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Abstract: The paper addresses the problem of defining a theoretical physical agent framework that 
combines rational agent decision making with abstractions from predictions and planning of the future of 
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1. INTRODUCTION 

Adaptive and reconfigurable control systems are often 
considered in isolation for a set of control inputs and outputs 
to be controlled, without regard to integration into an overall 
logic based decision making process. Autonomous vehicles, 
robots, utility control agents and manufacturing artificial 
agents often need to integrate controllers into their overall 
operations. In this context reasoning about priorities and 
consideration of system goals has often been done by 
intelligent agents [1,2,3,4]. This paper reconsiders the 
abstraction problem by agents to handle the solution of 
complex reconfigurable control. Following a brief 
introduction of intelligent physical agents for the engineering 
reader, the problem this paper addresses is presented. 
It is widely believed that agent systems are most 
appropriately described by the intentional stance, wherein the 
agent is an entity subject to anthropomorphism [1]. Whilst, to 
date, there is no panacea for agent theory, significant 
contributions have been made relating to what properties an 
agent should have and how these properties should be 
formally represented and reasoned about [1,2,5,6,3]. 
Application areas for agent systems have been defined within 
the realms of software, industry and autonomous control 
systems [1,3,7]. Agent architectures are divisible into three 
groups: reactive, multi-layered and deliberative. Reactive 
architectures operate through a mapping of sensor data or 
current state to action, in a stimulus-response fashion, as 
exhibited by Brooks subsumption architecture [8]. 
Subsumption architectures present intelligence as an 
emergent property resulting from a hierarchy of finite state 
machines such that there is a behavioural response resulting 
from goal oriented desires; there is no form of planning. Such 
simplistic architectures are advantageous in dynamic 
environments, though in addition to the difficulty of 

engineering a set of behaviours to achieve a particular task, 
undesired behaviours also evolve. Moreover, omitting the 
ability for such agents to reason eliminates the possibilities of 
planning and learning: both highly desirable proactive traits 
for agents [9,10]. 
A logical framework wherein beliefs, desires and intentions  
(BDI) are primitive attitudes, as formulated by Rao and 
Georgeff, has proven to be the most popular: the three BDI 
primitives are highly cited within literature and used within 
numerous agent programming languages including the logic 
based PRS, Jason and 3APL, as well as the Java based 
implementations of JADE, Jadex and JACK [2,5,6]. 
Systems aiming to combine the timely nature of reactive 
architectures and the mathematical rigor of deliberative 
architectures are termed as hybrid, or layered architectures. 
Layered systems, as their name would suggest, involve a 
hierarchy of interacting subsystem layers; these layers may 
be horizontal or vertical. Complexities of information 
bottlenecks and the need for internal mediation within 
horizontal architectures are partially alleviated within vertical 
architectures, though these structures do not provide for fault 
tolerance.  Both horizontal and vertical architectures have 
been implemented within Touring Machines and InterRRaP 
respectively [11].  
Possibly the most widely known BDI implementation is PRS 
[4, 12]. PRS is a situated real time reasoning system that has 
been applied to the handling of space shuttle malfunctions, 
threat assessment and the control of autonomous robots. 
Within the PRS framework a knowledge database, detailing 
how to achieve particular goals or react to certain situations, 
is interfaced by an interpreter. Conceptually this is similar to 
a horizontally layered Touring machine, though notions of 
intention are contained and consequently place PRS as a 
deliberative BDI model. Whilst PRS is certainly a notable 
and proven methodology, the knowledge database is fixed 



 
 

     

 

and invoked upon perceived condition triggers for the 
particular knowledge item of relevance. Here we propose the 
interleaving of physical stances within the intentional stances 
used to abstract and reason about the system in order to 
enrich the reasoning process.  
 
This paper addresses the problem of defining a theoretical 
physical agent framework that combines rational agent 
decision making with abstractions from predictions and 
planning of the future of the physical environment.  The 
framework can be an extension of BDI agent architectures.   
The paper argues that logic based decision making is more 
complex, or indeed correct decisions are impossible to 
achieve, without the agent simulating (predicting) the near 
future. An agent framework, permitting automated timely 
evaluation of abstractions on the effects of future actions, is 
presented. Programming of abstractions and a unified system 
ontology is facilitated by natural language programming 
(NLP) in sEnglish.  
 

2. A SIMPLE MOTIVATING EXAMPLE 

Assume that a point mass robot A is navigating through a 2D 
environment. It is able to sense its position relative to a target 
location but does not have a map of the environment (though 
it can build a map of the environment where it has already 
passed trough). It is also assumed that A is able to scan a 
range map ahead of it within a 90° angle and A has a fixed set 
of manoeuvres, M, it can make at any time. Now the question 
is as follows: is it sufficient to choose the next manoeuvre of 
A, based on the current situation of the agent by dividing the 
state space of the current kinetic state x of A into a set of 
abstractions and taking into account the shape of the current 
range map R to define a safe next manoeuvre function 
N(x,R)∈M ? This approach is characterised by the following: 
(1) Ability to plan ahead in time, to only move into a position 
from where there is a guaranteed manoeuvre to proceed 
further, without being trapped on the basis of the available 
range map R.  
(2) It can be approximated from a fixed set of abstractions, 
for x and R, to decide on the next manoeuvre to be executed.  
The question is whether such pre-computed planning is 
sufficient for robot control? We argue in this paper that for 
most practical applications this is not applicable and this is 
only useful in ideal situations where vehicle dynamics does 
not change. In most practical systems there are state-space 
changes that render pre-planned decision making 
inapplicable. These include actuator degradation and external 
disturbances affecting the manoeuvres. A possible solution 
may be to extend the discretisation principle of [13,14]: 
detect the actuator degradation D, or disturbance d, abstract it 
into propositions and define an extended manoeuvre selection 
function  N(x,R,D,d)∈M . This appears feasible, though this 
has now become a function of 4 arguments and the number of 
cases to consider can be very large. The number of different 
cases we discriminate for x,R,D,d shall be called the (logical) 
complexity of pre-planned decision making on the next 
manoeuvre. Even if we discriminate for only a low number of 
cases for each of x,R,D,d, e.g. 10 each,  one will need 10,000 
cases to pre-evaluate and store for decision making. 

There is an alternative to this type of pre-computation: we 
may equip the agent with the ability of online optimisation of 
its required inputs over a future time horizon that takes into 
account x, R, D and d. This scheme is generally known as 
adaptive model predictive control. We argue predictive 
control substantially reduces the complexity of the rational 
agent’s decision making about an essentially continuous time 
process. In this paper we introduce a family of agent 
architectures for efficient use of predictive control methods 
instead of discretizing the state space of the agent as in 
[13,14] that can lead to large number of cases or logic rules to 
consider.  However the benefits of the new agent architecture 
moves much more beyond the use of predictive control. We 
introduce and agent family that can handle adaptive MPC and 
performs realtime decision making via abstractions and logic: 
(1) Execution of feedback loops is delegated to processes or 
threads on what we term here as a physical engine 
(2) An abstraction process provides symbolic inputs for logic 
based decision making within a rational engine 
(3) Simulations of the future by the agent to explore/try and 
solutions using its continuous engine. 
(4) Potential for formal verifiability for safety of operations 
(5) Abstraction programming via the use of natural language 
programming (NLP) in sEnglish.  
  
The point mass robot example in this section has only been 
used to motivate the need for timely predictive control 
computations instead of trying to construct abstractions of 
cases in state space that may result in inefficient use of 
computational resources. The remaining features of the 
architecture family proposed in this paper serve a similar 
purpose:  making the agent adaptable and fast in an unknown 
unstructured environment.   
 
Publications in [15,13,14] aim to bridge the gap between 
continuous dynamics and discrete logic by synthesizing 
controllers from temporal logic formulae. The dynamical 
models are fixed and all discrete transitions precomputed. 
The motivating example given in this section highlights the 
need for dynamical adaptivity due to actuator changes and 
disturbances. The controller synthesis schemes of these 
publications can suffer from uncertainties and computational 
complexity to similar degree as was indicated within the 
presented example.     
 

3. A FRAMEWORK FOR UNSTRUCTURED 
ENVIRONMENTS 

A physical agent system (PAS) is a 3-tuple consisting of the 
agent, the environment in which the agent exists and a 
coupling between the agent and environment. 
 
Definition A physical agent system,  is defined by   

  where is a set of agents,  ,    
is a set of environment objects, , and  is a 
set of couplings between any 
members of the joint set  .  Couplings between 
members of    are called communications, and couplings 
between members of   are called physical interactions, . 



 
 

     

 

Couplings between members of  and  are called action and 
sensing, in the environment.  
A coupling Γ is an abstract object at this stage of our 
discussion that will be specified later for its types, attribute 
and models (see Section 4). In this paper we are interested in 
physical agents that are not pure software agents but ones that 
have a set of environmental objects associated with them, 
referred to as the “body” of the agents. Strictly speaking a 
body is a set of environmental objects associated with a set of 
agents.  
 
Definition The body association of agents is a map, , 
defined by splitting  and  into a disjoint sets of agents and 
sets of environmental objects, respectively: 

, , 

and allocating to each  a component of  :  .  
 
In exceptional circumstances the  may be allowed 
not to be disjoint, meaning that agent teams can “share some 
body parts”, but this is not the norm. For logical clarity one 
should normally organize teams of agents, such that 

 is a disjoint union. 
 
In the physical agent definition, that we introduce below, we 
separate computational units for  
(1) Receiving signals from sensors and producing signals for 
actuators and forming symbolic first-order logic expressions 
(abstractions) for these signals and their patterns (unit Π) . 
(2) For simulating continuous events of the future and the 
past and abstracting symbolic first-order logic expressions of 
implications for these hypothetical events (unit Ω). 
(3) Manipulating symbolic expressions of behavior 
constraints, goals, past and future hypothetical events using 
first-order logic derivations via proof theoretic techniques 
(unit Σ) to decide upon actions to be taken. 
 
Definition.  A single physical agent is a tuple    
consisting of the three main constituents: its physical engine, 
Π, its rational behavior engine, Σ,  and its continuous engine, 
Ω. The physical engine can be a complex process or set of 
processes. It can contain a multitude of devices, including 
communication, sensor and actuator devices, as well as 
sensor data abstractors  (SDAs), control data developers 
(CDDs) and feedback processes (FBPs) for realtime 
processing of perception and action signals of the agent. The 
SDAs are to symbolize events for the CDDs are to develop 
symbolic action into control signals for the actuators and the 
FBPs are needed for linking CDD and SDA pairs into 
realtime feedback loop executors. 
 
Definition. A physical engine is a quad tuple, , 
where is a set of communication devices,  is a set of 
sensor data abstractors,  is a set of control data developers 
and is a set of realtime feedback loop executors. For 
practical reasons any of  may be empty but   that 
represents communication devices and as such is not allowed 
to be empty. 

Definition. A software agent is a physical agent that has only 
communication devices present within its physical engine, 
i.e. all of  are empty.  
 
The rational behaviour engine, Σ, is formally defined so as to 
permit the accommodation of simple reactive subsumption 
based architectures as well as deliberative belief-desire-
intention, i.e. BDI agent architectures. Whatever agent 
architecture is implemented, they must handle sensed event 
abstractions, agent action abstractions and decision making 
processes (DMPs). Components of DMP can be: 

• Planning of movements in the physical world using 
motion primitives 

• High level planning of goal achievement using various 
resolutions of world maps  

• Planning to achieve goals other than movements 

The following definition grasps the minimum of what the 
DMP must contain for a capable physical agent, without 
specifying the actual mechanisms of operation, i.e. no “agent 
architecture” is specified.  
 
 Definition. A rational behavior engine, Σ, is a tuple, 

  that contains a granulated multi-
resolution and physical multi-domain symbolic world models 
W, abstract physical skills memory ,  goal achievement 
memory (problem solving memory)  abstract formulation 
of behavior constraints Cs, abstract formulation of short and 
long term goals G.  
 
The question of modelling structures relating to the 
continuous world, and their role in planning and decision 
making, has so far been neglected. It is a fact however, that 
decisions can be influenced by hypothetical planning: 
forming a decision and subsequently planning for this 
decision may lead to less than ideal outcomes. This fact and 
that initial abstractions in   as prescribed by the designer of 
the agent, may not be sufficient to capture the essence of the 
changing world correctly, leads us to defining the 
“Continuous engine” of the physical agent. 
 
Definition. The continuous engine, Ω, is a tuple 

  where M is a set of approximate continuous 
models of the world,    is a continuous time simulator that 
uses analytical and empirical data based dynamic models to 
predict future state of the world, O is an optimizer that can 
optimize continuous time planning of actions, B is a Boolean 
evaluator of propositions in terms of σ statements and L is a 
library of useful numerical computations in terms of 
continuous variables.  
 
As W is the primary, symbolic model of the world with 
relationships stored on symbols, the M is related to W. The M 
is a collection of models from various physical domains 
(geometric, mechanical, electrical, gravitational, heat, fluid 
flow, etc…) that make symbolic descriptions in W either 
more precise in numerical or in qualitative, time evolution 
sense.  Even without precise numerics, the agent may 
perform a simulation using the simulation tools in S to see 



 
 

     

 

possible qualitative outcomes in terms of   abstractions.  
These qualitative outcomes of predictions can be used to 
make the right decisions and planning by Σ.   
 
The O is a set of optimization tools for continuous problems. 
The agent can perform planning in continuous time and can 
set up a problem formulation. Then it searches in O for a 
suitable optimization tool. The results are formulated and 
used at the symbolic level of .  Optimization for path 
planning, robust feedback control or a low complexity 
numerical dynamical model may all be tools that are 
available in O. 
 
B is important since Boolean values of primitives in σ in 
prediction (simulation) outcomes must be inferred by some 
continuous computations that cannot be performed elsewhere 
except in the continuous engine  Ω .  B contains a Boolean 
valued functional, by example “will the agent body be within 
the allowed boundary if it carries on moving the same way 
for the next 10s” is an evaluation that is not done in symbolic 
computation but using M, S and B: the statement is converted 
into a symbolic first-order logic statement for  Σ . 
 
Finally L is a library of auxiliary computations with 
continuous quantities: for instance equation solvers for linear 
systems of equations, nonlinear equation solvers and generic 
nonlinear optimizers. Use of L by the agent assumes that the 
agent is capable of setting up problems in Σ by first 
abstracting them and picking a solution  tool from L.  
It is evident that Σ and Ω run hand-in-hand, i.e. the Σ 
frequently delegates computations to Ω, and then uses the 
output from Ω to continue deliberation of prescribe action.  
 
There are many ways to implement the agent architecture 
described above. Ideally a single language should be used for 
all the components to permit multi-platform implementation 
but there are both practical and legacy issues that make 
realization biased towards software systems that have tools 
available and which would be far too expensive to reproduce. 
For instance the MATLAB family of toolboxes provides a 
rich set of numerical processing, optimization and simulation 
algorithms that can be exploited. Similarly the Java 
environment has numerous software components in the area 
of agent reasoning that may be implemented directly. The 
following table provides some possible options for the 
software platform to be used for the implementation of the 
agent architecture outlined.   
 

Π platform Σ platform Ω platform 
C C C 
C++ C++ C++ 
Java Java Java 
MATLAB Java MATLAB 
SIMPOL SIMPOL SIMPOL 

 

4.  J2M IMPLEMETATION 

In the following we describe a possible software 
implementation in terms of MATLAB+Java+MATLAB 

(J2M) that has the advantage of minimal programming effort 
due to the rich set of programming tools presently available. 
Within the J2M implementation, the Π and Ω platforms are 
developed within MATLAB, whilst the Σ platform is 
exclusively developed using Java. Although it is theoretically 
possible to form a rational engine within a MATLAB 
framework, since MATLAB does not allow for multi-
threaded code execution, this would be a restricting factor. 
Also, to do so would neglect the existing frameworks which 
have been developed in more suitable languages. A 
description of the J2M will follow, within which we are 
assuming the implementation of a physical agent, that is one 
for which  are not empty.  
 
Sensor data, , may relate to position and velocity 
information given in some coordinate frame, as would be 
required for roving vehicles such as UAVs or AUVs.  may 
also relate to other functional data types such as temperature 
and pressure information, extracted from relevant sensors. 
The way in which  is communicated to Σ is critical, since Σ 
must be in the position to update W correctly based upon 
information received via . W is updated as a consequence of 

, from which Σ will evaluate the appropriate actions and this 
may instantiate invocations of Ω. 
 
During the rational agent deliberation cycle, a point may be 
reached wherein calls to the continuous engine are required. 
Instances of these calls have already been entered upon; here 
we shall concentrate on the data flow. The continuous engine 
is constructed within MATLAB and consequently all 
functionality of this system is achieved through use of the 
appropriate m-files. Σ requests execution of a component 
from Ω, either S, O, B or L, dependent upon the solution 
sought by the deliberation cycle occurring within Σ. Ω needs 
to return abstracted first-order logic statements about the 
future under the conditions of some actions hypothetically 
being taken. Here logical statements are arrived at not solely 
by logic derivations but by (1) continuous time simulations 
(2) abstracting first-order logic statements of  the form “if I 
do this then that happens” format.  The logic statements 
obtained by Ω can then be used by Σ for deliberative 
planning and commitment to actions.   
 
The physical engine, Π, is an element within an environment; 
this environment may be purely numerical, instantiated 
within a virtual world or a true dynamic real world 
environment. Regardless of construct, the physical engine is 
capable of extracting relevant abstract data from the inhabited 
world, using , and communicate those to the rational engine. 
This is not the only interaction mechanism Π has with Σ: the 
Σ can activate  components if it concludes that by logical 
inference. Within the developed implementation, the physical 
engine continually passes sensory information to the rational 
engine, which is used to update W, though the rational engine 
may chose to ignore information it receives. 
 
Actions executed by Ω are conditional upon input from Σ, 
and in turn Σ expects some form of result. Consequently we 
are presented with the need for more elaborate 
communications protocols to ensure efficient interaction 



 
 

     

 

between Σ and Ω. Messaging from Σ is of the form 
<mc,cc,rc>, whereby mc is a character string specifying the 
particular m-file to be executed, based upon the data 
encapsulated within cc and expecting the number of returned 
evaluations to be the number specified within rc. Return 
dialog from Ω to Σ is in a similar format, of the form <mr,rr>, 
wherein mr signifies the m-file which was executed and rr the 
result of the routine.  
In the same way that Π acts to ‘push’ data to Σ, Σ prescribes 
action for Π: here Σ prescribes the initiation of Δ which acts 

directly upon . Δ executes without additional action from Σ, 
using internal feedback devices, though Σ is capable of over-
riding the execution of a Δ. 
 
All engines run concurrently: Π is continuously feeding data 
to Σ, which prescribes action to Π and invokes intermittent 
communication with Ω.  A schematic of the J2M construct, 
indicating interaction of the three agent engines, is given 
within Figure 1. 

 
Fig 1: J2M Construct and data flow between agent engines 

 
5.  ABSTRACTIONS USING NLP 

Knowledge representation within a hybrid-software agent 
system is an important concern since encapsulated knowledge 
must be uniform across the system. The process of 
abstraction for use within an agent system, commonly 
developed via anthropomorphism, may be aided using natural 
language programming techniques. NLP may be used not 
only to help link abstraction and agent deliberation, but to 
link the physical and continuous engines to a unified 
ontology. As an illustration, the following tables list some of 
the  abstractions available to 6DOF spacecraft, in 
natural language programming (NLP) produced in sEnglish. 
The sentences listed are sEnglish code that unambiguously 
compile into MATLAB. 
 
Some perception abstractions of a GEO satellite agent: 

 Inside target region Bt. 
 Moving away from the Earth. 
 Being approached by debris from direction D 

 
Some open-loop action abstractions of a GEO satellite agent: 

 Applying thrust vector Uv for period T. 
 Switching to new control configuration Cc2. 
 Executing plan to approach target region 

 
Some closed-loop action abstractions of a GEO satellite 
agent: 

 Regulating my attitude to constant Av0. 
 Using thruster feedback control to track orbit O within 

cluster frame Cf.   

 Using sliding mode feedback control to regulate position 
Pa.  

 

 
Fig 2: sEnglish Sentences Editor: Natural Language 
Programming for agents via structured sentences. 

 
 
Some communications abstractions of a GEO satellite agent: 

 Sending message M to ground control centre Co.  
 Receiving message Mr from ground control centre Co.  
 Receiving message Mr from agent A32. 

 



 
 

     

 

Linking the NLP abstractions to the agent reasoning engine, 
developed in Java, is based upon exploiting the NLP 
abstractions and ontology developed within the sEnglish 
authoring suite[16, 17].  
 
The implemented Java parser utilizes a similar BDI syntax to 
that of the Jason language [5] and is presented within [18]. 
For further details the interested reader is referred to the 
publication, here it is intended to highlight the link between 
such a language and the sEnglish ontology and abstractions. 
The simple instance of the agent using a percept update to 
evaluate if it is within a target region, expressed by the listed 
σ1 abstraction as “inside target region Bt” may be completed 
by: 
 
+stateinfo(L) : {True} <-  

calculate(comp_distance(L), Val), 
*result(comp_distance(L), V1), 
+bound_info(V1); 

 
+bound_info(in) : {B inside target region Bt (out)} <-  

-bound_info(out),  
 remove_shared(inside target region Bt (out)),
 assert_shared(inside target region Bt (in)); 

  
The above may be read as: If it is believed that state 
information L has been received, then do the following: call 
the function ‘comp_distance’ with L as the argument and 
request a return value. Assign the returned value to V1 and 
use this to assess bound_info. Upon the belief addition that 
bound_info is ‘in’ and under the condition that previously it 
was believed ‘inside target region Bt’ was false, remove the 
belief addition of bound_info(in), remove the shared belief 
‘inside target region Bt (out)’ and assert that the shared 
belief ‘inside target region Bt (in)’. 
 
Implementation of an achieve goal, for instance the execution 
of an open loop control plan that links to the α3 abstraction 
“Executing plan to approach target region”, may be 
completed by: 
 
+!get_to_centre[perform]:{B inside target region Bt(out)} 
<- 

query(plan_to_approach_target_region(P)), 
* plan_to_approach_target_region(P), 
perf(execute(P)), 
 

which may be read as: given the achieve goal addition of ‘get 
to centre’, under the condition that it is believed that the 
agent is outside of the target region, then do the following: 
query the availability of an existing and valid plan to 
approach target region. Wait until the literal representing the 
plan exists and then execute plan to approach target region. 
 
These examples of linking NLP developed abstractions to the 
Java agent programming lead to the actual implementation of 
a Σ request such as ‘execute plan to approach target 
region(P)’ by Π. Here sEnglish is exploited to enable this 
link: the same ontology used to provide for abstraction may 
be used within NLP to develop concise, sentence based, 
executable code using the Sentence Editor shown in Figure 2. 
Upon compilation, a meaningful set of linked functions are 
generated from structured sentences and these may be 
directly implemented. For this example, structured sentences 
were formulated relating to the required agent skills using a 

shared ontology: upon being initiated with plan P, the mfile 
‘execute_plan_to_approach_target_region’, will commence 
implementation of plan P. Further details of sEnglish 
development and implementation may be found in [16, 17]. 

 

6. AN EXAPLE IMPLEMENTATION 

An example implementation of the presented J2M agent 
framework has been developed based upon a spacecraft 
agent, tasked with acquiring and tracking a geostationary 
orbital location upon a failed orbital insertion. The spacecraft 
agent is availed with numerous possible control 
methodologies, afforded by the considerable amount of 
literature available on the subject of spacecraft control, 
inclusive of planning, adaptive and reactive control systems 
[16,19-24]. It is the task of the reasoning engine to select an 
appropriate control methodology to deal with the presented 
scenario, perform the appropriate control and analyse the 
resultant output in order to improve performance. Concurrent 
to the control requirements, the spacecraft agent is tasked 
with monitoring internal systems and reacting accordingly to 
any diagnostics made. Within simulation, the actuators 
present the agent with situations of gain reduction and 
propellant supply issues resulting from supply valves being 
stuck open/closed and a fuel-line breach. 
 
The agent world is developed within Simulink (MATLAB), 
and is inclusive of disturbances resulting from Earth 
oblateness (triaxiality), solar radiation pressure and Luni-
Solar third-body perturbations [25]. The agent is not aware of 
these impacting factors: within the continuous engine, Ω, the 
relevant physics engine for internal simulation is based upon 
the Hill equations, a simplification of the orbital dynamics 
with respect to the desired orbital location [26]. Whilst not 
essential, it was chosen to include a VRML world to aid 
visualization of the dynamical processes occurring as a result 
of agent action or inaction. The agent world is initialized with 
a state representative of a failed orbit insertion, in a circular 
orbit with a 10km position error from the nominal 
geostationary point. 
 
Upon activation, the agent system adopts the ‘achieve goal’ 
of reaching a specified geostationary point. There are 
numerous methods to achieve this, involving various degrees 
of control complexity. Within the implementation, the agent 
was provided with the ability to perform model based (fuel) 
optimal path planning under varying actuator bounds; the 
output being a fuel optimal path and a set of thruster 
sequences to achieve this. The agent may directly implement 
the open loop set of thruster sequences or use a path 
following scheme applied to the optimal path. The agent was 
also availed with a sliding mode feedback controller for point 
tracking.  
 
The reactive logical actions dealing with discrete thruster 
fault instances such as valve failure are not the prime focus 
here; we wish to examine the nature and potential of the 
continuous engine and this is highlighted primarily within the 
reduced thruster gain and total thruster loss scenarios. Both of 
these scenarios represent cases where generated plans may 



 
 

     

 

become obsolete due to an inability to output a desired thrust 
level. Whilst path following schemes may be executed using 
traditional feedback control methods, the prescribed path may 
no longer be achievable; either in physical trace or within a 
temporal bound. 
 
Online evaluation of plan suitability may be achieved via the 
continuous engine: here we test the validity of an existing 
plan within rapid simulation, based upon perceived actuator 
capabilities. Such testing actions may endow the agent with 
temporal reachability knowledge; essential in scenarios 
where timeliness is critical, such as avoidance manoeuvres. 
An example algorithm of this process (note this is not the 
agent reasoning cycle) may be as follows: 
1) Agent obtains optimal path from continuous engine 
2) Agent executes plan 
3) Agent perceives non-nominal thruster gain(s) 
4) Agent tests current plan, based upon perceived thruster 

gains, using the continuous engine 
a) If agent enters target region within the temporal 

constraint then plan execution continues 
b) If not then the situation must be anaylsed to seek a 

new solution based upon available resources 
5) Upon entering target bound, regulatory control is 

initiated 

Item 4 represents the most elaborate usage of the continuous 
engine; it is where the agent may evaluate both current 
implementations and possible solutions. Alternative 
solutions, in the event of initial plan failure, may involve 
extending the time horizon forward or investigation of 
control reconfiguration to circumvent usage of a faulty 
thruster. Upon obtaining an appropriate solution, this may 
then be implemented by the agent. Example output of plan 
testing under varying actuator efficiencies is displayed within 
Figures 3 and 4. For each test, a Boolean result is returned to 
indicate to the rational engine if a particular plan is still valid, 
under the current system capabilities.  
 

 
Fig 3: Test pass for existing plan to enter target bound: a 

boolean 1 is returned to Σ by Ω 

 
 

 
Within implementation, the Simulink environment was 
configured to randomly generate thruster failure modes; in 
addition a particular actuator was configured to exhibit a 
continually decreasing gain. Upon agent activation, plan 
generation was triggered; once this plan was complete, the 
agent implemented the plan whilst dealing with any thruster 
failure modes. During plan execution, the low gain thruster 
was detected, triggering a plan test. Thrusters less than 98% 
efficient were perceived to ‘miss’ the target region when 
implementing the optimal open loop thrust sequences, 
initiating an alternative plan generation. 
 

 
Fig 4: Test fail for existing plan to enter target bound: a 

boolean 0 is returned to Σ by Ω 

The path following control method was observed to be more 
robust to gain reduction, however it was observed to fail 
temporal requirements under very low thruster efficiencies. 
Within the geostationary example, temporal constraints were 
not overly stringent: this resulted in an initial favoured agent 
response of extending the permissible time horizon for target 
region intersection. However, upon diagnosing a continually 
degrading thruster, control reconfiguration was initiated and 
plans reformatted for the new configuration. Once the path 
following control scheme was completed, either using open 
loop or feedback methods, the control type was switched to 
that of point tracking and the agent remained within the 
desired orbital bound. Figure 5 shows the VRML output for 
the agent system upon initialisation and entering the point 
tracking mission phase; note that scales have been altered 
within the VRML display. 
Throughout the implementation, the Java based reasoning 
engine prescribed action based upon abstractions formed 
through an interface to the physical agent; further 
abstractions were evaluated by complex processes within the 
continuous engine. These abstractions were used within a 
logical framework to generate appropriate decisions, whilst 
concurrently maintaining an explicit knowledge base of 
action, intent and capability. 
 



 
 

     

 

 
Fig 5: VRML output depicting pre and post activation of 

agent based control system 

CONCLUSIONS 

This paper has discussed and presented a theoretical physical 
agent framework that uses agents with the ability to predict 
and abstract out the future for decision making. This new 
framework brings improvements to prior agent based 
approaches in terms of: 
1. Reduced computational complexity under changing 
dynamics,  including system degradation. 
2. Aided abstraction programming and potential verifiability 
of the resulting hybrid system of agent-environment 
interaction. 
3. Improved control performance and the ability to handle 
hybrid system situations not considered by the agent 
programmer. 
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