
What can be Learned from Failed Proofs of

Non-Theorems?

Louise A. Dennis and Pablo Nogueira

School of Computer Science and Informaton Technology, University of Nottingham,
Nottingham, NG8 1BB
lad@cs.nott.ac.uk

pni@cs.nott.ac.uk

Abstract. This paper reports an investigation into the link between
failed proofs and non-theorems. It seeks to answer the question of whether
anything more can be learned from a failed proof attempt than can be
discovered from a counter-example. We suggest that the branch of the
proof in which failure occurs can be mapped back to the segments of code
that are the culprit, helping to locate the error. This process of tracing
provides finer grained isolation of the offending code fragments than is
possible from the inspection of counter-examples. We also discuss ideas
for how such a process could be automated.

The use of mathematical proof to show that a computer program meets its
specification has a long history in Computer Science (e.g. [13, 12]). However the
techniques and tools are only used in very specialised situations in industry where
programmers generally rely on testing and bug reports from users to assess the
extent to which a program meets its specification. One of the many reasons to
which this poor uptake is attributed is that the final proof will tell you if the
program is correct, but failing to find a proof does not, on immediate inspection,
help in locating errors. This problem can be particularly severe when using
automated proof techniques which generally produce no proof trace in the case
of failure. However cases have been reported where the process of attempting
a proof by hand has highlighted an error. Anecdotal evidence suggests that
errors are located by examining and reflecting on the process of the failed proof
attempt.

It is worth noting the comparative success of model checking techniques
(e.g. [9]), part of which has been attributed to the fact that model-checkers
return counterexamples when they fail. As a result, there has been a great deal
of interest recently in the detection of counter-examples for software programs
and protocols (e.g. [17]). The purpose of the work reported here was to see if the
process of attempting and then failing to find a proof could tell a user anything
further about software errors than could be extracted from a counter-example.

We start by outlining our methodology (§1) and give a broad categorisation
of the errors we encountered (§2), we then examine some specific examples of
buggy programs, the failed proof attempts they generated, how these attempts
can be used to assign “blame” to particular segments of the original source code



and in some cases to suggest patches(§3). Lastly we discuss ideas for automating
this process and some challenges that such a system would face (§4).

1 Methodology

We have opted to study programs produced by novice programmers, specifically
undergraduates working on functional programming modules. There were three
main reasons why we selected this domain: it is relatively easy to acquire a large
number of such programs; they are likely to be well suited to attempts at correct-
ness proofs and easy to translate into the object language of theorem provers;
and they tend to be relatively small so the associated correctness proofs can be
generated comparatively rapidly allowing us to focus on surveying errors. There
are clearly also some problems with selecting such a domain, in particular that
the errors produced by novices may be dissimilar to those produced by profes-
sional programmers. It is also the case that conclusions drawn about the utility
of failed proof attempts in functional programming may not tell us anything
about their utility in other paradigms.

We gathered a test bed of such programs and used standard testing to identify
those which were incorrect. This process also generated counter-examples for
those programs. We then attempted hand proofs in the Isabelle/HOL theorem
prover [15, 14] to see if anything further could be learned about the nature of
the error above that already learned from the counter-examples.

Our choice of Isabelle was dictated by an interest in extending this work to
an automated system to produce program error diagnoses based on failed proof
attempts. We have already performed some initial investigations in this area
using the proof planning paradigm [5]. IsaPlanner [6] is a proof planning system
built on top of Isabelle so this made the combination of Isabelle/IsaPlanner an
attractive option. Furthermore our test database contained, almost exclusively,
recursive programs suitable for proof by mathematical induction, an area in
which the IsaPlanner system specialises.

The proof planning paradigm [2] works by capturing patterns of proof across
families of similar problems. The work reported here discusses hand proof at-
tempts in Isabelle performed with the intention of defining patterns of failure
which could then be expressed within a proof planning system.

Our initial investigations involved a set of ML and Haskell Programs gen-
erated by students at the Universities of Edinburgh1 and Nottingham2 respec-
tively. We performed a naive shallow embedding by hand of these programs into
Isabelle/HOL. We assumed that all datatypes mapped directly to the corre-
sponding Isabelle datatype (i.e. Isabelle lists behave in the same way as ML lists
etc.) and that built-in functions (such as list append, list membership etc.) could
also be directly transferred. In some cases we had to edit definitions so they used

1 The original author of these exercises is unknown. They were set as part of the
Computer Science 2 module.

2 Exercise authored by Dr. Graham Hutton for the Functional Programming module.



structural recursion – for instance when writing functions on the natural num-
bers students often used n and n - 1 when defining the recursive case, rather
than n + 1 and n. However, given the similarity between the Isabelle/HOL the-
ories and ML these assumptions are relatively safe and certainly adequate for
an initial investigation. The Haskell programs provided greater challenges. We
had issues with the representation of type classes and lazy evaluation and we
also found that the match between the functions in the Haskell prelude and Is-
abelle’s existing theories was often insufficient3. This reduced our confidence in
the conclusions we could draw from the Haskell examples. In this paper we shall
only examine ML examples however the Haskell examples do broadly support
our conclusions.

In what follows we shall use the typewriter font family to represent ac-
tual fragments of program code from our corpus and latex math environment

to represent Isabelle definitions and goals so it is clear when we are talking about
actual ML and when we are discussing our translation into Isabelle/HOL.

2 Categorisation of Errors

2.1 Errors in the Basis Case of a Recursive Program

Our previous work investigated the errors that occur in the basis cases of recur-
sive programs [5] and identified two common classes of error in novice programs:
that one or more base cases are omitted or that a base case is incorrect. These are
distinguished in proofs by reaching a proof goal in the base case of an inductive
proof which contains a “user-defined” function which can not be simplified or al-
ternatively by the derivation of False. These observations were largely confirmed
by this study. In some cases we gained extra information from Isabelle’s recursive
definition mechanisms. For instance primrec (Isabelle’s mechanism for defining
primitive recursive functions) will issue a warning that there is no equation for a
particular constructor if a case is omitted. However, often functions with missing
cases required the use of the more general recdef definition mechanism4 which
did not issue such warnings. We also found that there were instances where a
student would ensure that a sub-function was never called on particular cases
and therefore the fact that it was only partially defined was not an issue for the
overall correctness of the program.

2.2 Errors in the Recursive Case of a Recursive Program

Initially we observed three different kinds of error in recursive cases. Firstly, the
recursive case contained insufficient information (it was embeddable within a

3 We also had problems with an exercise specification which under-specified the type
of bits to integers although it was clear the functions were only to be tested on 0
and 1.

4 These errors tended to arise when the student was attempting a two step recursive
scheme which primrec would not allow.



“correct” recursive case), secondly the recursive case contained too much infor-
mation (a “correct” recursive case was embeddable within it), and thirdly there
was no embeddability relation with the correct recursive case. We had hoped
that these three errors would map to three different styles of failure observed in
our proofs. However experimentation with a number of artificially created ex-
amples revealed that this was not the case. Furthermore experimentation with
our actual corpus revealed that finer distinctions could be drawn (eg. indicating
that a particular sub-expression in the recursive case was to blame). This made
us realise that an approach based on a broad categorisation of types of error and
then an attempt to sort programs into categories was misguided. Instead, where
an error is attributed to the recursive case of a program, the trace of the proof
attempt can be used to further localise the error to a sub-expression.

2.3 Specification Errors

Additionally some errors in the corpus could be broadly classified into programs
which simply omitted to satisfy some part of the specification. In this case it
is unclear that proof had much to offer over and above any sort of counter-
example generation. A counter-example could quickly show that this part of the
specification was not met and, usually, a major redesign of the program was
required in order to accommodate the omitted feature so identifying a culpable
program fragment was not really an issue.

3 Analysis of Some Specific Examples

In this paper we focus on three ML list processing exercises:

1. Write a function removeAll x l which removes all occurrences of the item

x in the list l.

2. Write a function onceOnly l which returns a list containing exactly one

copy of every item that appears in l.

3. Write a function insertEverywhere x l which returns the list of all lists

obtained from l by inserting x somewhere inside.

We created several auxiliary functions in Isabelle for expressing the specifi-
cations of these exercises. In particular we used count list and sub list shown
below. count list counts the number of appearances of an element in a list and
sub list only evaluates to true if one list is contained in another and if the
elements of that list appear in the same order as the super-list. Our Isabelle
definitions of our specification functions are5:

5 We have preserved much Isabelle syntax in this presentation. For instance the un-
curried format; the use of # for list concatenation and the use of Suc to indicate
the successor function on natural numbers. However in some cases with have used
standard mathematical notation instead. Most notably ∈ for list membership (the
Isabelle function mem) and 6= for inequality.



count list a [] = 0, (1)

count list a (h#t) = if a = h then Suc(count list a t)
else count list a t.

(2)

sub list l [] = if l = [] then True else False, (3)

sub list l h#t = if l = [] then True else

if hd l = h then sub list (tl l) t

else sub list l t.

(4)

The full specification we used for each exercise can be found in Appendix A.
Following proof planning literature we will refer, in what follows, to the use

of the induction hypothesis in an inductive proof as fertilisation.

3.1 Case 1: Fertilisation Fails

This example occurs in the removeAll exercise. It is important to note here that
in a previous exercise the student had been asked to create a function removeOne

which removed one occurrence of the item x from the list l. The student has
defined removeAll as follows:

fun removeAll _ [] = []

| removeAll x (h::t) = if x = h then removeAll x t

else h::removeOne x t;

Presumably the student is programming by analogy, starting with their
removeOne function. They have forgotten to change the recursive step to
removeAll.

This program generates rather obscure counter-examples. All the following
calls succeed:

> removeAll 1 [];

val it = [] : int list

> removeAll 1 [1, 1, 1];

val it = [] : int list

> removeAll 1 [1, 2, 1];

val it = [2] : int list

Our first counter-example was:

> removeAll 1 [1, 1, 2, 3, 4, 1, 1];

val it = [2, 3, 4, 1] : int list

careful investigation with additional counter-examples reveals that the problem
arises when the item to be removed occurs more than once in the list after an
element that is not to be removed.



We translated the student code into Isabelle as:

removeAll x [] = [], (5)

removeAll x (h#t) = if x = h then removeAll x t

else h#removeOne x t.

(6)

The attempted proof against the first part of the specification,

¬(x ∈ removeAll(x, l)),

gets blocked at an unsuccessful fertilisation attempt,

¬x ∈ removeAll x l ∧ x 6= a ⇒ ¬x ∈ removeOne x l.

It is easy to see from this goal that the “blame” lies with the use of the function
removeOne and it is also possible to work out the correction that is needed to
make the proof complete successfully. Indeed an automated technique such as
difference unification [1] would probably be able to generate a patch.

In this case the proof trace much more directly localises the error in the
program than the counter-example did.

3.2 Case 2: Fertilisation succeeds

This is a case where the student has been asked to write the insertEverywhere

function. The attempt is

fun insertEverywhere x [] = [[x]]

| insertEverywhere x (x1 :: xs) = (x :: x1 :: xs)

:: insertEverywhere x (xs);

and they have, in fact, added the comment

“this function only returns the list of lists given by inserting the value
x before all the elements in the list. It does not take into account the
values before which x has already been inserted. For example 1[2,3];
would return[ [1,2,3],[1,3],[1]] not sure how to implement the function to
include the previous values in the list”

indicating that they are well aware of the bug in their program. The prob-
lem can be solved by mapping \l. x1::l over all the lists produced by
insertEverywhere6.

As part of verifying this we attempted to prove

l ∈ insertEverywhere x l1 → count list x l = Suc(count list x l1).

6 Although the correct student programs generally used a sub-function with an accu-
mulator argument to achieve the same effect.



The step case is

∀xa.xa ∈ insertEverywhere x list → count list x xa = Suc(count list x list)
⇒ ∀xa.xa ∈ insertEverywhere x (a#list) →
count list x xa = Suc(count list x (a#list)).

This simplifies to

∀xa.xa ∈ insertEverywhere x list → count list x xa = Suc(count list x list)
⇒ x = a → (∀x.(a#a#list = x → count list a x = Suc(Suc(count list a list))) ∧

(a#a#list 6= x →
x ∈ insertEverywhere a list → count list a x = Suc(Suc(count list a list)))).

NB. This shows that Isabelle has automatically proved a branch where x 6= a.
Repeated use of introduction rules then case splits this into two goals depending
on whether xa = a :: a :: list or whether xa ∈ insertEverywhere a list. These
two branches can be mapped to sub-expressions of the original recursive case
of the function definition: (x :: x1 :: xs) and insertEverywhere x (xs)

respectively. The first of these goals is true and we can derive false from the
second with the following sequence of steps:

∀xa.xa ∈ insertEverywhere a list → count list a xa = Suc(count list a list)
∧x = a ∧ a#a#list 6= xa ∧ xa ∈ insertEverywhere a list

⇒ count list a xa = Suc(Suc(count list a list)).

Fertilisation occurs

count list a xa = Suc(count list a list)∧
x = a ∧ a#a#list 6= xa ∧ xa ∈ insertEverywhere a list

⇒ count list a xa = Suc(Suc(count list a list)).

and we now have a contradiction between the first hypothesis and the conclusion.
In order to prevent this contradiction arising it is necessary to prevent

the unification of xa ∈ insertEverywhere a list with the antecedent of
xa ∈ insertEverywhere a list → count list a xa = Suc(count list a list). The
goal, xa ∈ insertEverywhere a list, was obtained by rewriting the formula
xa ∈ insertEverywhere a (a#list) with the definition of insertEverywhere

and then taking the tail of the resulting term. Clearly this tail needed some extra
structure somewhere to prevent immediate fertilisation. In this case the extra
structure was needed around insertEverywhere a list but conceivably it could
have required extra structure in one of the argument positions.

It is not clear that we know anything more at this point than we did from the
counter-examples detailed by the student (and the ones we generated ourselves
in testing) since these clearly indicate that successive calls to insertEverywhere

are losing necessary information. It is, however, possible to see how an automated
mechanism could isolate the responsible sub-expression using a proof trace more
easily, perhaps, than it could from analysis of a counter-example alone.

It is also possible that some form of deductive synthesis [3] or corrective
predicate construction [11] at this point might allow the correct sub-expression
to be synthesized.



Case 3: Fertilisation not expected

In this case another student, also attempting to write insertEverywhere, has
met problems. They have defined a subsidiary function, ie:

fun ie n R [] = [R@[n]]

| ie n R (h::t) = (n::h::t)::[R]@(ie n (R@[h]) t);

Again they are aware that the function does not work correctly “I have had

massive problems trying to concatenate the list R and the tail”. There are several
problems here. R needs to appear within the head of the list of lists; and it should
appear before and not after (n::h::t).

This program produces an odd set of counter-examples:

> insertEverywhere 0 [1, 2];

val it = [[0, 1, 2], [], [0, 2], [1], [1, 2, 0]] : int list list

> insertEverywhere 0 [1, 2, 3];

val it = [[0, 1, 2, 3], [], [0, 2, 3], [1], [0, 3], [1, 2], [1, 2, 3, 0]]

: int list list

However insertEverywhere [] produces the correct answer which together
with the counter-examples strongly suggests that the problem lies with the re-
cursive rather than the basis case of the functions. So the question is whether
proof can isolate the problem further.

In our Isabelle development it was easy to establish that

insertEverywhere x l = ie n [] l

We then attempted to establish a generalised version of our specification includ-
ing

l ∈ (ie x l1 l2) ⇒ count list x l = Suc(count list x l2) + count list x l1

The proof follows a similar pattern to that in the previous example. We
perform induction on l2 considering a#list in the step case and then case split
on whether l = x#a#list. In this instance the first branch of the case split
causes problems resulting in the goal

∀xaxb.xb ∈ ie x xa list →
count list x xb = Suc(count list x list) + count list x xa

∧ l = x#a#list ⇒
count list x (x#a#list) = Suc(count list x (a#list)) + count list x l1,

which rewrites to

∀xaxb.xb ∈ ie x xa list →
count list x xb = Suc(count list x list) + count list x xa

∧ l = x#a#list ⇒
Suc(count list x (a#list)) = Suc(count list x (a#list)) + count list x l1,



which simplifies to

∀xaxb.xb ∈ ie x xa list →
count list x xb = Suc(count list x list) + count list x xa

∧ l = x#a#list ⇒ count list x l1 = 0

which is satisfiable but not always true.
In this case we wouldn’t have expected fertilisation to be possible because of

the structure of the case splits. However this has still shown there is a problem
with (n::h::t). In fact exploration of the remaining branches of the proof
further suggests that [R] is also a problem while (ie n (R@[h]) t) is not. In
this case the proof trace once again appears to have provided more information
than the counter-example. For instance the fact that the actual recursive call
itself is correctly formed is not at all obvious from the counter-examples.

3.3 Case 4: Combined Problems

We conclude by examining an example where there are a combination of errors
in the program. In this case in the basis cases. This is an example where the
student has been asked to write the onceOnly function. They have created a
complex set of sub-functions, not required by the program specification, in order
to achieve this:

fun insert x [] = []

| insert x(h::t) =

if x <= h then x :: h :: t

else h :: insert x t;

fun sort [] = []

| sort (x :: xs) = insert x (sort xs);

fun Once [] = []

| Once (x1 :: x2 :: xs) =

if x1 = x2 then Once (x2 :: xs)

else x1 :: x2 :: Once xs;

fun onceOnly [] = []

| onceOnly (x :: xs) = Once (sort (x :: xs));

There are two errors here. Firstly the basis case for insert should be insert

x [] = [x] and secondly we are missing a basis case for Once where there is a
singleton list. Our counter-examples indicate that all calls to onceOnly evaluate
to [].

It is fairly simple to prove that

onceOnly l = Once(sort l).



We then needed to establish a number of theorems about sort and insert. We
introduced two new functions min list and less min list (which evaluate tot he
minimum element in a list, and a list less its minimum element respectively):

min list(a#[]) = a, (7)

min list(h#t) = min h (min list t). (8)

less min list [] = [], (9)

less min list (h#t) = if h = min list(h#t) then t

else h#(less min list t).
(10)

and attempted to prove

l 6= [] ⇒ (sort l) = (min list l)#sort(less min list l).

The step case of this proof introduces the goal:

list 6= [] ⇒ sort list = (min list list)#(sort (less min list list))
a#list 6= [] ⇒ sort a#list = (min list a#list)#(sort (less min list a#list))

which triggers a case split on whether list = []. In the case where this is true the
induction hypothesis evaluates to true and rewriting the induction conclusion
reaches the goal

insert a [] = [a]

which rewrites to
[] = [a]

and then we derive False. From this it is obvious that the appropriate fix is to
edit the basis case of insert to insert x [] = [x]. It is important to note
here that the lemma we have chosen is dependent our intuitions about the way
insert and sort should behave. If the student had named these functions less
informatively the process of locating the insert error would have been consid-
erably complicated.

It isn’t possible to detect the additional problem with Once even continuing
from this point with enthusiastic use of Isabelle’s sorry command in order to
establish theorems that can’t be proved. Once is only ever applied to expressions
of the form sort l which, because of the bug in insert, all evaluate to [] so
the missing case in Once is undetectable.

In other examples we were able to identify combinations of problems where
they caused the proof to break down in different branches of the trace. How-
ever this example illustrates some limitations of the proof approach in terms of
detecting all the errors within a program.

4 Discussion and Related Work

We have picked some representative examples of problems in our corpus of study.
Unsurprisingly these illustrate that the structure of a program correctness proof



is related to the structure of the underlying program. It is important to realise
that the structure of the proof is also affected by the structure of the specification
functions and so a direct mapping between branches of a proof and cases within
a program is not always possible. Also of note is the fact that there may not be
an explicit if ... then ... else structure in a program and yet the structure
of the code can still induce a case split on the proof allowing us to focus our
attention on particular sub-expressions. In our examples by the interaction of
Isabelle’s list membership function and the head::tail structure of lists.

It is also possible to see that the proof traces provide hints about how a
proof can be patched sometimes directly providing the correct evaluation of an
expression (the insert example) and sometimes highlighting where information
may be missing, etc.

Our examples raise a number of interesting questions:

1. How could the proof traces shown here be produced automatically. In par-
ticular how should such a system decide when it has reached an informative
failure? and how can a programmer’s intended behaviour for sub-functions
be determined?

2. Given a trace how can useful information be extracted and presented to a
user?

3. How might patches for problem areas of code be constructed?

Automating Proof Tracing Although in many cases the programs we are
studying are only a few lines long the proofs we have produced raise a number
of challenges for automation, even when the programs are correct. For instance
we frequently needed to generalise our goals to accommodate the presence of
accumulators in sub-functions and occasionally needed to speculate new func-
tions and lemmas entirely (e.g. the need to provide a rule for expressing sort l

in terms of the head and tail of a list). Proof planning already has an account of
how new lemmas and generalisations can be found [8] but our examples present
considerable challenges to the state-of-the-art in this area.

Leaving aside the issue of appropriate lemma speculation we also found that
in order to extract the useful information from the failed proofs we had to by-
pass Isabelle’s simplifier to step through a number of rewrite steps and other
simplifications by hand before we reached a goal that was “informative”. In gen-
eral we used the simplifier to narrow the investigation to particular branch of
the proof, but then found we needed to retract the simplification to gain finer
grained information about exactly which case was causing problems and the
steps that led to an unprovable goal. This process would need to be controlled
carefully in any automated system. As a related issue an important part of this
process was identifying goals that were satisfiable but not always true, existing
counter-example discovery technology clearly has a role to play here. Possibly
a call to quickcheck or similar should be employed each time a proof attempt
branches in order to ascertain whether a system should attempt to prove that
branch or gather error information.



Lastly there is the issue of programmer introduced sub-functions. In an ideal
world a programmer would specify the behaviour of all sub-functions as well
as the main program however there are many situations where this will not
be the case, for instance if an error diagnosis system were used as a marking
aid rather than as a program construction aid for students. In some cases it
may be possible to use ontology matching and repair methods [10] to deduce the
intended behaviour. In case 4 the fact that the function was named insertwould
allow us to compare its behaviour to a correct list insertion function7. It might
also be possible, in some cases, to get a programmer to provide sample inputs
and outputs and use conjecture forming technology [4] to deduce appropriate
lemmas.

Extracting Information from Proof Traces Once a proof trace has been
produced there is then the question of how useful information can be extracted
from it. There would appear to be a number of ways in which this could work,
some general and some related to specific forms of failure. For instance, when
fertilisation has failed it seems plausible to attempt difference unification [1]
of the induction conclusion and the induction hypothesis in order to highlight
differences and suggest patches. Similarly where we are attempting to prove an
equality, it may be possible to compare the LHS and RHS in order to adapt a
function’s output.

It is also often possible to extract generalised counter-examples or counter-
example classes from a failed proof branch which may provide more focused
information than individual counter-examples. For instance, in the insert ex-
ample, it is possible to deduce there is a problem with all one element lists.

Patching Problem Code Monroy [11] has already used proof planning to
examine faulty conjectures. He follows work by Franova and Kodratoff [7] and
Protzen [16] and attempts to synthesize a corrective predicate in the course of
proof. The idea is that the corrective predicate will represent the theorem that
the user intended to prove. This predicate is represented by a meta-variable,
P , such that P → G where G is the original (non)theorem. This process can
correctly fill in missing base cases8 but the approach would need modification
if it were to remove a piece of faulty code and then replace it with a different
correct fragment.

An alternative approach might be to look to deductive synthesis technol-
ogy [3]. Deductive synthesis uses meta-variables in existence proofs to synthesise
a program that meets its specification. Once an offending program fragment
has been identified it should be possible to replace it with a meta-variable and
attempt to use similar techniques to instantiate this variable. Similarly where
premature fertilisation has occurred indicating missing structure, the possible lo-

7 Our thanks to Fiona McNeill for this suggestion.
8 Monroy and Dennis, Fault Diagnosis, Edinburgh Dream Group Blue Book Note

1485.



cations for this structure could be represented by meta-variables and deductive
synthesis used to instantiate these.

5 Conclusion and Further Work

In this paper we have reported the results of of a case study in the use of
proof to locate program errors. We have shown that the structure of the proof
can be used to narrow the focus of attention to specific parts of program and
made some suggestions about how such a trace could, in some situations, also
be used to suggest appropriate patches. We have compared the information we
could extract from our failed proof attempts with the information deducible
from counter-examples and concluded that it is generally, although not always,
possible to narrow the focus to the culpable piece of code better using a proof
trace than it is using the counter-example.

We now intend to construct an automated system based on proof planning to
produce these proof traces and then use this system to automatically generate
diagnoses and patches.

Acknowledgements

This research was funded by EPSRC grant GR/S01771/01 and Nottingham NLF
grant 3051.

References

1. D. A. Basin and T. Walsh. Difference unification. In R. Bajcsy, editor, Proceedings
of IJCAI-93, pages 116–122. Morgan Kaufmann, 1993.

2. A. Bundy. A science of reasoning. In J.-L. Lassez and G. Plotkin, editors, Com-
putational Logic: Essays in Honor of Alan Robinson, pages 178–198. MIT Press,
1991.

3. A. Bundy, L. Dixon, J. Gow, and J. D. Fleuriot. Constructing induction rules for
deductive synthesis proofs. In Constructive Logic for Automated Software Engi-
neering, ENTCS. Elsevier, 2005. To Appear.

4. S. Colton. The HR program for theorem generation. In A. Voronkov, editor, 18th
International Conference on Automated Deduction, volume 2392 of LNCS, pages
285–289. Springer, 2002.

5. L. A. Dennis. The use of proof planning critics to diagnose errors in the base
cases of recursive programs. In W. Ahrendt, P. Baumgartner, and H. de Nivelle,
editors, IJCAR 2004 Workshop on Disproving: Non-Theorems, Non-Validity, Non-
Provability, pages 47–58, 2004.

6. L. Dixon and J. D. Fleuriot. IsaPlanner: A prototype proof planner in Isabelle. In
F. Baader, editor, 19th International Conference on Automated Deduction, volume
2741 of Lecture Notes in Computer Science, pages 279–283. Springer, 2003.

7. M. Franova and Y. Kodratoff. Predicate synthesis from formal specification. In
B. Neumann, editor, 10th European Conference on Artificial Intelligence, pages
97–91. John Wiley and Sons, 1992.



8. A. Ireland and A. Bundy. Productive use of failure in inductive proof. Journal of
Automated Reasoning, 16(1–2):79–111, 1996.

9. K. L. McMillan. Symbolic Model Checking. Kluwer Academic Publisher, 1993.
10. F. McNeill, A. Bundy, and C. Walton. Diagnosing and repairing ontological mis-

matches. In Starting AI Researchers’ Symposium, 2004. Also available as Edin-
burgh Informatics Report EDI-INF-RR-0251.

11. R. Monroy. Predicate synthesis for correcting faulty conjectures: The proof plan-
ning paradigm. Automated Software Engineering, 10(3):247–269, 2003.

12. F. L. Morris and C. B. Jones. An early program proof by Alan Turing. Annals of
the History of Computing, 6:139–143, 1984.

13. P. Naur. Proof of algorithms by general snapshots. BIT, 6:310–316, 1966.
14. T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL: A Proof Assistant for

Higher-Order Logic, volume 2283 of LNCS. Springer, 2002.
15. L. C. Paulson. Isabelle: A Generic Theorem Prover. Springer, 1994.
16. M. Protzen. Patching faulty conjectures. In M. A. McRobbie and J. K. Slaney,

editors, 13th Conference on Automated Deduction, volume 1104 of Lecture Notes
in Artificial Intelligence, pages 77–91. Springer, 1996.

17. G. Steel, A. Bundy, and E. Denney. Finding counterexamples to inductive con-
jectures and discovering security protocol attacks. AISB Journal, 1(2):169–182,
2002.

Appendix A: Isabelle Specifications Used

1.1 removeAll

removeAll spec1: ¬(x ∈ removeAll(x, l))
removeAll spec2: x 6= a ⇒ count list(x, removeAll(a, l)) = count list(x, l)
removeAll spec3: ¬(x ∈ l) ⇒ removeAll(x, l) = l

1.2 onceOnly

onceOnly spec1: ¬(x ∈ l) ⇒ count list x (onceOnly l) = 0
onceOnly spec2: (x ∈ l) ⇒ count list x (onceOnly l) = 1

1.3 insertEverywhere

insertEverywhere spec1: l1 ∈ insertEverywhere x l ⇒ count list x l1 =
Suc(count list x l)

insertEverywhere spec2: l1 ∈ insertEverywhere x l ⇒ sub list l l1
insertEverywhere spec3: l1 ∈ insertEverywhere x l ∧ x1 6= x ⇒ count list x1 l1 =

count list x1 l

insertEverywhere spec4: (count list x l1 = Suc(count list x l) ∧ sub list l l1 ∧
∀x1. x1 6= x → count list x1 l1 = count list x1 l) ⇒ l1 ∈ (insertEverywhere x l)


