

	2
	Sample Answers WS24 & Ex24

	Sample Answers WS24 and Ex24
	1

Virtual Initio Programming: WS24 & Ex24 Sample Answers

WS24

Exercise 1: As with the previous worksheet, the lower epsilon_reduce and learning_rate are, the more likely the program is to learn the correct algorithm but the longer it will take. These values seem to work most of the time and its relatively quick.

import simclient.simrobot as initio
import time, random

initio.init()

actions = ['forward','backward','left','right']

def action_reward(action_list, default):
 action_rewards = {}
 for i in range(0, 2):
 for j in range(0, 2):
 for k in (action_list):
 action_rewards[((i, j), k)] = default
 return action_rewards

def execute_action(action):
 if (action == "forward"):
 initio.forward(10)
 elif (action == "backward"):
 initio.reverse(10)
 elif (action == "left"):
 initio.spinLeft(10)
 elif (action == "right"):
 initio.spinRight(10)
 else:
 initio.stop()

 time.sleep(3)

def best_action(state):
 max_reward = 0
 for act in actions:
 if (reward_dictionary[(state, act)] > max_reward):
 action = act
 max_reward = reward_dictionary[(state, act)]
 return action

reward_dictionary = action_reward(actions, 1)
rewards = {(1, 1):1, (1, 0):2, (0, 1):0, (0, 0):1}

epsilon = 1
epsilon_reduce = 0.05
learning_rate = 0.5

while (epsilon > 0):
 explore = random.random()
 state = (initio.irLeftLine(), initio.irRightLine())

 if (explore < epsilon):
 action = random.choice(actions)
 print("Random Action: " + action)
 else:
 action = best_action(state)
 print("Best Action: " + action)

 execute_action(action)

 reward = rewards[(initio.irLeftLine(), initio.irRightLine())]
 reward_dictionary[(state, action)] = reward_dictionary[(state, action)] + (reward - reward_dictionary[(state, action)])*learning_rate
 if (reward == 2):
 epsilon = epsilon - epsilon_reduce
 print("New epsilon: " + str(epsilon))

initio.stop()
print(reward_dictionary)

for key in reward_dictionary:
 print("Average reward for " + str(key) + " is " + str(reward_dictionary[key]))

Ex24

Exercise 1: I did some tweaking of the speed epsilon reduced to get this working. Students may also want to experiment with the learning rate and the rewards. Depending on the set up of the testing environment the robot may just learn to spin on the spot.

import simclient.simrobot as initio
import time, random

initio.init()

actions = ['forward','left','right']

def action_reward(action_list, default):
 action_rewards = {}
 for i in range(0, 2):
 for j in range(0, 2):
 for k in range(0, 2):
 for a in (action_list):
 action_rewards[((i, j, k), a)] = default
 return action_rewards

def execute_action(action):
 if (action == "forward"):
 initio.forward(10)
 elif (action == "left"):
 initio.spinLeft(10)
 elif (action == "right"):
 initio.spinRight(10)
 else:
 initio.stop()

 time.sleep(3)

def best_action(state):
 max_reward = 0
 for act in actions:
 if (reward_dictionary[(state, act)] > max_reward):
 action = act
 max_reward = reward_dictionary[(state, act)]
 return action

reward_dictionary = action_reward(actions, 1)
rewards = {(0, 0, 0):2, (0, 0, 1):1, (0, 1, 0):1, (0, 1, 1):1, (1, 0, 0):0, (1, 0, 1):0, (1, 1, 0):0, (1, 1, 1):0}

epsilon = 1
epsilon_reduce = 0.02

learning_rate = 0.5

while (epsilon > 0):
 explore = random.random()
 state = (initio.getDistance() < 20, initio.irLeft(), initio.irRight())

 if (explore < epsilon):
 action = random.choice(actions)
 print("Random Action: " + action)
 else:
 action = best_action(state)
 print("Best Action: " + action)

 execute_action(action)
 reward = rewards[(initio.irCentre(), initio.irLeft(), initio.irRight())]
 reward_dictionary[(state, action)] = reward_dictionary[(state, action)] + (reward - reward_dictionary[(state, action)])*learning_rate
 if (reward == 2):
 epsilon = epsilon - epsilon_reduce
 print("New epsilon: " + str(epsilon))

initio.stop()
print(reward_dictionary)

for key in reward_dictionary:
 print("Average reward for " + str(key) + " is " + str(reward_dictionary[key]))

[bookmark: _GoBack]Exercise 2: I spent some time experimenting with the rewards before I got this working. I have left print statements used for figuring this out in.

import simclient.simrobot as initio
import time, random

initio.init()

actions = ['forward','left','right']

def action_reward(action_list, default):
 action_rewards = {}
 for i in range(0, 2):
 for j in range(0, 2):
 for k in range(0, 2):
 for a in (action_list):
 action_rewards[((i, j, k), a)] = default
 return action_rewards

def execute_action(action):
 if (action == "forward"):
 initio.forward(10)
 elif (action == "left"):
 initio.spinLeft(10)
 elif (action == "right"):
 initio.spinRight(10)
 else:
 initio.stop()

 time.sleep(3)

def best_action(state):
 max_reward = 0
 for act in actions:
 if (reward_dictionary[(state, act)] > max_reward):
 action = act
 max_reward = reward_dictionary[(state, act)]
 return action

reward_dictionary = action_reward(actions, 1)
rewards = {(0, 0, 0):3, (0, 0, 1):4, (0, 1, 0):0, (0, 1, 1):4, (1, 0, 0):3, (1, 0, 1):3, (1, 1, 0):2, (1, 1, 1):2}

epsilon = 1
epsilon_reduce = 0.02

learning_rate = 0.5

while (epsilon > 0):
 explore = random.random()
 state = (initio.getDistance() < 20, initio.irLeft(), initio.irRight())
 print(str(state))

 if (explore < epsilon):
 action = random.choice(actions)
 print("Random Action: " + action)
 else:
 action = best_action(state)
 print("Best Action: " + action)

 execute_action(action)
 reward = rewards[(initio.getDistance() < 20, initio.irLeft(), initio.irRight())]
 print(str(reward))
 reward_dictionary[(state, action)] = reward_dictionary[(state, action)] + (reward - reward_dictionary[(state, action)])*learning_rate
 if (reward == 4):
 epsilon = epsilon - epsilon_reduce
 print("New epsilon: " + str(epsilon))

initio.stop()
print(reward_dictionary)

for key in reward_dictionary:
 print("Average reward for " + str(key) + " is " + str(reward_dictionary[key]))

[image:][image:][image:][image:][image:]
 University of Liverpool, 2020
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

image1.png
UNIVERSITY OF

LIVERPOOL

image2.png

