
UITP 2006

Enhancing Theorem Prover Interfaces with
Program Slice Information

Louise A. Dennis 1,2

School of Computer Science and Information Technology
University of Nottingham, Nottingham, UK

Abstract

This paper proposes an extension to theorem proving interfaces for use with proof-
directed debugging and other disproof-based applications. The extension is based
around tracking a user-identified set of rules to create an informative program slice.
Information is collected based on the involvement of these rules in both success-
ful and unsuccessful proof branches. This provides a heuristic score for making
judgements about the correctness of any rule.

A simple mechanism for syntax highlighting based on such information is proposed
and a small case study presented illustrating its operation. No implementation of
these ideas yet exists.

Key words: Proof-Directed Debugging, Program Slicing,
Verification

1 Introduction

The use of verification for locating errors in theorems, and more specifically
programs, is a relatively neglected area as is the provision of interfaces to assist
in this task. This paper considers the proof-directed debugging of functional
programs and proposes an extension to current theorem proving interfaces to
support this.

The extension is based on the assumption that the debugging process in-
volves locating a program statement or, in the case of functional programs,
function case which is incorrect. This incorrect statement will appear in a pro-

gram slice which can be identified during verification. Other program slices

1 This research was funded by EPSRC grant GR/S01771/01 and Nottingham NLF grant
3051.
2 Email:lad@cs.nott.ac.uk

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Dennis

leading to correct deductions may also be identified during proof. This infor-
mation can then be used to create appropriate syntax highlighting of function
cases in an interface. A potential highlighting scheme is put forward and a
simple case study based around Isabelle/HOL [12] and ProofGeneral [1] is
performed to show how this would work.

No implementation has yet been performed however potential issues are
discussed in the context of Isabelle Proof General.

Although the discussion in this paper is based around an application to
proof-directed debugging it is likely that similar mechanisms may also be useful
in other situations where the cause of a proof failure needs to be identified.

The paper is organised as follows: §2 discusses the concepts of proof-
directed debugging and program slicing; §3 present a mechanism for tracking
program slices through a proof and §4 presents examples of this mechanism
at work via a simple case study; §5 discusses some results using a similar
mechanism within an automated system; §6 looks at some related work and
§7 discusses implementation issues and other further work.

2 Proof Directed Debugging and Program Slicing

Proof-directed debugging was first suggested by Harper [10] and work is un-
derway to extend this into a framework for locating program errors through
the proof process [6]. The idea of using a framework rather than relying on
a user’s skill at general proof, is based on the example of Algorithmic debug-
ging [15,9,11]. Algorithmic debugging constructs an execution tree of a run
of the program on some input and then queries the user each time this tree
branches. This identifies branches which are returning false results and so
locates sections of code responsible for errors.

Program Slicing was first suggested by Weiser [17]. The key idea was to
identify a variable of interest at some point in a program (called the slicing

criterion) and then extract a fragment of the program (a program slice) either
containing all those statements upon which the value of the variable at that
point depended or that fragment whose values were effected by the value
of that variable at that point. Program Slicing techniques for imperative
languages have generally followed this work [16] using control flow graphs, data
flow graphs or other graph-based representations of programs with statements
represented as nodes in the graph and a program slice as a set of nodes from
the graph. In functional programs function application takes the place of
program statements. The notion of a slicing criterion can also be generalised
(e.g. to a projection as in [14]).

The intention behind proof-directed debugging is to use the branching
structure of a proof to create program slices and use these to assist in the
location of errors. There is clearly a need to provide appropriate tools (i.e.
tactics/Isar methods) tailored to this task. This paper does not concentrate
on this aspect but considers instead the way a theorem prover’s interface could

2

Dennis

assist a user through the presentation of relevant program slices.

3 Proof Tree Branches as a Slicing Criterion

The verification of functional programs naturally involves splitting a program
into a set of equational rules each corresponding to a case in its functional
definition. The usage of these rules in the proof can thus be tracked, effectively
creating a program slice (ie. those parts of the program used in the proof of
any program), and a “score” maintained indicating how many true and false
branches of the proof have used that rule (typically as part of a simplification
process). These scores can then be used by the interface to return additional
information to the user. For simplicity, we shall continue to refer to these rule
traces as program slices even though, in the context of theorem proving, there
is no reason why they should not be a general collection of definitions, lemmas
and theorems unrelated to a any program.

Let us consider a simple insertion sort program written in ML.

fun insert x [] = [x]
| insert x(h::t) =

if x ≤ h then x :: h :: t
else h :: insert x t;

fun sort [] = []
| sort (x :: xs) = insert x (sort xs);

Each case of the definition becomes one of four equational rules:

(i) insert x [] = [x]

(ii) insert x (h::t) = if x ≤h then x :: h :: t

else h :: insert x t

(iii) sort [] = []

(iv) sort (x :: xs) = insert x (sort xs)

We suggest that a proof-directed debugging interface should allow a user
to nominate a selection of such definitions as “suspect” during a verification
attempt. Obviously a user could choose to nominate all definitions involved
in their development as suspect including ones related to the specification
and even pre-existing definitions from the theorem prover’s theory database
however our suspicion is that this would lead to an overloading of information
rendering program slicing of little use. This is an obvious subject for some
experimental investigation once such an interface has been implemented.

We assume that a theorem proving system generates a sequence of proof

states which, at the very least, contain lists of current open goals in the proof
attempt. The central idea is to associate program slices with the goals in these
proof states. Each goal, g, in a proof state is associated with a set of suspect
rules (a slice), S(g), which have been used in the derivation of that goal. In

3

Dennis

addition to this the system also stores a set of triples in each proof state, s,
associating each suspect rule, r, with two integers the first of which, the good
integer, good(r, s) is incremented whenever a proof branch is closed (because
it has been successfully proved) and the second of which, the bad integer,
bad(r, s), is incremented whenever a goal is derived with a False conclusion
(this can be revised if a contradiction is subsequently found in the hypotheses).
Where it is obvious, the state argument will be dropped from these functions.
These two scores can be used to form a probabilistic estimate of the chance
that a rule is correct.

Initially good(r) and bad(r) are set to zero for all rules, r, and the initial
goal, gi, is associated with the empty program slice, S(gi) = []. As the proof
progresses the system updates the information as follows:

Consider two proof states, sn followed by sn+1. sn+1 is derived from sn by
a tactic t which replaces some parent goals with a set of child subgoals. For
each new subgoal, g, in such a proof state with parent, gp.

• Let R be the set of suspect rules used by t to derive g from gp, S(g) =
S(gp) ∪ R.

• If g has a False conclusion and gp did not then for all rules r in S(g),
bad(r, sn+1) = bad(r, sn) + 1.

• If g has a True conclusion then for all rules r in S(g), good(r, sn+1) =
good(r, sn)+1. Furthermore if the conclusion of gp was False then bad(r, sn+1) =
bad(r, sn) − 1.

This last modification allows a False goal to become closed (by discovering
a contradiction in the hypotheses) and then corrects the bad integer to
cancel out the effect produced by the previous deduction of False.

• For all remaining rules, r, good(r, sn+1) = good(r, sn) and bad(r, sn+1) =
bad(r, sn).

On the whole it would appear to be preferable if interfaces take on the
task of tracking rule usage information rather than the underlying theorem
prover since this information is extra-logical. However in automated, or semi-
automated systems such as proof planners (e.g. IsaPlanner [8] and λClam [13])
there would appear to be benefits in tracking such information in the proof
system itself so that it can inform an automated debugging process [5].

The obvious mechanism for presenting this tracking information to a
user is as a syntax highlighted list of rules associated with each goal.
For instance this paper will use the monochrome conventions shown in
Table 1. The categories have been selected because they proved to
be the most informative in the examples discussed below. The are
interpreted as used to derive this goal, probably incorrect and
probably correct. There is no reason, in principle, why such highlight-
ing should be restricted to just three categories. Indeed, following results in
an automated system, we argue in §5 for a further category of “worst” rule
based on an ordering of tuples of bad and good integers.

4

Dennis

Highlighting convention

r ∈ S(g) bold

bad(r) > good(r) underline

bad(r) < good(r) italics

Table 1
Highlighting Conventions used in this Paper

4 Case Study

We now show some examples of proof attempts of incorrect theorems under-
taken in the Isabelle/Isar system [12,18]. These examples are drawn from a
corpus of buggy student ML programs [7].

We will consider the verification of the ML program shown in figure 1.
This is a real example submitted by a student as the solution to an exercise

fun insert x [] = []
| insert x(h::t) =

if x ≤ h then x :: h :: t
else h :: insert x t;

fun sort [] = []
| sort (x :: xs) = insert x (sort xs);

fun Once [] = []
| Once (x1 :: x2 :: xs) =

if x1 = x2 then Once (x2 :: xs)
else x1 :: x2 :: Once xs;

fun onceOnly [] = []
| onceOnly (x :: xs) = Once (sort (x :: xs));

Fig. 1. A Buggy ML Program

to provide a function, onceOnly, that when applied to a list, l, returned a
new list containing only one copy of each element in l. There are three errors
in this program. Firstly the basis case of the insert function is incorrect.
Secondly a case is missing in the definition of the Once function (the case for
lists of length one) and lastly in the else branch of the recursive case the
expression should be x1 :: Once (x2 :: xs).

An Isabelle formalisation of the student’s program taken from [7] is shown
in figure 2. It should be noted that this represents a naive shallow embedding
of ML into Isabelle but one sufficient for proof-directed debugging at this scale.
In order to verify this program a further function, count_list which counts
the number of occurrences of its first argument in its second was used. The

5

Dennis

primrec
insert_nil: "insert x [] = []"
insert_cons: "insert x (h#t) = (if x ≤ h then

x#h#t else h#insert x t)"

primrec
sort_nil: "sort [] = []"
sort_cons: "sort (x#xs) = insert x (sort xs)"

recdef Once "measure length"
once_nil: "Once [] = []"
once_cons: "Once (x1#x2#xs) = (if x1=x2 then

Once (x2#xs) else x1#x2#Once xs)"

primrec
onceOnly_nil: "onceOnly [] = []"
onceOnly_cons: "onceOnly (x#xs) = Once (sort (x#xs))"

Fig. 2. Isabelle Formalisation of the Buggy program

first theorem to be proved is:

¬x ∈ l =⇒ count list x (onceOnly l) = 0

For the purposes of this case study we assume that the definitions of
insert, sort, Once and onceOnly are all considered suspect which gives
us eight suspect rules: insert_nil, insert_cons, sort_nil, sort_cons,
once_nil, once_cons, onceOnly_nil and onceOnly_cons. We also as-
sume that the following theorem has been proved:

onceOnly l = Once(sort l)(1)

The remainder of this section is organised as follows. §4.1 illustrates slice
creation in the initial stages of the proof in order to give an idea of how the
information updating works, §4.2 illustrates the effect of reaching a false goal,
and §4.3 illustrates what happens when cases are missing.

4.1 Basic Usage

The following table shows the information held in the initial proof state

Rule good bad Rule good bad

insert_nil 0 0 Once_nil 0 0

insert_cons 0 0 Once_cons 0 0

sort_nil 0 0 onceOnly_nil 0 0

sort_cons 0 0 onceOnly_cons 0 0

6

Dennis

From now on we will omit the full table but concentrate instead on the sum-
mary of the information that can be provided with syntax highlighting.

At the start of the proof there is one Isabelle goal

1. ¬ x ∈ l =⇒ count_list x (onceOnly l) = 0

to which is attached the empty slice. Presentationally it seems advisable to
omit any rules defining constants not appearing in the current goal So the
initial goal would display the additional information (NB. at present these
rules do not fit into any of the categories described in Table 1 therefore neither
is highlighted in any way):

• "onceOnly [] = []"

• "onceOnly (x#xs) = Once (sort (x#xs))"

The proof attempt proceeds by simplifying, replacing onceOnly l with
Once (sort l), according to (1), and then applying length induction on
the list 3 . Since (1) isn’t in our suspect list its use in simplification isn’t
recorded. We don’t chain rule tracking back through additional lemmas so
there is no record that, even implicitly, onceOnly_nil and onceOnly_cons

were involved in the goal. Once again it will need experimentation with an
implementation to determine whether this is a sensible choice. This gives us
the following Isabelle goal:

1. !!xs. [| ∀ ys. length ys < length xs → ¬ x ∈ ys
→ count_list x (Once (sort ys)) = 0;

¬ x ∈ xs |]
=⇒ count_list x (Once (sort xs)) = 0

This introduces two new suspect constants but has so far used none of our
rules. Furthermore the constant onceOnly is no longer mentioned and so
its definitional rules are dropped from the display list. Hence the following
suggested output.

• "sort [] = []"

• "sort (x#xs) = insert x (sort xs)"

• "Once [] = []"

• "Once (x1#x2#xs) = (if x1=x2 then Once (x2#xs)

else x1#x2#Once xs)"

The next step is a case split on xs using the Isar cases method followed
immediately by simplification of all goals. This automatically discharges the
first goal associated with the case split (for xs = []) leaving us with one goal:

1. !!a list. xs = a # list =⇒

3 It takes some experience with these styles of proof to select length induction as the
appropriate scheme. At present this work presumes a user with relatively sophisticated
theorem proving ability yet paradoxically rather naive program debugging skills – providing
further support in the choice of Isar methods is left to further work.

7

Dennis

count_list x (Once (insert a (sort list))) = 0

Discharging the first goal creates a slice consisting of sort_nil and once_nil

and updates the good integers so that good(sort nil) = good(once nil) = 1.
The remaining goal was generated using the rule sort_cons and so its slice
is [sort_cons].

Following the syntax highlighting conventions, therefore, we get the fol-
lowing rule annotations:

• "insert x [] = []"

• "insert x (h#t) = (if x < h then x#h#t else h#insert x t)"

• "sort [] = []"

• "sort (x#xs) = insert x (sort xs)"

• "Once [] = []"

• "Once (x1#x2#xs) = (if x1=x2 then Once (x2#xs)

else x1#x2#Once xs)"

already we are seeing information about program slices in which we can have
some confidence and we get some information on the slice which is relevant to
the current goal.

4.2 Inferring False

It becomes clear, while attempting the above proof, that some independent
lemmas need to be established about the sort function. This provides a
good example of how the system behaves when a goal evaluates to False. Let
us consider a simple lemma to show that all members of a list, l, are also
members of sort l.

We start with the goal:

theorem "x ∈ l =⇒ x ∈ (sort l)"

Following our previous rules and guidelines the displayed rules are:

• "sort [] = []"

• "sort (x#xs) = insert x (sort xs)"

The proof continues by length induction on l (which does not change the
annotation) followed by a case split on xs and simplification of all goals. The
first subgoal is discharged automatically, leaving:

1. !!a list.
[| if a = x then True else x ∈ list; xs = a # list;

∀ ys. length ys < Suc (length list) →

x ∈ ys → x ∈ sort ys;
if a = x then True else x ∈ list |]

=⇒ x ∈ insert a (sort list)

and the highlighted rules:

8

Dennis

• "insert x [] = []"

• "insert x (h#t) = (if x ≤h then x#h#t else h#insert x t)"

• "sort [] = []"

• "sort (x#xs) = insert x (sort xs)"

It then proceeds by cases on (sort list) followed by simplification which
gives two subgoals with their associated program slices:

1. [| ¬ x ∈ list; if a = x then True else x ∈ list;
sort list = [];
if a = x then True else x ∈ list |]

=⇒ False

• "insert x [] = []"

• "insert x (h#t) = (if x ≤h then x#h#t else h#insert x t)"

• "sort [] = []"

• "sort (x#xs) = insert x (sort xs)"

2. [| if a = x then True else x ∈ list; sort list 6= [];
x ∈ list → x ∈ sort list;
if a = x then True else x ∈ list |]

=⇒ x ∈ insert a (sort list)

• "insert x [] = []"

• "insert x (h#t) = (if x ≤h then x#h#t else h#insert x t)"

• "sort [] = []"

• "sort (x#xs) = insert x (sort xs)"

This identifies a program slice that has been involved in producing the
False goal ([insert_nil, sort_cons]) and therefore assists in the hunt for
errors.

In some similar proofs the step case is automatically discharged in which
case good(sort cons) = bad(sort cons) = 1 and the rule’s annotation be-
comes "sort (x#xs) = insert x (sort xs)" for the first goal leaving
only insert_nil highlighted as “probably incorrect” giving further clues as
to the culprit.

In this particular proof, attempts to prove the second goal lead to further
proof branches that result in False conclusions attributable to insert_nil

but also several branches that are discharged – overall good(insert nil) = 0 in
all states while in general bad(sort cons) = good(sort cons)+1. This suggests
that the user may need access to further information about a rule’s good and
bad integers. Although it is unclear how such information can be conveyed by
syntax highlighting alone, it would certainly be possible to introduce a further
highlight for the “worst” rules (see §5) and/or to allow optional display of the
good and bad values alongside the rules in which case insert_nil would be

9

Dennis

singled out in this example.

4.3 Getting Stuck

Assuming that insert_nil has been fixed, the last example we will consider
picks up the main verification at a later stage. We will now assume that
insert and sort have been removed from the suspect list. Two new func-
tions and a new lemma have been introduced. minl returns the minimum
element of a list of naturals and -minl returns a list with one occurrence of
its minimum element removed. Among other things the following lemma has
been established:

l 6= [] =⇒ (sort l) = (minl l)#sort(−minl l)

which when used in the proof leads to the goal

1. count_list x (Once (minl (a#list) #
sort (-minl (a#list)))) = 0

and the highlighted rules:

• "Once [] = []"

• "Once (x1#x2#xs) = (if x1=x2 then Once (x2#xs)

else x1#x2#Once xs)"

A proof by cases follows on whether −minl(a#list)) = [] simplification of
the first goal leaves two subgoals of which the first:

1. [| a 6= x & ¬ x ∈ list;
(if a = minl (a # list) then list

else a # -minl list) = [];
xs = a # list |]

=⇒ count_list x (Once [minl (a # list)]) = 0

is associated with the following highlighted slices:

• "Once [] = []"

• "Once (x1#x2#xs) = (if x1=x2 then Once (x2#xs)

else x1#x2#Once xs)"

While this doesn’t directly highlight an error, the juxtaposition of the goal
and the relevant rules, particularly with neither highlighted as used directly
in the goal should prompt a user to recognise the omission of the relevant
information.

5 Supportive Results

The ideas behind the interface design proposed here arise from work on the
automated detection and repair of such errors within the proof planning frame-
work [4]. Program slice tracking has been implemented in the λClam [13] proof

10

Dennis

planning system. In the absence of an implementation in a theorem prover
interface we report some results on the success of the heuristics within this
system. We used a variation on the system reported in [4] 4 . That system
attempts to repair erroneous rewrite rules. The system reported here simply
terminated false branches and concluded the proof attempt by, for each rule,
r, reporting good(r) and bad(r). Unfortunately some errors, especially those
appearing in the recursive cases of definitions caused the system to be non-
terminating, therefore an additional heuristic was used to close branches if the
step case of an inductive proof could not be solved by appeal to the induction
hypothesis 5 . We ran two experiments. In Experiment 1 closed step case
branches did not contribute to the good/bad scores (ie. strictly adopting the
conventions proposed in this paper). In Experiment 2 such closed branches
increased the bad scores (arguably in a human proof attempt these branches
would eventually have led to a False goal rather than the non-termination
caused in λClam).

The table 2 shows the results for both sets of runs. The experiments
involved 24 non-theorems based around errors in the definitions of list append,
list membership and the insert and sort programs already covered in this
paper. The theorems were selected from the λClam benchmark set rather than
being actual specifications for these functions. As such these results should be
considered indicative only. The tables report, for each experiment, whether
the “incorrect” rewrite rule was underlined (ie. whether its good score was
greater than its bad score) and the average number of rules underlined. This
is the average number when at least one rule is underlined – in several cases no
rule had a larger bad integer than a good integer. The intention in presenting
this average is to provide evidence of the extent to which the heuristics help
focus attention on an erroneous rule – after all it is not much help if all the
rules are underlined. Including cases where no rule is underlined reduces this
average and tends to suggest better discrimination than is actually the case.
To follow this up we provide a percentage of the rules excluded. This is the
percentage of the rules involved with definitions actually used in the proof
which were not underlined. Again this only refers to situations where at least
one rule was highlighted to give an impression of the extent to which the
choices were narrowed down. False positives reports the number of situations
where some rule was highlighted but the incorrect rule was not. We also
computed an overall score for each rewrite rule as a tuple of the bad score and
the good score. These tuples were then ordered according to ≻ where

(b1, g1) ≻ (b2, g2) ⇐⇒ (b1 < b2) ∨ ((b1 = b2) ∧ (g1 > g2))

and < and > are the standard order on natural numbers. We report on the

4 Relevant code is available from the author on request.
5 with the exception of a few special cases, for instance where the step case proof had
branched following a case split

11

Dennis

percentage of cases where the intended error was picked out by this heuristic
and when it was the only rule with the highest score.

Exp 1. Exp 2.

Incorrect Rewrite Underlined 50% 66%

Average No. Rules underlined 1.62 2.11

Rules Excluded 52% 38%

False Positives 0 1

Incorrect Rewrite has Highest Score 62.5% 79.17%

Incorrect Rewrite has Unique Highest Score 29.17% 54.17%

Table 2
Summary of Experimental Results in λClam

The results show that it would be useful if the interface could also flag
those rules which are scoring most highly under ≻ even where all rules are
being used in more good branches than bad since this is clearly giving the
best information about the location of errors.

The use of bad scoring for “stuck” goals (Experiment 2) is problematic – it
improves the rate at which incorrect rules are identified, and the rate at which
bad rules are highlighted as “worst” at the cost of losing discrimination (see
Rules Excluded). Since the stuck heuristic is a crude attempt to mimic human
“getting stuck” behaviour it is perhaps not surprising the effects are equivocal.
At any rate it is clear that, to a certain extent, this heuristic is too eager and
prevents (in the first case) the proof from progressing to false branches that
would (hopefully) later get scored if pursued by a human prover and, in the
second case, generates too many false positives. Improving the heuristic is well
outside the scope of this paper but interpretation of the above results need
to bear its limitations in mind. The heuristic does suggest that there may
be some benefit in allowing a human prover intervene in the scoring process
and mark some branches as “bad” even where a False conclusion has not been
reached.

Obviously these results are only indicative of how the heuristics might
serve human users as opposed to an automated system but they do suggest
that profitable use can be made of the information contained in program slices
attached to proof branches. In particular the “worst” score looks particularly
promising in terms of directing a user’s attention to errors.

6 Related Work

The HAT tool [2] uses a mixture of algorithmic debugging and program slicing
to direct a user’s attention to relevant parts of a program’s source. HAT

12

Dennis

creates an Evaluation Dependency Tree (EDT) tracing the execution sequence
of function calls on a sample input. The nodes in this tree can be associated
with their “call site” in the program. This allows the system to use a syntax
highlighting mechanism to relate debugging traces back to specific parts of
code. The tool works by identifying slices in the EDT and relating these back
to the relevant portions of the code. This has recently been extended [3] to use
a very similar polling system to that described above based on superimposing
“correct” EDTs and “incorrect” EDTs to generate heuristic scores by which
a “worst” slice can be identified.

In general the HAT tool only displays the most immediate redex rather
than all those involved in a slice in order to reduce information overload –
while it may be desirable to do something similar in proof-directed debugging
it isn’t at all obvious that the last rule to be used will generally prove to be
the one at fault.

This is the first work I’m aware of that considers the use of proof tree
branches as a slicing criterion or considers integrating the syntax highlighting
interface of a debugging tool such as HAT into a Theorem Prover.

7 Further Work

7.1 Implementation

Clearly the most pressing and important piece of further work is providing
an implementation of verification based program slicing to allow experimental
evaluations of the extent to which it genuinely helps locate errors.

Out intention is to provide an implementation in Isabelle/Isar using the
Proof General interface. This allows there to be a clean separation between the
information used by the interface and that used by the underlying theorem
prover. Such an approach also creates some challenges however, since the
necessary properties of goals and proof states will have to be inferred. On
the whole it should be relatively straightforward to identify goals and key
constants within goals although it there will be some challenges involved in
keeping track of proof states, in particular the relationships between parent
and child goals needed to make updates correctly. In Isabelle successfully
discharged goals are dropped from the proof state presented to the interface
which again is likely to raise some challenges in the tracking of information.

Although no examples have been shown here where a rule is used directly
with a tactic (e.g. the rule method in Isar) this also needs to trigger updates
of tracking information. In general this should be relatively straightforward
based on simple analysis of tactic calls.

Simplification is the major step where the exact rules used by the system
are effectively concealed from the user. It is also the most important tactic
which can be used across multiple goals discharging some but not others (so
leading to ambiguities about successful proof branches) and can generate and

13

Dennis

discharge new branches within its own application invisible to the user. For-
tunately Isabelle’s simplifier provides a tracing mechanism from which is it
possible to infer rule usage and determine when a proof branch has been dis-
charged, from which it should be possible to infer the necessary information.
It may also be possible to use the proof object (of the top theorem) to track
program slice information 6 .

We have not considered how backtracking should interact with program
slicing. At present the design assumes that proof states are generated in
sequence and implicitly assumes that they can only be backtracked in that
sequence. However many theorem provers allow backtracking on any open goal
not just the those most recently derived. In this case it may be necessary for
the interface to store additional information about the relationships between
goals and their parents from proof state to proof state. This problem may
also mean that ultimately it is cleaner to store program slice information in
the prover’s proof state rather than in the interface.

7.2 More Detailed Program Slices

So far we have considered program slices whose nodes are identifiable with
the simple case structure of function definitions however there are further
advantages to be gained if more sophisticated slicing is used in which function
calls/sub-expressions are considered as nodes (as is common when applying
program slicing to functional programs).

In the following example, again genuine, a student has been asked to pro-
vide a function, removeAll, which removes all occurrences of its first argu-
ment from its second. They appear to have programmed by analogy from a
previous function, removeOne, where only one occurrence was to be removed
and have forgotten to replace one call to this program. The code is expressed
in Isabelle as:

primrec
removeAll_nil: "removeAll x [] = []"
removeAll_cons: "removeAll x (h#t) = (if x = h

then removeAll x t else h#removeOne x t)"

Consider an attempt to establish that

¬x ∈ removeAll x l

The proof proceeds by induction on l followed by simplification of all goals
automatically discharging the base case and leaving the step case goal:

1. !!a l. ¬ x ∈ removeAll x l
=⇒ (x = a → ¬ a ∈ removeAll a l) &

(x 6= a → a 6= x & ¬ x ∈ removeOne x l)

6 My thanks to an anonymous referee for this suggestion.

14

Dennis

and highlighted rules.

• "removeAll x [] = []"

• "removeAll x (h#t) = (if x = h then removeAll x t

else h#removeOne x t)"

Use of some introduction rules (impI and conjI) and more simplification
gives three subgoals which are based around a case split on whether x = h

and then (following from a lemma about ∈) on the values in the head and
tail of h#removeOne x t. The first of these (where x = h) is automatically
discharged leaving two subgoals, the first of which is

1. [| x 6= a; ¬ x ∈ removeAll x l |] =⇒ a 6= x

Ideally we would like to highlight the rules associated with this goal as
follows:

• "removeAll x [] = []"

• "removeAll x (h#t) = (if x = h then removeAll x t

else h #removeOne x t)"

showing that removeAll x t is probably correct and that this goal is based
on the value of h in h#removeOne x t.

This goal is easily discharged leaving only the goal:

2. [| x 6= a; ¬ x ∈ removeAll x l |] =⇒ ¬ x ∈ removeOne x l

Again ideally we would like to highlight parts of the second program slice
differently:

• "removeAll x [] = []"

• "removeAll x (h#t) = (if x = h then removeAll x t

else h# removeOne x t)"

Focusing attention on the problematic part of the rule which will eventually
lead to False goals.

It should be easy enough to represent these slices within a system, for
instance a simple list of integers can be used to indicate the position of a
sub-expression within a rule and all sub-expressions of suspect rules stored
in for use program slices. However it is much harder to see how information
about which slice is relevant to a goal can be inferred without help by an
interface such as Proof General. Indeed in order to supply the necessary
information a theorem prover’s internals may need modification in order to
track the unifications performed when rules are applied in a meaningful way.

7.3 Imperative Programs

Obviously a long term objective is to extend this work to imperative programs.
In these cases we lose the correspondence between program locations and
rewrite rules. We would therefore need to adapt the concept of “used in a

15

Dennis

proof branch” to, for instance, identify individual program statements that
had been involved in an instantiation of the assignment axiom in this branch
of the proof.

8 Conclusion

This paper has discussed the use of verification as a program slicing tool.
It has discussed how proof branches can be used to build up program slices
based around equational rewrite rules and described a simple mechanism for
deriving a heuristic score for how likely a given rule is to be correct. It has
then discussed how such information might be presented to a user.

The mechanism proposed relies on a user identifying “suspect” rules. In
the case study these all related to program function cases however there is
no reason, in principle, why any definition or theorem in a theory could not
be treated in the same way, allowing suspect specifications and definitions in
general (non-verification based) proofs to be handled in the same way. The
general mechanism can almost certainly be used in any situation where a
reason is being sought for a proof failure.

Considerable further work, including an implementation, is required.

References

[1] D. Aspinall. Proof general: A generic tool for proof development. In Tools and
Algorithms for the Construction and Analysis of Systems, Proc TACAS 2000,
volume 1785 of LNCS. Springer, 2000.

[2] O. Chitil. Source-based trace exploration. In C. Grelck, F. Huch, G. J.
Michaelson, and P. Trinder, editors, Implementation and Application of
Functional Languages, 16th International Workshop, IFL 2004, LNCS 3474,
pages 126–141. Springer, March 2005.

[3] T. Davie and O. Chitil. One right does make a wrong. In H. Nilsson and M. van
Eekelen, editors, Seventh Symposium on Trends in Functional Programming,
pages 27–40, 2006.

[4] L. A. Dennis. Program slicing and middle-out reasoning for error location and
repair. In W. Ahrendt, P. Baumgartner, and H. de Nivelle, editors, IJCAR
2006 Workshop onDisproving - Non-Theorems, Non-Validity, Non-Provability,
2006. To Appear.

[5] L. A. Dennis. The use of program slicing and middle-out reasoning to identify
and repair program errors. Technical report, University of Nottingham, 2006.
Submitted to IJCAR-2006 Workshop on Disproving - Non-Theorems, Non-
Validity, Non-Provability.

[6] L. A. Dennis, R. Monroy, and P. Nogueira. Proof-directed debugging and repair.
In H. Nilsson and M. van Eekelen, editors, Seventh Symposium on Trends in
Functional Programming, pages 131–140, 2006.

16

Dennis

[7] L. A. Dennis and P. Nogueira. What can be learned from failed proofs of
non-theorems? In J. Hurd, E. Smith, and A. Darbari, editors, TPHOLs 2005:
Emerging Trends Proceedings, pages 45–58, 2005. Technical Report PRG-RP-
05-2, Oxford University Computer Laboratory.

[8] L. Dixon and J. D. Fleuriot. IsaPlanner: A prototype proof planner in Isabelle.
In F. Baader, editor, CADE19, volume 2741 of LNCS, pages 279–283. Springer,
2003.

[9] P. Fritzson, N. Shahmehri, M. Kamkar, and T. Gyimothy. Generalized
algorithmic debugging and testing. ACM Lett. Program. Lang. Syst., 1(4):303–
322, 1992.

[10] R. Harper. Proof-directed debugging. Journal of Functional Programming,
9(4):471–477, 1999.

[11] H. Nilsson and P. Fritzson. Algorithmic debugging for lazy functional languages.
Journal of Functional Programming, 4(3):337–370, July 1994.

[12] T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL: A Proof Assistant
for Higher-Order Logic, volume 2283 of LNCS. Springer, 2002.

[13] J. D. C. Richardson, A. Smaill, and I. Green. System description: Proof
planning in higher-order logic with lambda-clam. In C. Kirchner and
H. Kirchner, editors, 15th International Conference on Automated Deduction,
volume 1421 of LNCS, pages 129–133. Springer, 1998.

[14] N. Rodrigues and L. Barbosa. Slicing functional programs by calculation. In
Proceedings of the Dagstuhl Seminar on Beyond Program Slicing, 2005.

[15] E. Y. Shapiro. Algorithmic Program Debugging. MIT Press, 1983.

[16] F. Tip. A survey of program slicing techniques. Journal of programming
languages, 3:121–189, 1995.

[17] M. D. Weiser. Program slicing. IEEE Transactions on Software Engineering,
10(4):352–357, 1984.

[18] M. Wenzel. Isar - a generic interpretative approach to readable formal
proof documents. In Y. Bertot, G. Dowek, A. Hirschowitz, C. Paulin, and
L. Thery, editors, Theorem Proving in Higher Order Logics, 12th International
Conference, TPHOLs’99, number 1690 in LNCS. Springer, 1999.

17

	Introduction
	Proof Directed Debugging and Program Slicing
	Proof Tree Branches as a Slicing Criterion
	Case Study
	Basic Usage
	Inferring False
	Getting Stuck

	Supportive Results
	Related Work
	Further Work
	Implementation
	More Detailed Program Slices
	Imperative Programs

	Conclusion
	References

