] L. A. Dennis, M. Fisher, N. Lincoln, A. Lisitsa, and
S. M. Veres, “Practical verification of decision-making
in agent-based autonomous systems,” Journal of Auto-
mated Software Engineering, vol. 23, no. 3, pp. 305–
359, 2016.

[22] M. Kwiatkowska, G. Norman, and D. Parker, “Prism
4.0: Verification of probabilistic real-time systems,” in
Proc. CAV 2011, ser. LNCS, vol. 6806. Springer, 2011,
pp. 585–591.

[23] G. Behrmann, A. David, K. G. Larsen, J. Hakansson,
P. Petterson, W. Yi, and M. Hendriks, “Uppaal 4.0,”
in Third International Conference on the Quantitative
Evaluation of Systems - (QEST’06), Sept 2006, pp. 125–
126.

[24] M. Webster, D. Western, D. Araiza-Illan, C. Dixon,
K. Eder, M. Fisher, and A. G. Pipe, “A
Corroborative Approach to Verification and Validation
of Human–Robot Teams,” International Journal of
Robotics Research, in press. [Online]. Available:
https://doi.org/10.1177/0278364919883338

7

BIOGRAPHY[

Matt Webster is a senior postdoctoral
researcher at the University of Liver-
pool. With over 15 years of academic
and industrial research experience, his
research aims to make computer systems
safer and more reliable through the de-
velopment and application of techniques
from formal methods. His research in-
terests include verification of AI in space
robotics, certification of autonomous un-

manned aircraft, the Internet of Things, human-robot inter-
action, model-checking agent programming languages, com-
puter security and artificial life.

Louise A. Dennis is a lecturer in the
Autonomy and Verification Laboratory
at the University of Liverpool. She is
attached to the Centre for Autonomous
Systems Technology (CAST) at the Uni-
versity of Liverpool. Her background is
in artificial intelligence and more specif-
ically in agent and autonomous sys-
tems and automated reasoning. She has
worked on the development of several

automated reasoning and theorem proving tools, most no-
tably the Agent JPF model checker for BDI agent languages;
the lambda-clam proof planning system; and the PROSPER
Toolkit for integrating an interactive theorem prover (HOL)
with automated reasoning tools (such as SAT solvers) and
Case/CAD tools. More recently she has investigated ra-
tional agent programming languages and architectures for
autonomous systems, with a particular emphasis on verifiable
systems and ethical reasoning.

Clare Dixon is a Reader in the De-
partment of Computer Science, Univer-
sity of Liverpool, Liverpool, U.K. Her
research interests include formal verifi-
cation and temporal and modal theorem-
proving techniques, in particular ap-
plied to robotics and autonomous sys-
tems. She is a member of the Auton-
omy and Verification Laboratory and the
Centre for Autonomous Systems Tech-

nology at the University of Liverpool. She is also a member
of the British Standards Institution AMT/10 Committee on
Robotics.

Michael Fisher holds a Royal Academy
of Engineering Chair in Emerging Tech-
nologies in the Department of Computer
Science of the University of Liverpool.
He is the Director of the Universitys
Centre for Autonomous Systems Tech-
nology and co-chairs the IEEE Techni-
cal Committee on the Verification of Au-
tonomous Systems. His a Fellow of both
BCS and IET, and is a member of both

BSI and IEEE standards committees concerning Robotics and
Autonomous Systems.

Richard Stocker graduated from the
University of Liverpool in 2005, 2009
and 2013 with an Undergraduate de-
gree in Computer Science, a Masters
in Advanced Computer Science and a
PhD in Formal Verification of Human-
Agent-Robot Teamwork. In 2013 he left
the UK to work for SGT, Inc as a level
2 Computer Scientist at NASA Ames in
California. There he worked on projects

for aerospace, particularly simulating workload of single
pilot operations and air traffic controllers. Returning to
the UK in 2015, Richard started teaching foundation degree
students at Middlesex University. Richard then came to the
University of Chester to work as a Senior Lecturer in 2017.

Maarten Sierhuis is a co-founder and
CTO of Ejenta, a San Francisco startup
developing an intelligent agent platform
with applications in healthcare, insur-
ance and government. Dr. Sierhuis
has more than 25 years experience in
artificial intelligence and autonomous
systems. He is one of the main inventors
of the Brahms multi-agent language. As
a former Senior Scientist in the Intelli-

gent Systems Division at NASA, he developed autonomous
technology for space exploration. He started and headed
the Nissan Research Center Silicon Valley to develop au-
tonomous vehicles. Previously, Dr. Sierhuis was director
of the Knowledge, Language and Interaction group at the
Xerox Palo Alto Research Center (PARC) and a researcher
at NYNEX Science & Technology R&D Center. Dr. Sierhuis
has a Ph.D. in Artificial Intelligence and Cognitive Science
from the University of Amsterdam and a degree in Informatics
from The Hague University. Dr. Sierhuis was named #25 of
the 100 most creative people in 2015 by Fast Company.

8

