Translating into an Intermediate Agent Layer:
A Prototype in Maude”*

(Extended Abstract)

Berndt Farwer!, Louise Dennis?
! Durham University, UK
2 University of Liverpool, UK
Contact: berndt . farwer@durham.ac.uk

Abstract. This paper summarises how agent programming languages
are be embedded into an intermediate agent layer called Agent Infras-
tructure Layer (AIL) that can be seen as a unifying framework for such
languages. We discuss common concepts of the agent programming lan-
guages on which the AIL’s design is based and outline a translation of
AgentSpeak programs into this intermediate layer. An executable proto-
type of the AIL is implemented in Maude, allowing language translators
to be tested at this prototype level.

1 Introduction

The notion of a software agent was introduced about three decades ago [11]
with the term ‘agent programming’ being introduced in the late 1980s and made
popular by Shoham [I7]. It has since developed into a vast array of agent pro-
gramming languages [2]. Though being very diverse in nature, most languages
share some common agent-related concepts. However, agent programming as a
whole still lacks a comprehensive approach to model checking.

Among the agent programming languages, some of the most widely used rely
on the belief, desire, and intention paradigm. For this reason, we have chosen to
focus on some major players in this league as primary candidates for integration
into the intermediate language. This should by no means exclude other languages
even based on different paradigms from the theory, it might just not be quite as
straightforward to embed them.

Another prerequisite of our endeavour was to include languages that have
practical relevance, i.e., not to restrict ourselves to languages that are so limited
that they would not be considered for serious software projects. This decision
ruled out some of the lean languages that have nice mathematical properties but
no relevance for real-world programming.

* Supported by EPSRC grants EP/D054788 (Durham) and EP/D052548 (Liverpool).



2 The Agent Infrastructure Layer — AIL

In this section we briefly summarise the idea and the current state of our in-
termediate layer called the The Agent Infrastructure Layer (AIL). It is worth
noting that the AIL is not intended as a new programming language, but rather
as a compiler language, consisting mainly of a set of suitable-for-the-task data
structures. We will not discuss in detail the operational semantics of AIL, since
this can be found elsewhere [8/[7].

AIL is intended to be a general framework with which a number of agent
programming languages can interface through translators with the ultimate goal
of providing a base for efficient model checking. The properties to be checked
are specified at the AIL level that provides access to the agent-specific com-
ponents of a program in a unified way. The language-specific translators take
care of a faithful embedding of the original program into the lower-level AIL
representation. This involves a translation of the state representation (beliefs,
plans, intentions, etc.) as well as the adaption of some crucial functions used
in the reasoning cycle, such as the selection functions and the action execution
function. The following diagram summarises the translation process:

AgentSpeak  3APL Jadex METATEM

AL-———————— — property
JAVA code AJPF < Java listener

|

JPF <> JAVA listener

To have a prototype and an execution engine for the proposed intermediate
language translation scheme, we are coding large parts of the AIL and target
languages in Maude [4/5]. The goal of the Maude implementation is to have an
operational prototype as a testbed for our translations, as shown in the following
commuting diagram:

translation

AIL AgentSpeak
Maude encodingl lMaude encoding
AIL theory AgentSpeak theory

translation

In order to accommodate as many agent programming languages as possible,
we have decided to allow a dynamic configuration of the AIL’s reasoning cycle.
This is handled by the last component of the state tuple, a list of reasoning
cycle states, the head of which is the current state, with the second element
being the next state to visit. When moving on to the next state, the list ele-
ments are rotated, i.e., the head of the list gets appended to the back and the



second element becomes the new head. The reason for this representation of the
reasoning cycle within the state is the desire to let language translators define
a suitable sequence of states for the AIL to accommodate the specific target
language’s needs. For each language translation, however, the sequence of states
will be static, just as the reasoning cycle is well defined and does not change
dynamically at run time for any of the languages that we are targeting with this
approach.

Eventually, AIL will be implemented as a set of JAVA classes, tuned to allow
efficient model checking using an extended version of JPF. Before discussing
a specific translation in Section [l we summarise some of the languages to be
considered for translation and their concepts.

3 The Languages Considered

At present we are considering four languages for translation into AIL. These
languages are briefly summarised below. It should be noted, however, that while
the AIL semantics was designed to accommodate these languages, we expect
that various other programming languages for multi-agent systems will also be
compilable into AIL.

3.1 3APL

3APL [12] (pronounced “triple-a-p-17) is a popular BDI language which is un-
der continued development at Utrecht. It has well-defined operational semantics,
and many extensions and refinements. The building blocks of a 3APL agent are
beliefs, goals, plans and rules for revising plans. The language itself is based
on the logic programming paradigm, but is also combined with imperative pro-
gramming (JAVA in particular). 3APL also contains semantics for sending and
receiving messages and there is research on adapting 3APL programs to wider
MAS settings [6].

3.2 AgentSpeak

AgentSpeak(L) was originally designed as an abstract agent programming lan-
guage [16], but has since been extended to become a programming language that
can incorporate most major MAS techniques usable for real-world programming
while still providing formal (operational) semantics. The AgentSpeak dialect we
are considering is based on the current implementation of Jason [14J3], an inter-
preter for an extended version of AgentSpeak. Like 3APL, AgentSpeak is also
based on logic programming, and its key components are beliefs, goals, plans,
and intentions.

3.3 Jadex

Jadex [15], like JADE [I3], is based on JAvA. Unlike 3APL and AgentSpeak,
its formal semantics is yet to be established. Jadex is also based on the BDI



paradigm, thus sharing its main concepts — beliefs, goals, and plans — with the
other languages. Beliefs are stored as named facts and the belief state can trigger
actions to be carried out. Goals describe the desires of an agent and are explicitly
represented as objects contained in a goalbase. They are accessible to the reason-
ing component as well as to plans, but plans and goals are stored separately. The
goal life cycle distinguishes between three goal states (i.e., option, active, and
suspended) and four types of goals (i.e., perform, achieve, query, and maintain).
Plans consist of head and body, where the head contains a trigger and possibly
some bindings, while the body contains the reference to some JAvA-based actions
to be performed.

3.4 MetateM

METATEM is quite distinct from the three languages above [9]. It was originally
developed as a language for executable temporal specifications [I], but has been
extended to incorporate (bounded) beliefs, deliberation mechanisms, etc. Two
aspects make it significantly different from the first two of the above approaches
and also different from the approach taken by Jadex. The first is that the basic
computational mechanism is not logic programming of the Prolog form. It is
(maximal) forward chaining, much more akin to tableau construction. Second,
the emphasis, since the development of Concurrent METATEM, has primarily
been on the organisational and grouping aspects within multi-agent systems,
rather than on individual agents [10]. Indeed, a ‘motto’ of work on METATEM
is: “every group is an agent, and every agent is a group”.

4 Translating AgentSpeak

We focus in this presentation on the translation of AgentSpeak into AIL. Only
the initial state of an AgentSpeak program is translated into a state of AIL.
It can be shown that the executions possible in AIL correspond exactly to the
behaviour of the AgentSpeak counterpart.

4.1 State Representation and Transformation

State Representation in AIL An agent state in AIL is given as a tuple
< ag,i,I,Pl,A,BBR, P, C, In, Out, Cn, Cx, Ann, RC > where ag is a unique
identifier for the agent, ¢ is the current intention, I is all extant intentions, Pl
the currently applicable plans (only used in one phase of the cycle), A are actions
to be executed, B the agent’s beliefs, BR the agent’s belief rules, P the agent’s
plans, C the agent’s constraints, In the agent’s inbox, Out the agent’s outbox,
Cn the agent’s content, Cz the agent’s context and Ann a set of annotations
(not used by AIL but which may be used by translators to store additional
information) and RC is the agent’s reasoning cycle - a sequence of AIL stages
A, B, C, D, E, F, indicating the current stage and the subsequent stages of
the reasoning cycle for the agent. Figure [I] shows the basic reasoning cycle for



i+ P
applicable @ select plan

play’ P’
i @plan(i) = p'@plan(i)

select intentionk i/handle top of plan

I (extended intention se‘?\ / (new intention set)
handle message @ perception

Inbox, I (extended intention set)

Fig. 1. AIL’s reasoning cycle

RC = ABCDEF. This sequence can be configured by the language translator
but will be fixed for each language, i.e., no dynamic re-configuration is allowed
or even possible using the transition rules of the operational semantics.

State Representation in AgentSpeak In AgentSpeak the state of an agent
is referred to as its configuration given as a tuple (ag, C, M, T, s). The last com-
ponent s € {ProcMsg, SelEv, RelPl, ApplPI, SelAppl, AddIM, Sellnt, ExecInt, ClrInt}
denotes the stage of the reasoning cycle the agent is currently engaging in. All
other components of the configuration are themselves structures: The agent’s
circumstance C' is a tuple (I, E, A) consisting of a set of intentions I, a set of
events E and a set of actions A. Both E and A do not have an explicit counter-
part in AIL states. The messages’ component M = (In, Out, SI) comprises an
inbox, an outbor, and information on suspended intentions.

The following table shows some basic correspondences. Of course, the entities
have to be individually translated into equivalent representations with respect
to the used data structures.

AgentSpeak| bs |ps|I|In|Out|Ap|t| s
AIL B, BR|P|I|In|Out|Pl|i|RC

~

Many modern agent programming languages allow Prolog-style reasoning,
which in the case of AgentSpeak is included in the belief set ASbeliefset. Since
AIL distinguishes beliefs and belief rules into the sets B and BR, respectively,
the beliefs from the AgentSpeak specification have to be mapped into these two
sets.

The set Ann in the AIL state is provided for the language translators to store
language specific information that has no direct representation in the other AIL
components. For AgentSpeak this includes the event set F and the action set
A, since AgentSpeak does not require the immediate execution of an action. We



therefore supply a mechanism by which additional information is temporarily
stored in Ann and the function do that is provided by the language interpreter
overrides AIL’s default and thus implementing the AgentSpeak way of dealing
with events and actions. Newer versions of AIL (from v1.2) provide an action
set in the agent state.

AgentSpeak’s reasoning cycle is depicted in Figure [2] The dotted lines repre-
sent short-cuts that are given as special rules in the AgentSpeak semantics. What
becomes obvious when comparing this with the AIL’s reasoning cycle (Fig|l]) is
that, e.g., the selection of an intention initiates the AIL reasoning cycle while
it takes place at a later stage in AgentSpeak. This mismatch leads to a custom
reasoning cycle RC' provides by the AgentSpeak-to-AIL translator.

e
SelEv RelPI

ProcMsg ApplPI
VRN . :

// R . \
Clrlnt =~ E SelAppl
Execlnt - AddIM
\" v ///

Sellnt

Fig. 2. AgentSpeak’s reasoning cycle

4.2 Agent Components

Instead of giving a formal translation, we discuss the components that have to
be taken into consideration for the translation, including the AIL functions that
are definable by the translator, thereby overriding the defaults in AIL.

Plans In AgentSpeak plans take the form
pu=te:ct<— h

where te is a triggering event, ct is a context, and h is a list of actions. In AIL there
is no special syntax for plans. They are however given in a data structure consist-
ing of a trigger, a prefix, a guard stack, and a body. These are given in the form of
a table. For example, the plan +concert(A,V) : likes(A) < !book_tickets(A,V)
is represented as

PLAN:
trigger +concert(A,V)
prefix [e]

guard stack|likes(A)
body 'book_tickets(A,V)




A slightly more complex example is the plan

+book_tickets(A,V) : —-busy(phone) <« ?phone number (V,N);call(N);...;!choose_seats(A,V)
PLAN:
trigger +book_tickets(A,V)
prefix [e]
guard stack|—busy(phone)
body ?phone_number (V,N)
call(N)
Ichoose_seats(4,V)

For the purpose of formalising the translation we represent the tables as
quadruples: (trigger, prefix, guardstack, body). Stacks are given as h;ty;...;t,
where h is the head, i.e. the topmost element of the stack, and t1;...;t, is the
remainder or tail of the stack. For the example this yields (+book_tickets(4,V),
[e], —busy (phone), ?phone_number (V,N) ;call(N);...; !choose_seats(A,V))

AgentSpeak Annotations Annotations are used in AgentSpeak to specify
the source of beliefs. E.g. in winter[self] the annotation self denotes that the
agent has gained the belief that it is winter by their own perception. In contrast,
the belief winter [Tom] denotes the fact that Tom has told the agent that it is
winter. Multiple annotations are possible, for instance for cases in which the
belief has been added from several sources., e.g. winter[self, Tom] denoting
that in addition to my own perception of winter, Tom has also told me that it
is winter.

The AIL data structures do not directly support this kind of annotation that
is taken into consideration whenever there is a search for a matching belief.
To overcome this situation, the translation uses a fresh (i.e. otherwise unused)
binary predicate ann to keep track of annotations. This predicate can then be
used in the context of plans to provide the necessary information.

Extending the example from the previous section, the plan

+concert(A,V) : likes(A) [self] < !book_tickets(A,V)

is represented as

PLAN:

trigger +concert (A,V)

prefix [e]

guard stack|ann(likes(A),self) A likes(A)
body Ibook_tickets(A,V)

The relevant plans are not affected by annotations, but the applicable plans
are restricted by the annotations. When evaluating the context of an AgentSpeak
rule, each predicate in the conjunction has to be derivable with an annotation
that contains the context’s annotations. Formally: Let I be a finite index set, then
a context A\, ¢;[A;] with predicates ¢; and possibly empty lists of annotations

Aj is satisfied iff A;; c;[Aj] with Vi € I.set(A4;) C set(A]) is derivable.



Beliefs AgentSpeak beliefs can be annotated with an array of annotations.
These annotations will be accessed when a belief is checked. They can contain
information on the source of information, etc. Each belief can have annotations,
but there cannot be the same belief with different annotations, therefore it is
best to view beliefs always in conjunction with their individual annotation set.
The latter would then be empty for the case that a specific belief has no annota-
tions. If there are annotations, then all annotations are collected in the belief’s
annotation set.

Let b € bs be a belief, then we denote by ann(b) its annotation set. An
annotation set can itself be modelled as a belief in AIL such that any operation
involving a belief in AgentSpeak will effectively have to involve two beliefs in
the translation as discussed in the previous section on AgentSpeak annotations.

Prolog-style Reasoning The Prolog rules in AgentSpeak are stored as beliefs.
In AIL we only allow first order terms as beliefs, so that the Prolog rules have
to be filtered into the BR component.

4.3 AIL Functions

In this section we summarise the AIL functions that can be overridden by the
language-specific translators:

Perception This function monitors the environment and the agents received
messages. It is used to add new intentions to the agent’s intention set. This
function has to be implemented to mimic the behaviour of the target language’s
perception model.

Perform Action The execution of an action is handled directly in the AIL
semantics, whereas it is left to the environment in AgentSpeak’s semantics. The
translation handles this by overriding the default action execution function:

The do Function AIL provides a special function to handle actions: do. For
the AgentSpeak translation, this function has to access the Ann component of
the state in order to handle the extraction of actions from the intentions in
AgentSpeak correctly. The reason for this is that actions do not have to be
executed immediately in AgentSpeak. Instead they are temporarily stored in
the A component of the agent’s circumstance. The environment thereafter takes
care that these actions are executed.

Select Intention In Jason as in the proposed AIL the intentions are actually
stored in a list representing the set of intentions. When an intention is selected
this is usually done by selecting the head of the list and then rotating the inten-
tions in the list. The user can program the selection function in Jason, so this
has to be translated for use with AIL. The translation can work on the data
structure of the intention set such that the translation only has to replace the
respective lists.



Select Plan Based on Current Intention The AIL provides a default se-
lection function that can be overridden by the translator to accommodate the
target language or a user-programmed special plan-selection function.

Initial Annotation Not to be confused with the AgentSpeak annotations, the
component Ann of the agent configuration is a place to store arbitrary informa-
tion that the individual functions provided by the translator can use. For the
AgentSpeak translation, for instance, the actions to be executed are temporarily
be stored here.

Relevance The relevance function(s) are provided in AIL primarily to model
dynamic communities by making information from certain sources irrelevant in
certain situations at the stage of belief update. Since we do not have the concept
of groups or communities in AgentSpeak everything is regarded as relevant here.

Filter Unwanted Plans This function gives the translator the possibility to
exclude some plans deemed applicable by the AIL. For the AgentSpeak transla-
tion this is not needed, since the AIL’s applicable plans are exactly those that
AgentSpeak regards as relevant and applicable in states RelPl and ApplPI of the
reasoning cycle (cf. Fig. |2)).

Consistency For reasons of efficiency, most agent programming languages do
no check for consistency of the belief base. Hence, the default for this function is
the constant true function. However, if it is desirable to introduce a consistency
check, then this function can be overridden by the translator. Apart from this,
there is no need to apply any further changes to the AIL, since its semantics is
designed to query this function prior to any belief update.

5 The Maude Implementations

Both AIL and AgentSpeak implementations use several sorts like sets, stacks,
and other language specific sorts. For space reasons we cannot discuss all of
these and restrict the presentation to the representation of the agents states. We
then showcase one rule each of the AgentSpeak semantics and the AIL semantics
together with their respective Maude translations.

5.1 Agent Definitions

The Maude definition of an agent’s state vector for AgentSpeak is given in List-
ing[1.1] For AIL the definition is given in Listing[1.2] Both use externally defined
sorts and functions that are loaded prior to the definition of the agent state sort
and constructor. The space limitations for this paper prevent us from discussing
the implementation in detail.



(mod AS—AGENT is

protecting SET{Plan} .
protecting SET{ExtBelief}.
protecting SET{Intention}
protecting SET{Action}
protecting SET{Event}
protecting INTENTION

*x* steps in the reasoning cycle
sort RCStep

ops SelEv RelPl Sellnt ApplPl SelAppl AddIM
ExecInt ClrInt SelEv ProcMsg : —> RCStep

##%% components of configurations
sorts AgentProgram AgentCircumstance Conf
sort Messages
sort Templnf

op [-,-] : Set{ExtBelief} Set{Plan}
—> AgentProgram [ctor] .

op <-,-,-> : Set{Intention} Set{Event} Set{Action}
—> AgentCircumstance [ctor] .

op <-,-,-,-,-> : AgentProgram AgentCircumstance Messages
TempInf RCStep
—> Conf [ctor] .

op (-,-,-,-,-) : Set{Plan} Set{Plan} Intention Event Plan
—> Templnf

endm

Listing 1.1. Module AS-AGENT

s
fmod AIL—-AGENT is
protecting DEFAULT-SETTINGS

sorts AilAgent AilAgentProgram AILStage ReasoningCycle

ops StA StB StC StD StE StF : —> AILStage

subsort AILStage < ReasoningCycle

op -;rc- : ReasoningCycle ReasoningCycle —> ReasoningCycle [assoc ctor]
Oop <-,-,-3-3-3-3,-,-,-> : Const Stack{PExtBelief} Stack{PSource}

Stack{PSource} Stack{PBeliefRule} GoalStack Stack{PPlan}
Stack{PConstraint} ReasoningCycle —> AilAgentProgram [ctor]

endfm

Listing 1.2. Module AIL-AGENT

5.2 Operational Semantics

The semantics is given as a set of rules formalising the possible state transitions
of the agent. Fig. shows the Maude implementation of one of the rules for
finding the applicable plans in AgentSpeak:

AppPlans(ag,,, Tr) # 0
{ag, C, M, T,ApplPl) — {ag, C, M, T’,SelAppl)

(Apply)

where T, = AppPlans(ag,,, Tr)

This rule updates the temporary information in the agent’s state with the
applicable plans with respect to the agent’s beliefs and the currently relevant
plans. It also advances the stage in the reasoning cycle from ApplPl to SelAppl,
where one of the applicable plans will be selected.




=> < [bs,ps], C, M, (R,AppPlans(bs,R),iota,epsilon,rho), SelAppl >

crl [Appll] :
< [bs,ps], C, M, (R, Ap, iota, epsilon, rho), ApplPl >
if AppPlans(bs,R) =/= (empty).Plan .

Listing 1.3. Rule Appll

The condition of the rule appears as the conditional of the Maude rewriting
rule. The additional condition 7%, = AppPlans(ag,, Tr) is coded directly into
the right-hand side of the rule. AppPlans(,-) is a function defined by:

op AppPlans(-,-) : Set{ExtBelief} Set{Plan} —> Set{Plan} .

ceq AppPlans(abs,([te : ct <— bd],ps)) = [te : ct <— bd],AppPlans(abs,ps)
if AnnMatch(ct ,abs).

ceq AppPlans(abs,([te : ct <— bd],ps)) = AppPlans(abs,ps)
if not(AnnMatch(ct ,abs)) .

eq AppPlans(abs,empty) = empty .

Listing 1.4. Function AppPlans

In AIL we are faced with the following rule and its implementation in Maude
as shown in Listing |L.5]

Pl' = filter(appPlans(ag,i)) Pl # 0 (26)
< ag, Pl,B;RC >—< ag,Pl', RC e {B} >

This rule illustrates the use of the reasoning cycle sequence in the agent’s
state vector. On the left-hand side of the consequent, the head of this sequence
is B. This is a prerequisite for the rule to be applicable. When applying the rule,
the next stage is taken, which can be seen on the right-hand side, where B is
appended to the end of the reasoning cycle while second symbol of the original
reasoning-cycle sequence becomes the active stage.

crl [26]
< Name, as (I, ain(ai(Is, APs, Act), Bels, Libs), Comms, Ann), (StB ;rc RC) >
=> < Name, as (I, ain(ai(Is, AP, Act), Bels, Libs), Comms, Ann), (RC ;rc StB) >
if AP := filter (appPlans(< Name, as(I, ain(ai(Is, APs, Act), Bels, Libs),
Comms, Ann), (StB ;rc RC) >, 1), 1)
/\ AP =/= []ail .

Listing 1.5. Rule 26 of the AIL semantics

6 Conclusion

We have outlined a new approach to model checking of agent programming lan-
guages by introducing an intermediate language that preserves essential notions
of agent programs, such that the properties can be specified independently of
any programming language specific requirements.

Although the design has been optimised for BDI-style languages, we believe
that our framework is sufficiently general to accommodate other agent program-
ming languages with just slightly more sophisticated translators.

The next steps in making our approach operational involve implementing
the AIL and the language-specific translators, devising a property specification
language based on temporal/modal logics and facilitating JPF for the actual
model checking. In the long term we aim to extend JPF with agent specific
(pre-)processing to make the model checking more efficient.



References

1.

10.

11.

12.

13.

14.

15.

16.

17

H. Barringer, M. Fisher, D. Gabbay, R. Owens, and M. Reynolds, editors. The
Imperative Future: Principles of Fxecutable Temporal Logics. Research Studies
Press, Chichester, United Kingdom, 1996.

Rafael H. Bordini, Mehdi Dastani, Jiirgen Dix, and Amal El Fallah Seghrouchni,
editors.  Multi-Agent Programming: Languages, Platforms and Applications.
Springer, 2005.

Rafael H. Bordini and Jomi F. Hiibner. Jason: A Java-based interperter for an
extended version of AgentSpeak, 2006. Available from http://jason.sourceforge.net.
M. Clavel, F. Duran, S. Eker, P. Lincoln, N. Marti-Oliet, José Meseguer, and
J. Quesada. Maude: Specification and Programming in Rewriting Logic, 1999.
Manuel Clavel, Francisco Duran, Steven Eker, Patrick Lincoln, Narciso Marti-
Oliet, José Meseguer, and Carolyn Talcott. Maude Manual (Version 2.8). SRI
International, Menlo Park, CA 94025, USA, January 2007.

Mehdi Dastani, M. Birna van Riemsdijk, and John-Jules Ch. Meyer. Programming
multi-agent systems in 3APL. In Bordini et al. [2].

L. A. Dennis. Agent Infrastructure Layer (AIL): Design and operational semantics
v1.2. Technical report, University of Liverpool, Department of Computer Science,
July 2007.

. Louise Dennis, Berndt Farwer, Rafael Bordini, Michael Fisher, and Michael

Wooldridge. A common semantic basis for BDI languages. In Mehdi Dastani, Amal
El Fallah Seghrouchni, Alessandro Ricci, and Michael Winikoff, editors, Proceed-
ings of the International Workshop on Programming Multi-Agent Systems (Pro-
MAS 2007), pages 88-103, May 2007.

M. Fisher. METATEM: The story so far. In Proceedings of the Third Interna-
tional Workshop on Programming Multiagent Systems (ProMAS-05), volume 3862
of Lecture Notes in Artificial Intelligence, pages 3—22. Springer, 2005.

M. Fisher, C. Ghidini, and B. Hirsch. Organising Computation through Dynamic
Grouping. In Objects, Agents and Features, volume 2975 of Lecture Notes in Com-
puter Science, pages 117-136. Springer-Verlag, 2004.

C. Hewitt. Viewing control structures as patterns of passing messages. Artificial
Intelligence, 8(3):323-364, 1977.

K. V. Hindricks, F. S. de Boer, W. van der Hoek, and J.-J. Ch. Meyer. Agent
programming in 3APL. Autonomous Agents and Multi-Agent Systems, 2(4):357—
401, 1999.

JADE — Java Agent DEvelopment Framework. http://jade.tilab.com.

Jason — a Java-based interpreter for an extended version of AgentSpeak.
http://jason.sourceforge.net.

Alexander Pokahr, Lars Braubach, and Winfried Lamersdorf. Jadex: Implementing
a BDI-infrastructure for JADE agents. EXP - In Search of Innovation, 3(3):76-85,
2003.

Anand S. Rao. AgentSpeak(L): BDI Agents Speak Out in a Logical Computable
Language. In Agents Breaking Away — Proc. Seventh Furopean Workshop on
Modelling Autonomous Agents in a Multi-Agent World (MAAMAW), volume 1038
of Lecture Notes in Computer Science, pages 42-55. Springer, 1996.

Y. Shoham. Agent-oriented programming. Artificial Intelligence, 60:51-92, 1993.



	Translating into an Intermediate Agent Layer:  A Prototype in Maude [0.2ex] (Extended Abstract)
	 Berndt Farwer, Louise Dennis 

