
	2
	Sample Answers WS17

	Sample Answers Work Sheets and Exercises 18
	1

[bookmark: _GoBack]Virtual Pi2Go Programming: Work Sheets and Exercises 18 Sample Answers and Trouble Shooting

WS18

Challenge Problem Sample Answer:

import simclient.simrobot as pi2go
import time

pi2go.init()

def drive_to_wall():
 while (not pi2go.irCentre() and not pi2go.irLeft() and not pi2go.irRight()):
 pi2go.forward(10)

 pi2go.stop()

def spin(direction):
 if (direction == 'right'):
 pi2go.spinRight(10)
 else:
 pi2go.spinLeft(10)

def obstacle_to(direction):
 if (direction == 'right'):
 return pi2go.irRight()
 else:
 return pi2go.irLeft()

def opposite_direction(direction):
 if (direction == 'right'):
 return 'left'
 else:
 return 'right'

def follow_wall(direction):
 if (pi2go.irCentre()):
 while(pi2go.irCentre() or obstacle_to(direction)):
 spin(opposite_direction(direction))

 elif (obstacle_to(direction)):
 pi2go.forward(10)
 time.sleep(2)

 elif (not obstacle_to(direction)):
 spin(direction)
 time.sleep(1)

drive_to_wall()

while (not pi2go.irLeftLine()):
 follow_wall('right')

pi2go.forward(10)

time.sleep(3)

pi2go.reverse(10)

time.sleep(10)

pi2go.spinLeft(10)

time.sleep(5)

while (not pi2go.irLeftLine()):
 follow_wall('left')

pi2go.stop()

Troubleshooting: It may take some experimentation to get sleep times correct. This above version of wall following often ends up “bouncing along” the side of the wall since the robot becomes angled slightly towards it. Some fine tuning of timings might help with this, as might using the ultra-sonic sensor as well as the irCentre sensor – but, to be honest, these steps make the program a lot more fiddly and don’t necessarily improve performance. Really the robot needs more sensors at the side in order to help it determine the angle it is at with respect to the wall. So the above is probably as good as can reasonably be expected.

Ex18

Sample Answer. This has be tweaked a bit from the above in an attempt to reduce the “bouncing” effect. There’s no real right answer here since perfect performance isn’t possible without using quite sophisticated mathematical and statistical techniques in order to map the space.

import simclient.simrobot as pi2go
import time

def drive_to_wall():
 while (not pi2go.irCentre() and not pi2go.irLeft() and not pi2go.irRight()):
 pi2go.forward(10)

 pi2go.stop()

def spin(direction):
 if (direction == 'right'):
 pi2go.spinRight(10)
 else:
 pi2go.spinLeft(10)

def obstacle_to(direction):
 if (direction == 'right'):
 return pi2go.irRight()
 else:
 return pi2go.irLeft()

def opposite_direction(direction):
 if (direction == 'right'):
 return 'left'
 else:
 return 'right'

def follow_wall(direction):
 while (not pi2go.getSwitch()):
 if (pi2go.irCentre()):
 while(pi2go.irCentre() or obstacle_to(direction)):
 spin(opposite_direction(direction))
 pi2go.forward(10)
 time.sleep(2)

 elif (obstacle_to(direction)):
 pi2go.forward(10)
 time.sleep(2)
 spin(opposite_direction(direction))
 time.sleep(2)

 elif (not obstacle_to(direction)):
 pi2go.forward(10)
 time.sleep(2)
 spin(direction)
 time.sleep(2)
 pi2go.stop()
[image:][image:][image:][image:][image:]
 University of Liverpool, 2019
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

image1.png
UNIVERSITY OF

LIVERPOOL

image2.png

