

	2
	Sample Answers WS24 & Ex24

	Sample Answers WS24 and Ex24
	1

[bookmark: _GoBack]Virtual Pi2Go Programming: WS24 & Ex24 Sample Answers

WS24

Exercise 1: As with the previous worksheet, the lower epsilon_reduce and learning_rate are, the more likely the program is to learn the correct algorithm but the longer it will take. These values seem to work most of the time and its relatively quick.

import simclient.simrobot as pi2go
import time, random

pi2go.init()

actions = ['forward','backward','left','right']

def action_reward(action_list, default):
 action_rewards = {}
 for i in range(0, 2):
 for j in range(0, 2):
 for k in (action_list):
 action_rewards[((i, j), k)] = default
 return action_rewards

def execute_action(action):
 if (action == "forward"):
 pi2go.forward(10)
 elif (action == "backward"):
 pi2go.reverse(10)
 elif (action == "left"):
 pi2go.spinLeft(10)
 elif (action == "right"):
 pi2go.spinRight(10)
 else:
 pi2go.stop()

 time.sleep(3)

def best_action(state):
 max_reward = 0
 for act in actions:
 if (reward_dictionary[(state, act)] > max_reward):
 action = act
 max_reward = reward_dictionary[(state, act)]
 return action

reward_dictionary = action_reward(actions, 1)
rewards = {(1, 1):1, (1, 0):2, (0, 1):0, (0, 0):1}

epsilon = 1
epsilon_reduce = 0.05
learning_rate = 0.5

while (epsilon > 0):
 explore = random.random()
 state = (pi2go.irLeftLine(), pi2go.irRightLine())

 if (explore < epsilon):
 action = random.choice(actions)
 print("Random Action: " + action)
 else:
 action = best_action(state)
 print("Best Action: " + action)

 execute_action(action)

 reward = rewards[(pi2go.irLeftLine(), pi2go.irRightLine())]
 reward_dictionary[(state, action)] = reward_dictionary[(state, action)] + (reward - reward_dictionary[(state, action)])*learning_rate
 if (reward == 2):
 epsilon = epsilon - epsilon_reduce
 print("New epsilon: " + str(epsilon))

pi2go.stop()
print(reward_dictionary)

for key in reward_dictionary:
 print("Average reward for " + str(key) + " is " + str(reward_dictionary[key]))

Ex24

Exercise 1: I did some tweaking of the speed epsilon reduced to get this working. Students may also want to experiment with the learning rate and the rewards.

import simclient.simrobot as pi2go
import time, random

pi2go.init()

actions = ['forward','left','right']

def action_reward(action_list, default):
 action_rewards = {}
 for i in range(0, 2):
 for j in range(0, 2):
 for k in range(0, 2):
 for a in (action_list):
 action_rewards[((i, j, k), a)] = default
 return action_rewards

def execute_action(action):
 if (action == "forward"):
 pi2go.forward(10)
 elif (action == "left"):
 pi2go.spinLeft(10)
 elif (action == "right"):
 pi2go.spinRight(10)
 else:
 pi2go.stop()

 time.sleep(3)

def best_action(state):
 max_reward = 0
 for act in actions:
 if (reward_dictionary[(state, act)] > max_reward):
 action = act
 max_reward = reward_dictionary[(state, act)]
 return action

reward_dictionary = action_reward(actions, 1)
rewards = {(0, 0, 0):2, (0, 0, 1):1, (0, 1, 0):1, (0, 1, 1):1, (1, 0, 0):0, (1, 0, 1):0, (1, 1, 0):0, (1, 1, 1):0}

epsilon = 1
epsilon_reduce = 0.02

learning_rate = 0.5

while (epsilon > 0):
 explore = random.random()
 state = (pi2go.irCentre(), pi2go.irLeft(), pi2go.irRight())

 if (explore < epsilon):
 action = random.choice(actions)
 print("Random Action: " + action)
 else:
 action = best_action(state)
 print("Best Action: " + action)

 execute_action(action)
 reward = rewards[(pi2go.irCentre(), pi2go.irLeft(), pi2go.irRight())]
 reward_dictionary[(state, action)] = reward_dictionary[(state, action)] + (reward - reward_dictionary[(state, action)])*learning_rate
 if (reward == 2):
 epsilon = epsilon - epsilon_reduce
 print("New epsilon: " + str(epsilon))

pi2go.stop()
print(reward_dictionary)

for key in reward_dictionary:
 print("Average reward for " + str(key) + " is " + str(reward_dictionary[key]))

Exercise 2: I spent some time experimenting with the rewards before I got this working.

import simclient.simrobot as pi2go
import time, random

pi2go.init()

actions = ['forward','left','right']

def action_reward(action_list, default):
 action_rewards = {}
 for i in range(0, 2):
 for j in range(0, 2):
 for k in range(0, 2):
 for a in (action_list):
 action_rewards[((i, j, k), a)] = default
 return action_rewards

def execute_action(action):
 if (action == "forward"):
 pi2go.forward(10)
 elif (action == "left"):
 pi2go.spinLeft(10)
 elif (action == "right"):
 pi2go.spinRight(10)
 else:
 pi2go.stop()

 time.sleep(3)

def best_action(state):
 max_reward = 0
 for act in actions:
 if (reward_dictionary[(state, act)] > max_reward):
 action = act
 max_reward = reward_dictionary[(state, act)]
 return action

reward_dictionary = action_reward(actions, 1)
rewards = {(0, 0, 0):3, (0, 0, 1):4, (0, 1, 0):0, (0, 1, 1):4, (1, 0, 0):3, (1, 0, 1):3, (1, 1, 0):2, (1, 1, 1):2}

epsilon = 1
epsilon_reduce = 0.02

learning_rate = 0.5

while (epsilon > 0):
 explore = random.random()
 state = (pi2go.irCentre(), pi2go.irLeft(), pi2go.irRight())

 if (explore < epsilon):
 action = random.choice(actions)
 print("Random Action: " + action)
 else:
 action = best_action(state)
 print("Best Action: " + action)

 execute_action(action)
 reward = rewards[(pi2go.irCentre(), pi2go.irLeft(), pi2go.irRight())]
 print(str(state))
 print(str(reward))
 reward_dictionary[(state, action)] = reward_dictionary[(state, action)] + (reward - reward_dictionary[(state, action)])*learning_rate
 if (reward == 4):
 epsilon = epsilon - epsilon_reduce
 print("New epsilon: " + str(epsilon))

pi2go.stop()
print(reward_dictionary)

for key in reward_dictionary:
 print("Average reward for " + str(key) + " is " + str(reward_dictionary[key]))

Exercise 3: There are other state and reward functions, as well as the one’s suggested in the execise, that could be tried. For instance the state could include information about how close in value the front light sensors were and the reward could also increase as the brightness of the light increased. This algorithm will mostly end up with the robot spinning left and right in front of the light.

import simclient.simrobot as pi2go
import time, random

pi2go.init()

actions = ['forward','left','right']

def action_reward(action_list, default):
 action_rewards = {}
 for i in range(-1, 2):
 for j in range(-1, 2):
 for k in range(-1, 2):
 for a in (action_list):
 action_rewards[((i, j, k), a)] = default
 return action_rewards

def execute_action(action):
 if (action == "forward"):
 pi2go.forward(10)
 elif (action == "left"):
 pi2go.spinLeft(10)
 elif (action == "right"):
 pi2go.spinRight(10)
 else:
 pi2go.stop()

 time.sleep(3)

def best_action(state):
 max_reward = 0
 for act in actions:
 if (reward_dictionary[(state, act)] > max_reward):
 action = act
 max_reward = reward_dictionary[(state, act)]
 return action

reward_dictionary = action_reward(actions, 0.5)

epsilon = 1
epsilon_reduce = 0.02

learning_rate = 0.5

def get_state():
 fl = pi2go.getLightFL()
 fr = pi2go.getLightFR()
 bl = pi2go.getLightBL()
 br = pi2go.getLightBR()

 comp_f = 0
 if (fl > fr):
 comp_f = 1
 elif (fr > fl):
 comp_f = -1

 comp_b = 0
 if (bl > br):
 comp_b = 1
 elif (br > bl):
 comp_b = -1

 comp = 0
 if (fl + fr > bl + br):
 comp = 1
 elif (bl + br > fl + fr):
 comp = -1
 return (comp_f, comp_b, comp)

def calculate_reward():
 fl = pi2go.getLightFL()
 fr = pi2go.getLightFR()
 bl = pi2go.getLightBL()
 br = pi2go.getLightBR()

 if (bl + br > fl + fr):
 return 0

 f_diff = fl - fr
 f_diff_mod = f_diff/1023

 if (f_diff_mod > 0):
 return (1 - f_diff_mod)
 else:
 return (1 + f_diff_mod)

while (epsilon > 0):
 explore = random.random()

 state = get_state()

 if (explore < epsilon):
 action = random.choice(actions)
 print("Random Action: " + action)
 else:
 action = best_action(state)
 print("Best Action: " + action)

 execute_action(action)
 reward = calculate_reward()
 print(str(state))
 print(str(reward))
 reward_dictionary[(state, action)] = reward_dictionary[(state, action)] + (reward - reward_dictionary[(state, action)])*learning_rate
 if (reward > 0.8):
 epsilon = epsilon - epsilon_reduce
 print("New epsilon: " + str(epsilon))

pi2go.stop()
print(reward_dictionary)

for key in reward_dictionary:
 print("Average reward for " + str(key) + " is " + str(reward_dictionary[key]))

[image:][image:][image:][image:][image:]
 University of Liverpool, 2020
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

image1.png
UNIVERSITY OF

LIVERPOOL

image2.png

