
Foundations of Flexible Multi-Agent Programming!

Louise Dennis, Michael Fisher, and Anthony Hepple

Department of Computer Science, University of Liverpool, Liverpool, U.K.
{L.A.Dennis,M.Fisher,A.J.Hepple}@csc.liv.ac.uk

Abstract. In this paper we are concerned with proposing, analyzing and implement-
ing simple, yet flexible, constructs for multi-agent programming. In particular, we wish
to extend programming languages based on the BDI style of logical agent model with
two such constructs, constraints and content/context sets. These two aspects provide
sufficient expressive power to allow us to represent, simply and with semantic clarity,
a wide range of organisational structures for multi-agent systems. In summary, we not
only motivate this approach, but provide its semantics, through modification of a sim-
ple semantics based on the core of AGENTSPEAK, 3APL and METATEM. In addition,
we provide illustrative examples by simulating both constraints and content/context
sets within the Jason interpreter for AGENTSPEAK. In summary, we advocate the use
of these simple constructs in many logic-based BDI languages, by appealing to their
expressive power, semantics and simple implementation.

1 Introduction

We can simply characterise an agent as an autonomous software component having cer-
tain goals and being able to communicate with other agents in order to accomplish these
goals [15]. The ability of agents to act independently, to react to unexpected situations and
to cooperate with other agents has made them a popular choice for developing software in a
number of areas. At one extreme there are agents that are used to search the INTERNET, navi-
gating autonomously in order to retrieve information; these are relatively lightweight agents,
with few goals but significant domain-specific knowledge. At the other end of the spectrum,
there are agents developed for independent process control in unpredictable environments.
This second form of agent is often constructed using complex software architectures, and
have been applied in areas such as real-time process control [12, 9]. Perhaps the most im-
pressive use of such agents is as part of the real-time fault monitoring and diagnosis carried
out in the NASA Deep Space One mission [10].

The key reason why an agent-based approach is advantageous in the modelling and pro-
gramming of autonomous systems is that it permits the clear and concise representation, not
just of what the autonomous components within the system do, but why they do it. This al-
lows us to abstract away from the low-level control aspects and to concentrate on the key
feature of autonomy, namely the goals the component has and the choices it makes. Thus,
in modelling a system in terms of agents, we often describe each agent’s beliefs and goals,
which in turn determine the agent’s intentions. Such agents then make decisions about what
action to perform, given their beliefs and goals/intentions. This kind of approach has been
! Work partially supported by EPSRC under grant EP/D052548.

popularised through the influential BDI (Belief-Desire-Intention) model of agent-based sys-
tems [12]. This representation of behaviour using mental notions is initially unusual, yet has
several benefits. The first is that, ideally, it abstracts away from low-level issues: we simply
present some goal that we wish to be achieved, and we expect it to act as an agent would given
such a goal. Secondly, because we are used to understanding and predicting the behaviour of
rational agents, the behaviour of autonomous software should be relatively easy for humans to
understand and predict too. Not surprisingly, the modelling of complex systems, even space
exploration systems, in terms of rational agents has been very successful [14, 13, 6]. Thus, the
BDI approach to agent modelling has been successful. Unsurprisingly, this has led to many
novel (usually, logic-based) programming languages based (at least in some part) upon this
model; these are often termed BDI Languages. Although a wide variety of such languages
have been developed [1] few have strong and flexible mechanisms for organising multiple
agents, and those that do provide no agreement on their organisational mechanisms. Thus,
while BDI languages have converged to a common core relating to the activity of individual
agents [4], no such convergence is apparent in terms of multi-agent structuring.

In this paper we consider extending basic BDI languages with simple, yet powerful, con-
structs that allow the development of quite complex organisational structures. Thus, in Sec-
tion 2, we introduce the concepts behind the new structures, in particular showing how they
relate to common BDI language semantics. To clarify this further, in Section 3, we provide
the core semantics of a subset of AGENTSPEAK incorporating the new concepts; we call this
language AGENTSPEAK−. To show how these concepts can be used, in Section 4, we outline
how a variety of organisational structures can be expressed using these simple constructs,
and even provide implementations within AGENTSPEAK. Finally, in Section 5, we provide
concluding remarks.

Thus, we begin by introducing the concepts; we do this by first considering the core opera-
tional aspects of BDI languages and then showing how our new concepts affect these.

2 Introducing the Concepts

Although all BDI languages have a family resemblance their syntax and semantics can vary
immensely. We therefore use a loose unifying framework for our discussion into which we
believe most BDI languages will fit1, although not always elegantly.

Our semantic framework assumes that a BDI language specifies the behaviour of an agent
in terms of the agent’s current state, S, which changes over time and a fixed specification,
SP , which does not. Thus, an agent is viewed as a tuple < S,SP >. S consists, amongst
other things, of a set of beliefs, B. The BDI programming language then has a process for
determining whether a given belief b follows from the current state which we will write as
S |= b, since these are often logical mechanisms.

The BDI programming language has a specific operation, select instruction, which
acts on the state according to the specification in order to determine the next instruction to
be executed and another, modify, which modifies the state according to the specification

1 Indeed, in [4] such a framework was used to provide a common semantic basis for 3APL, AGENTS-
PEAK, METATEM, etc.

and the selected instruction. The execution of an agent can therefore be viewed as repeated
application of the transition rule

< S,SP >→< modify(SP,S, select instruction(SP,S)),SP > . (1)

We assume that both S and SP are made up of a number of sets or stacks (e.g., of beliefs)
and use the notation S[S1/S2] to indicate the state S in which the set S1 has been replaced
by S2.

Note. This framework should not be interpreted as assuming that a given BDI language has
explicit constructs for select instruction and modify, but that most BDI languages can
be expressed in terms of the operation of appropriate versions of these functions.

We also assume that a BDI language contains a set of plans (or rules), P , which are used
by the select instruction operation. These plans may either be a part of S or SP . We
assume such plans are triggered in some fashion by S. In some cases they are triggered by
the composition of the Beliefs (e.g., METATEM [5]), in some by the Goals (e.g., 3APL [8, 3])
and in some by explicit trigger events (e.g., the Jason [2] interpreter for AGENTSPEAK [11]).

To simplify matters, we use an abstraction of a plan, describing it as:

t ← {g}b .

Thus, plans comprise; a trigger, t; a guard (checked against an agent’s beliefs), g; and a Body,
b, which specifies an instruction (or sequence of instructions) to be executed. In languages
where only beliefs are used to trigger plans this can be written as

← {g}b .

In order to trigger plans, the language requires some component of the current state S which
activates the trigger. We treat this as a set, T , and write the triggering process as T |=t t.

Finally, we will use the notation Ag |=a p to indicate that a plan, p, is applicable for an
agent, Ag. The semantics of this for a basic BDI agent2 is

app cond(t ← {g}b, Ag)

Ag |=a t ← {g}b
(2)

where app cond are the agent language’s applicability conditions. In most languages

app cond(t ← {g}b, Ag) = T |=t t ∧ S |= g.

Notes.

– Again we do not necessarily expect these operations associated with plans to be explicit
in the languages (e.g., T may be a stack of goals and T |=t g may be the process of
matching the head (or prefix) of this stack).

2 i.e., an agent whose semantics has not been modified with the constructs we describe later.

– There may be other applicability checking processes within the language (e.g., applica-
bility of actions) — we represent all of these by Ag |=a.

– Application of a plan results in an instruction to modify the state either directly (e.g., +b
appears in the body of the plan and is an instruction to add b to B) or indirectly (e.g.,
the body of the plan is integrated into an intention or other part of the state which is then
used for further planning or to govern subsequent actions and changes of belief).

Given the above basis, we now consider the two aspects we wish to introduce. The first,
though related to the representation of groups of agents in METATEM [5], is independent
of the underlying language for agents. The only restrictions we put on any underlying lan-
guage is that, as in most BDI-based languages (and as described above), there are logical
mechanisms for explicitly describing beliefs and goals, and possibly plans and intentions3.

2.1 Content and Context Sets
Assuming that the underlying language can describe the behaviour of an agent as above,
we now extend the concept of agent with two sets, Content and Context. The agent’s
Content describes the set of agents it contains, while the agent’s Context describes a set
of agents it is contained within. The addition of Content and Context sets to each agent
provides significant flexibility for agent organisation. Agent teams, groups or organisations,
which might alternatively be seen as separate entities, are now just agents with non-empty
Content. This allows these organisations to be hierarchical and dynamic, and so, as we will
see later, provides possibilities for a multitude of other co-ordinated behaviours. Similarly,
agents can have several agents within their Context. Not only does this allow agents to
be part of several organisational structures simultaneously, but it allows the agent to benefit
from Context representing diverse attributes/behaviours. So an agent might be in a context
related to its physical locality (i.e. agents in that set are ‘close’ to each other), yet also might
be in a context that provides certain roles or abilities. Intriguingly, agents can be within many,
overlapping and diverse, contexts. This gives the ability to produce complex organisations, in
a way similar to multiple inheritance in traditional object/concept systems. For some sample
configurations, see Fig. 1.

An important aspect is that this whole structure is very dynamic. Agents can move in and
out of Content and Context sets, while new agents (and, hence, organisations) can be
spawned easily and discarded. This allows for the possibility of a range of organisations, from
the transient to the permanent. From the above it is clear that there is no enforced distinction
between an agent and an agent organisation. All are agents, all may be treated similarly.

Finally, it is essential that the agent’s internal behaviour, be it a program or a specification,
have direct access to both the Content and Context sets. As we will see below, this allows
each agent to become more than just a ‘dumb’ container. It can control access to, restructure,
and share information and behaviours with, its Content.

Semantics
The simplicity of the above approach allows us to provide a few general operational rules for
managing the content and context.
3 We also require that message-passing between agents is provided; this is standard in most languages.

Fig. 1. A selection of possible organisation structures.

We extend the agent’s state, S, with a content, (Cn), and a context, (Cx), and add
four new instructions into the language +agcn (add ag to the content), −agcn (remove
ag from the content) and +agcx,−agcx for adding and removing agents from the con-
text. We also add four new constructs into the trigger component, T : entered content(ag),
entered context(ag), left content(ag) and left context(ag) and two new constructs into
our language of guards: in content(ag) and in context(ag).

We then extend themodify operation with the rules:

modify(SP,S,+agcn) = S[Cn/Cn ∪ {ag}, T/T ∪ entered content(ag)] (3)

modify(SP,S,−agcn) = S[Cn/Cn/{ag}, T/T ∪ left content(ag)] (4)
and two analogous ones for context. These rules extend both the content/context and the
trigger set, T . This allows plans to be triggered by changes in these sets. (e.g., plans of the
form

entered content(Ag) ← {in content(Ag)}send(self,Ag, plan)

may be written which are triggered by the addition of a new agent Ag to the Content into
sending that agent a plan).

We also extend the belief inference process to include checking membership of Cn and
Cx:

ag ∈ Cn

S |= in content(ag)
(5)

ag ∈ Cx

S |= in context(ag)
(6)

It should be noted that in many languages it may be possible to streamline these extensions
(e.g., by merging the triggering of plans and the update of content/context – see Section 3).

2.2 Constraints

The second basic component we suggest as being necessary for many meaningful multi-
agent structures is that of constraints. A constraint consists of additional guards that may
be appended to plans/rules and actions by an agent’s context. This allows permissions to be
modelled.

Semantics

As with groups we extend the agent’s state, S, with a constraint set, (C). C is treated as a
set of pairs of a trigger and a guard, written [t ⇒ g]. Depending on the language, it may be
desirable to add other pairs to this set, for instance if actions may have guards and there is an
applicability process for actions then action/guard pairs may also be useful within constraints.
Again, we add new instructions into the language+new constraintc (add new constraint
to C) and −new constraintc (remove new constraint from C).

We then extend Ag |=a:

∀[t ⇒ g′] ∈ C. S |= g′ app cond(t ← {g}b, Ag)

Ag |=a t ← {g}b
(7)

So, in many languages, this becomes

∀[t ⇒ g′] ∈ C. S |= g′ T |=t t S |= g

Ag |=a t ← {g}b
(8)

Similar modification can be made to the operational semantics of action applicability (inter-
nal or external) and any other relevant components of S and SP .

It should be noted that constraints make relatively little sense in a single agent environ-
ment (where guards on plans and actions are sufficient) it is only in a multi-agent environment
where a context may wish to add additional guards to a pre-existing plan or action that such
constraints become useful.

3 A Simple BDI Language

We will conclude our discussion of formal semantics with a simple example showing how
our framework provides a practical methodology for extending existing BDI languages. Let
us consider an extremely simple agent programming language based on AGENTSPEAK. We
will call this language AGENTSPEAK−.

3.1 Syntax

Our language uses ground first-order formulae for beliefs, actions and goals. A plan is a triple
of a goal, a guard and a stack of instructions (called here deeds following AIL [4]). An Agent
is a triple of a set of beliefs, a stack of deeds and a set of plans. This is shown in Fig. 2.

term := Ground First Order Formula
belief := term

action := term

goal := term

deed := action | +belief | −belief | +!goal

plan := goal : set(belief) ← stack(deed)

agent := < set(belief), stack(deed), set(plan) >

Fig. 2. Syntax of AGENTSPEAK−

3.2 Operational Semantics

We provide a simple operational semantics for AGENTSPEAK− in the form of the four tran-
sition rules given in Fig. 3. In these semantics do(a) is an operation in an agent’s interface
that causes it to perform the action, a, and then returns a set of messages in the form of
deeds, +!received(sender,φ), which instruct the agent to handle the message φ from agent
sender. In this language perception, therefore, has to be handled by an explicit perception
action which then returns messages from the environment as if from another agent. Finally, ;
represents the cons function on stacks,@ represents the join function, and random indicates
random selection of an element from a set.

do(a) = msg
< B, a; D, P >→< B, msg@D, P >

(9)

< B, +b; D, P >→< B ∪ {b}, D, P >
(10)

< B,−b; D, P >→< B/{b}, D, P >
(11)

body = random({b | g : G ← b ∈ P ∧ G ⊆ B})
< B, +!g; D, P >→< B, body@D, P >

(12)

Fig. 3. Operational Semantics of AGENTSPEAK−

It should be noted that this is not intended as a practical example of a BDI language. For
a start the language is entirely ground and makes no use of unification. Secondly the rather
crude use of the deed stack to organise both planning and message handling/perception is
likely to cause quite strange behaviour in any real agent setting.

3.3 Extension to the Simple BDI Language

Fig. 4 shows how this language fits into our earlier framework.

Framework AGENTSPEAK−

SP P
S B, D
T D
S |= b b ⊆ B
T |=t t t = hd(D)
app cond(gl : g ← b) g ⊆ B
modify((B, D), P, +b) (B ∪ {b}, D)
modify((B, D), P,−b) (B/{b}, D)
modify((B, D), P, ds) (B, ds@D)
select instruction((B, a; D), P) do(a)
select instruction((B, +b; D), P) +b
select instruction((B,−b; D), P) −b
select instruction((B, +!g; D), P) random({b | p ∈ P ∧ Ag |=a p})

Fig. 4.Mapping our Framework to AGENTSPEAK−

Modifying these semantics according to our content/context/constraints framework now
gives us the language semantics shown in Fig. 5

In fact this extension can be improved upon based on the details of our languages. For
instance we can omit the entered content() and left content() and use +agcn and −agcn

as plan triggers if we like changing (19) to

body = random({b| + agcn : G ← b ∈ P ∧ G ⊆ B ∧ ∀[+agcn ⇒ G′] ∈ C. G′ ⊆ B}

< B,+agcn;D,Cn,Cx,C, P >→< B, body@D,Cn ∪ {ag}, Cx,C, P >
(23)

4 Using the Concepts

Wewill briefly discuss some illustrative examples of the use of constraints and content/context
sets (sometimes termed groups) in organisational settings.

4.1 Shared beliefs

Being a member of all but the least cohesive groups/organisations requires that some shared
beliefs exist between its members. Making the contentious assumption that all agents are
honest and that joining a group is both individual rational and group rational, let agent
i hold a belief set BSi and assume the programming language contains the instruction
addBelief(Beliefs) with the semantics

modify(SP,S, addBelief(Bs)) = S[B/B ∪ Bs]

Suppose a (group) agent i has the plan:

entered content(Ag) ← {in content(Ag)}send(i, Ag, inform(BSi))

do(a) = msg ∀[a ⇒ G] ∈ C. G ⊆ B
< B, a; D, Cn, Cx, C, P >→< B, msg@D, Cn, Cx, C, P >

(13)

< B, +b; D, Cn, Cx, C, P >→< B ∪ {b}, D, Cn, Cx, C, P >
(14)

< B,−b; D, Cn, Cx, C, P >→< B/{b}, D, Cn, Cx, C, P >
(15)

< B, +cc; D, Cn, Cx, C, P >→< B, D, Cn, Cx, C ∪ {c}, P >
(16)

< B,−cc; D, Cn, Cx, C, P >→< B, D, Cn, Cx, C/{c}, P >
(17)

body = random({b | g : G ← b ∈ P ∧ G ⊆ B ∧ ∀CgG′ ∈ C. G′ ⊆ B})
< B, +!g; D, Cn, Cx, C, P >→< B, body@D, Cn, Cx, C, P >

(18)

< B, +agcn; D, Cn, Cx, C, P >→< B, +!entered content(ag); D, Cn ∪ {ag}, Cx, C, P >
(19)

< B,−agcn; D, Cn, Cx, C, P >→< B, +!left content(ag); D, Cn/{ag}, Cx, C, P >
(20)

< B, +agcx; D, Cn, Cx, C, P >→< B, +!entered context(ag); D, Cn, Cx ∪ {ag}, C, P >
(21)

< B,−agcx; D, Cn, Cx, C, P >→< B, +!left context(ag); D, Cn, Cx/{ag}, C, P >
(22)

Fig. 5. AGENTSPEAK− extended to multi-agents

and agent j has the plan:

recieved(Ag, j, inform(BSi)) ← {in context(Ag)}addBelief(BSi)

taken together these plans mean that if j joins the Content of i it gets sent the beliefs BSi

which it adds to its own belief base. This allows shared beliefs to be established.
The agent in receipt of the new beliefs may or may not disseminate them to the agents

in its Content, depending on the nature and purpose of the group. Once held, beliefs are
retained until contradicted or revised (for example, on leaving the group).

4.2 Permissions and Obligations

A number of multi-agent formalisms include concepts of permissions and obligations. An
agent within a group setting may or may not have the permission to perform a particular ac-
tion or communicate in a particular fashion. This can be easily represented using constraints:
for instance if agents in group, G, may not perform action a then the constraint [a ⇒ ⊥] can
be communicated to them when they join G’s Content.

It should be noted that in order for such a message to be converted into an actual con-
straint, the receiving agent would also need the plan:

recieved(Ag, i, constrain([a ⇒ g])) ← {in context(Ag)} + [a ⇒ g]c

This design deliberately allows varying degrees of autonomy among agents to be handled by
the programmer.

Obligations are where a group member is obliged to behave in a particular fashion. This
can be modelled if plans are treated as modifiable by the underlying agent language. Obliga-
tions can then be communicated as new plans.

/*---------------- initial beliefs ---------------- */
cooperative.

/*---------------- rules -------------------------- */
check_constraint(Plan, Arg)
:- not constraint_fails(Plan,Arg).

/* --------------- basic plans -------------------- */

/* How an agent responds to a group membership invitations */
+!join(Group)[source(Group)] : cooperative
<- .my_name(Me);

+context(Group);
.println("I believe I have the context of ", Group);
.send(Group, achieve, accept(Me, Group)).

Fig. 6. A simple cooperative agent defined in AgentSpeak

4.3 Pizzas
Our last example is a simple case study which we have implemented in AgentSpeak/Jason. It
concerns a simple cook agent who is provided with a number of plans by a chef agent, each
for cooking a different meal. The cook’s choice of plan is constrained by the Context in
which it cooks.

Scenario. The chef of a restaurant hires a cook and provides a list of dishes from which the
cook is free to choose when asked to prepare a meal. As diners arrive, their preferences are
noted and the cook endeavours to choose a meal that satisfies all of the diners.
Our cook was implemented as a simple, cooperative agent with the ability to enter the
Context of other agents but without any domain abilities — it can’t cook — see Fig. 6.

When hired, the cook agent receives plans for making risotto, steak and pizza. AgentS-
peak code defining this behaviour is shown in Fig. 7. When asked to prepare a meal without

+content(Agent)[source(self)]
<- .print("Sending ", Agent, " plans...");

.send(Agent, tellHow, "+!cook(risotto) : check_constraint(cook,risotto)
<- make(risotto).");

.send(Agent, tellHow, "+!cook(steak) : check_constraint(cook,steak)
<- make(steak).");

.send(Agent, tellHow, "+!cook(pizza) : check_constraint(cook,pizza)
<- make(pizza).").

Fig. 7.When an agent is ‘hired’ by a Chef it divulges plans

the constraints of any diners it prepares risotto; see Fig. 9(b). A meat eating diner then im-
poses their dislike for risotto by providing the cook with the constraint

constraint fails(cook,risotto).
Now, acting in the context of this meat eater, the chef prepares steak as opposed to risotto;
see Fig. 9(c). Finally, a vegetarian diner also invites the chef agent to join its Content and
in so doing imposes the constraint constraint fails(cook,steak), see Fig. 8. The
agent, now a member of three contexts must decide an appropriate course of action within the
supplied constraints - it must not commit to cooking risotto or steak! Thus it is constrained
to choose to prepare pizza; see Fig. 9(d).

+content(Agent)[source(self)]
<- .print("Sending ", Agent, " my constraints");

.send(Agent, tell, constraint_fails(cook,steak)).

Fig. 8. Vegetarians don’t eat steak.

Full execution output for this example is given in Fig. 10.

Fig. 9. A cook with multiple constraints.

5 Concluding Remarks

In this paper we have proposed a simple extension to BDI languages that permits the devel-
opment of sophisticated multi-agent organisations. We have shown how the addition of both
content/context sets and constraints is both semantically simple and appealing. Although we
provided a semantic definition for a simple BDI language, we gave this only for illustrative
purposes. We expect that developers’ favourite logical agent language could be extended in
this way.

Finally, we provided some simple examples to justify our statement that many agent or-
ganisational aspects can be modelling using our two simple concepts. While we were not able
to give more comprehensive justification, we note that, in a companion paper [7], we show
how leading work on organisations, roles and teamwork can all fit within our framework.

[chef] saying: inviting cook to join my content
[cook] saying: I believe I have the context of chef
[chef] saying: Sending cook plans...
[chef] saying: I consider cook to be in my content
[cook] doing: make(risotto)
cook is making risotto
[meatEater] saying: inviting cook to join my content
[cook] saying: I believe I have the context of meatEater
[meatEater] saying: Sending cook my constraints
[meatEater] saying: I consider cook to be a member of my content
[cook] doing: make(steak)
cook is making steak
[vegetarian] saying: inviting cook to join my group
[cook] saying: I believe I have the context of vegetarian
[vegetarian] saying: Sending cook my constraints
[vegetarian] saying: I consider cook to be in my content
[cook] doing: make(pizza)
cook is making pizza

Fig. 10. Execution output

References

1. R. H. Bordini, M. Dastani, J. Dix, and A. El Fallah Seghrouchni, editors. Multi-Agent Program-
ming: Languages, Platforms and Applications. Number 15 in Multiagent Systems, Artificial Soci-
eties, and Simulated Organizations. Springer-Verlag, 2005.

2. R. H. Bordini, J. F. Hübner, and R. Vieira. Jason and the golden fleece of agent-oriented program-
ming. In Bordini et al. [1], chapter 1, pages 3–37.

3. M. Dastani, M. B. van Riemsdijk, and J.-J. C. Meyer. ProgrammingMulti-Agent Systems in 3APL.
In Bordini et al. [1].

4. L. A. Dennis, B. Farwer, R. H. Bordini, M. Fisher, and M. Wooldridge. A Common Semantic
Basis for BDI Languages. In Proc. Seventh International Workshop on Programming Multiagent
Systems (ProMAS), Lecture Notes in Artificial Intelligence. Springer Verlag, 2007 (to appear).

5. M. Fisher. METATEM: The Story so Far. In Proc. Third International Workshop on Programming
Multiagent Systems (ProMAS), volume 3862 of Lecture Notes in Artificial Intelligence, pages 3–22.
Springer Verlag, 2006.

6. M. Fisher, E. Pearce, M. Wooldridge, M. Sierhuis, W. Visser, and R. Bordini. Towards the Verifica-
tion of Human-Robot Teams. In IEEE Workshop on Leveraging Applications of Formal Methods,
Verification, and Validation (ISoLA), Washington D.C., USA., 2005.

7. A. J. Hepple, L. A. Dennis, and M. Fisher. Building Agent Organisations in BDI Languages the
Simple Way. Submitted., 2007.

8. K. V. Hindriks, F. S. de Boer, W. van der Hoek, and J.-J. C. Meyer. Agent Programming in 3APL.
Autonomous Agents and Multi-Agent Systems, 2(4):357–401, 1999.

9. N. R. Jennings and M. Wooldridge. Applications of agent technology. In Agent Technology:
Foundations, Applications, and Markets. Springer-Verlag, Heidelberg, 1998.

10. N. Muscettola, P. P. Nayak, B. Pell, and B. Williams. Remote Agent: To Boldly Go Where No AI
System Has Gone Before. Artificial Intelligence, 103(1-2):5–48, 1998.

11. A. Rao. AgentSpeak(L): BDI Agents Speak Out in a Logical Computable Language. In Proc.
7th European Workshop on Modelling Autonomous Agents in a Multi-Agent World (MAAMAW),
volume 1038 of Lecture Notes in Computer Science, pages 42–55. Springer, 1996.

12. A. S. Rao and M. Georgeff. BDI Agents: from theory to practice. In Proceedings of the First
International Conference on Multi-Agent Systems (ICMAS-95), pages 312–319, San Francisco,
CA, June 1995.

13. M. Sierhuis. Multiagent Modeling and Simulation in Human-Robot Mission Operations. (See
http://ic.arc.nasa.gov/ic/publications), 2006.

14. M. Sierhuis, J. M. Bradshaw, A. Acquisti, R. V. Hoof, R. Jeffers, and A. Uszok. Human-Agent
Teamwork and Adjustable Autonomy in Practice. In Proceedings of the 7th International Sympo-
sium on Artificial Intelligence, Robotics and Automation in Space (i-SAIRAS), Nara, Japan, 2003.

15. M. Wooldridge and N. R. Jennings. Intelligent Agents: Theory and Practice. The Knowledge
Engineering Review, 10(2):115–152, 1995.

