
	2
	Sample Answers WS22

	Sample Answers WS23
	1

[bookmark: _GoBack]Virtual Pi2Go Programming: WS23 Sample Answers
Exercise 1: Note the use of print statements. This program takes a while to run and the print statements help give the programmer a sense of progress. The program will run more quickly if epsilon_reduce is increased, but is less likely to learn the “right” algorithm as a result. That said, the problem is simple enough that quite a high value for epsilon_reduce can probably be used if attention span is proving a problem.

import simclient.simrobot as pi2go
import time, random

pi2go.init()

actions = ['forward','backward','left','right']

def action_reward(action_list, default):
 action_rewards = {}
 for i in range(0, 2):
 for j in range(0, 2):
 for k in (action_list):
 action_rewards[((i, j), k)] = default
 return action_rewards

def execute_action(action):
 if (action == "forward"):
 pi2go.forward(10)
 elif (action == "backward"):
 pi2go.reverse(10)
 elif (action == "left"):
 pi2go.spinLeft(10)
 elif (action == "right"):
 pi2go.spinRight(10)
 else:
 pi2go.stop()

 time.sleep(3)

def best_action(state):
 max_reward = 0
 for act in actions:
 if (total_attempts[(state, act)] > 0):
 if (reward_dictionary[(state, act)]/total_attempts[(state, act)] > max_reward):
 action = act
 max_reward = reward_dictionary[(state, act)]/total_attempts[(state, act)]
 else:
 if (reward_dictionary[(state, act)] > max_reward):
 action = act
 max_reward = reward_dictionary[(state, act)]
 return action

reward_dictionary = action_reward(actions, 0)
total_attempts = action_reward(actions, 0)

rewards = {(1, 1):1, (1, 0):2, (0, 1):0, (0, 0):1}

epsilon = 1
epsilon_reduce = 0.05

while (epsilon > 0):
 explore = random.random()
 state = (pi2go.irLeftLine(), pi2go.irRightLine())

 if (explore < epsilon):
 action = random.choice(actions)
 print("Random Action: " + action)
 else:
 action = best_action(state)
 print("Best Action: " + action)

 execute_action(action)

 reward = rewards[(pi2go.irLeftLine(), pi2go.irRightLine())]
 reward_dictionary[(state, action)] = reward_dictionary[(state, action)] + reward
 total_attempts[(state, action)] = total_attempts[(state, action)] + 1
 if (reward == 2):
 epsilon = epsilon - epsilon_reduce
 print("New epsilon: " + str(epsilon))

pi2go.stop()
print(reward_dictionary)

for key in reward_dictionary:
 total = total_attempts[key]
 if (total == 0):
 print("Never attempted " + str(key))
 else:
 print("Average reward for " + str(key) + " is " + str(reward_dictionary[key]/total_attempts[key]))
[image:][image:][image:][image:][image:]
 University of Liverpool, 2020
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

image1.png
UNIVERSITY OF

LIVERPOOL

image2.png

