

 An Agent Based Framework for Adaptive Control and Decision Making of
Autonomous Vehicles

Nicholas K. Lincoln*, Sandor M. Veres *

Louise Dennis, Michael Fisher, Alexei Lisitsa**

*School of Engineering Sciences, University of Southampton, UK
e-mail:s.m.veres@soton.ac.uk

**Department of Computer Science, University of Liverpool, UK

Abstract: The paper addresses the problem of defining a theoretical physical agent framework that
combines rational agent decision making with abstractions from predictions and planning of the future of
the physical environment. The objective of the new framework is to reduce complexity of logical
inference of agents controlling autonomous vehicles and robots in space exploration, deep underwater
exploration, defense reconnaissance, automated manufacturing and household automation. An essential
feature of the framework is automated realtime evaluations of abstractions on the effects of future
actions. Comparison is made with hybrid automaton based solutions in terms of computational
complexity.
Keywords: Control of hybrid systems, intelligent physical agents, autonomous control.

1. INTRODUCTION

Adaptive and reconfigurable control systems are often
considered in isolation for a set of control inputs and outputs
to be controlled, without regard to integration into an overall
logic based decision making process. Autonomous vehicles,
robots, utility control agents and manufacturing artificial
agents often need to integrate controllers into their overall
operations. In this context reasoning about priorities and
consideration of system goals has often been done by
intelligent agents [1,2,3,4]. This paper reconsiders the
abstraction problem by agents to handle the solution of
complex reconfigurable control. Following a brief
introduction of intelligent physical agents for the engineering
reader, the problem this paper addresses is presented.
It is widely believed that agent systems are most
appropriately described by the intentional stance, wherein the
agent is an entity subject to anthropomorphism [1]. Whilst, to
date, there is no panacea for agent theory, significant
contributions have been made relating to what properties an
agent should have and how these properties should be
formally represented and reasoned about [1,2,5,6,3].
Application areas for agent systems have been defined within
the realms of software, industry and autonomous control
systems [1,3,7]. Agent architectures are divisible into three
groups: reactive, multi-layered and deliberative. Reactive
architectures operate through a mapping of sensor data or
current state to action, in a stimulus-response fashion, as
exhibited by Brooks subsumption architecture [8].
Subsumption architectures present intelligence as an
emergent property resulting from a hierarchy of finite state
machines such that there is a behavioural response resulting
from goal oriented desires; there is no form of planning. Such
simplistic architectures are advantageous in dynamic
environments, though in addition to the difficulty of

engineering a set of behaviours to achieve a particular task,
undesired behaviours also evolve. Moreover, omitting the
ability for such agents to reason eliminates the possibilities of
planning and learning: both highly desirable proactive traits
for agents [9,10].
A logical framework wherein beliefs, desires and intentions
(BDI) are primitive attitudes, as formulated by Rao and
Georgeff, has proven to be the most popular: the three BDI
primitives are highly cited within literature and used within
numerous agent programming languages including the logic
based PRS, Jason and 3APL, as well as the Java based
implementations of JADE, Jadex and JACK [2,5,6].
Systems aiming to combine the timely nature of reactive
architectures and the mathematical rigor of deliberative
architectures are termed as hybrid, or layered architectures.
Layered systems, as their name would suggest, involve a
hierarchy of interacting subsystem layers; these layers may
be horizontal or vertical. Complexities of information
bottlenecks and the need for internal mediation within
horizontal architectures are partially alleviated within vertical
architectures, though these structures do not provide for fault
tolerance. Both horizontal and vertical architectures have
been implemented within Touring Machines and InterRRaP
respectively [11].
Possibly the most widely known BDI implementation is PRS
[4, 12]. PRS is a situated real time reasoning system that has
been applied to the handling of space shuttle malfunctions,
threat assessment and the control of autonomous robots.
Within the PRS framework a knowledge database, detailing
how to achieve particular goals or react to certain situations,
is interfaced by an interpreter. Conceptually this is similar to
a horizontally layered Touring machine, though notions of
intention are contained and consequently place PRS as a
deliberative BDI model. Whilst PRS is certainly a notable
and proven methodology, the knowledge database is fixed

and invoked upon perceived condition triggers for the
particular knowledge item of relevance. Here we propose the
interleaving of physical stances within the intentional stances
used to abstract and reason about the system in order to
enrich the reasoning process.

This paper addresses the problem of defining a theoretical
physical agent framework that combines rational agent
decision making with abstractions from predictions and
planning of the future of the physical environment. The
framework can be an extension of BDI agent architectures.
The paper argues that logic based decision making is more
complex, or indeed correct decisions are impossible to
achieve, without the agent simulating (predicting) the near
future. An agent framework, permitting automated timely
evaluation of abstractions on the effects of future actions, is
presented. Programming of abstractions and a unified system
ontology is facilitated by natural language programming
(NLP) in sEnglish.

2. A SIMPLE MOTIVATING EXAMPLE

Assume that a point mass robot A is navigating through a 2D
environment. It is able to sense its position relative to a target
location but does not have a map of the environment (though
it can build a map of the environment where it has already
passed trough). It is also assumed that A is able to scan a
range map ahead of it within a 90° angle and A has a fixed set
of manoeuvres, M, it can make at any time. Now the question
is as follows: is it sufficient to choose the next manoeuvre of
A, based on the current situation of the agent by dividing the
state space of the current kinetic state x of A into a set of
abstractions and taking into account the shape of the current
range map R to define a safe next manoeuvre function
N(x,R)∈M ? This approach is characterised by the following:
(1) Ability to plan ahead in time, to only move into a position
from where there is a guaranteed manoeuvre to proceed
further, without being trapped on the basis of the available
range map R.
(2) It can be approximated from a fixed set of abstractions,
for x and R, to decide on the next manoeuvre to be executed.
The question is whether such pre-computed planning is
sufficient for robot control? We argue in this paper that for
most practical applications this is not applicable and this is
only useful in ideal situations where vehicle dynamics does
not change. In most practical systems there are state-space
changes that render pre-planned decision making
inapplicable. These include actuator degradation and external
disturbances affecting the manoeuvres. A possible solution
may be to extend the discretisation principle of [13,14]:
detect the actuator degradation D, or disturbance d, abstract it
into propositions and define an extended manoeuvre selection
function N(x,R,D,d)∈M . This appears feasible, though this
has now become a function of 4 arguments and the number of
cases to consider can be very large. The number of different
cases we discriminate for x,R,D,d shall be called the (logical)
complexity of pre-planned decision making on the next
manoeuvre. Even if we discriminate for only a low number of
cases for each of x,R,D,d, e.g. 10 each, one will need 10,000
cases to pre-evaluate and store for decision making.

There is an alternative to this type of pre-computation: we
may equip the agent with the ability of online optimisation of
its required inputs over a future time horizon that takes into
account x, R, D and d. This scheme is generally known as
adaptive model predictive control. We argue predictive
control substantially reduces the complexity of the rational
agent’s decision making about an essentially continuous time
process. In this paper we introduce a family of agent
architectures for efficient use of predictive control methods
instead of discretizing the state space of the agent as in
[13,14] that can lead to large number of cases or logic rules to
consider. However the benefits of the new agent architecture
moves much more beyond the use of predictive control. We
introduce and agent family that can handle adaptive MPC and
performs realtime decision making via abstractions and logic:
(1) Execution of feedback loops is delegated to processes or
threads on what we term here as a physical engine
(2) An abstraction process provides symbolic inputs for logic
based decision making within a rational engine
(3) Simulations of the future by the agent to explore/try and
solutions using its continuous engine.
(4) Potential for formal verifiability for safety of operations
(5) Abstraction programming via the use of natural language
programming (NLP) in sEnglish.

The point mass robot example in this section has only been
used to motivate the need for timely predictive control
computations instead of trying to construct abstractions of
cases in state space that may result in inefficient use of
computational resources. The remaining features of the
architecture family proposed in this paper serve a similar
purpose: making the agent adaptable and fast in an unknown
unstructured environment.

Publications in [15,13,14] aim to bridge the gap between
continuous dynamics and discrete logic by synthesizing
controllers from temporal logic formulae. The dynamical
models are fixed and all discrete transitions precomputed.
The motivating example given in this section highlights the
need for dynamical adaptivity due to actuator changes and
disturbances. The controller synthesis schemes of these
publications can suffer from uncertainties and computational
complexity to similar degree as was indicated within the
presented example.

3. A FRAMEWORK FOR UNSTRUCTURED
ENVIRONMENTS

A physical agent system (PAS) is a 3-tuple consisting of the
agent, the environment in which the agent exists and a
coupling between the agent and environment.

Definition A physical agent system, is defined by

 where is a set of agents, ,
is a set of environment objects, , and is a
set of couplings between any
members of the joint set . Couplings between
members of are called communications, and couplings
between members of are called physical interactions, .

Couplings between members of and are called action and
sensing, in the environment.
A coupling Γ is an abstract object at this stage of our
discussion that will be specified later for its types, attribute
and models (see Section 4). In this paper we are interested in
physical agents that are not pure software agents but ones that
have a set of environmental objects associated with them,
referred to as the “body” of the agents. Strictly speaking a
body is a set of environmental objects associated with a set of
agents.

Definition The body association of agents is a map, ,
defined by splitting and into a disjoint sets of agents and
sets of environmental objects, respectively:

, ,

and allocating to each a component of : .

In exceptional circumstances the may be allowed
not to be disjoint, meaning that agent teams can “share some
body parts”, but this is not the norm. For logical clarity one
should normally organize teams of agents, such that

 is a disjoint union.

In the physical agent definition, that we introduce below, we
separate computational units for
(1) Receiving signals from sensors and producing signals for
actuators and forming symbolic first-order logic expressions
(abstractions) for these signals and their patterns (unit Π) .
(2) For simulating continuous events of the future and the
past and abstracting symbolic first-order logic expressions of
implications for these hypothetical events (unit Ω).
(3) Manipulating symbolic expressions of behavior
constraints, goals, past and future hypothetical events using
first-order logic derivations via proof theoretic techniques
(unit Σ) to decide upon actions to be taken.

Definition. A single physical agent is a tuple
consisting of the three main constituents: its physical engine,
Π, its rational behavior engine, Σ, and its continuous engine,
Ω. The physical engine can be a complex process or set of
processes. It can contain a multitude of devices, including
communication, sensor and actuator devices, as well as
sensor data abstractors (SDAs), control data developers
(CDDs) and feedback processes (FBPs) for realtime
processing of perception and action signals of the agent. The
SDAs are to symbolize events for the CDDs are to develop
symbolic action into control signals for the actuators and the
FBPs are needed for linking CDD and SDA pairs into
realtime feedback loop executors.

Definition. A physical engine is a quad tuple, ,
where is a set of communication devices, is a set of
sensor data abstractors, is a set of control data developers
and is a set of realtime feedback loop executors. For
practical reasons any of may be empty but that
represents communication devices and as such is not allowed
to be empty.

Definition. A software agent is a physical agent that has only
communication devices present within its physical engine,
i.e. all of are empty.

The rational behaviour engine, Σ, is formally defined so as to
permit the accommodation of simple reactive subsumption
based architectures as well as deliberative belief-desire-
intention, i.e. BDI agent architectures. Whatever agent
architecture is implemented, they must handle sensed event
abstractions, agent action abstractions and decision making
processes (DMPs). Components of DMP can be:

• Planning of movements in the physical world using
motion primitives

• High level planning of goal achievement using various
resolutions of world maps

• Planning to achieve goals other than movements

The following definition grasps the minimum of what the
DMP must contain for a capable physical agent, without
specifying the actual mechanisms of operation, i.e. no “agent
architecture” is specified.

 Definition. A rational behavior engine, Σ, is a tuple,

 that contains a granulated multi-
resolution and physical multi-domain symbolic world models
W, abstract physical skills memory , goal achievement
memory (problem solving memory) abstract formulation
of behavior constraints Cs, abstract formulation of short and
long term goals G.

The question of modelling structures relating to the
continuous world, and their role in planning and decision
making, has so far been neglected. It is a fact however, that
decisions can be influenced by hypothetical planning:
forming a decision and subsequently planning for this
decision may lead to less than ideal outcomes. This fact and
that initial abstractions in as prescribed by the designer of
the agent, may not be sufficient to capture the essence of the
changing world correctly, leads us to defining the
“Continuous engine” of the physical agent.

Definition. The continuous engine, Ω, is a tuple

 where M is a set of approximate continuous
models of the world, is a continuous time simulator that
uses analytical and empirical data based dynamic models to
predict future state of the world, O is an optimizer that can
optimize continuous time planning of actions, B is a Boolean
evaluator of propositions in terms of σ statements and L is a
library of useful numerical computations in terms of
continuous variables.

As W is the primary, symbolic model of the world with
relationships stored on symbols, the M is related to W. The M
is a collection of models from various physical domains
(geometric, mechanical, electrical, gravitational, heat, fluid
flow, etc…) that make symbolic descriptions in W either
more precise in numerical or in qualitative, time evolution
sense. Even without precise numerics, the agent may
perform a simulation using the simulation tools in S to see

possible qualitative outcomes in terms of abstractions.
These qualitative outcomes of predictions can be used to
make the right decisions and planning by Σ.

The O is a set of optimization tools for continuous problems.
The agent can perform planning in continuous time and can
set up a problem formulation. Then it searches in O for a
suitable optimization tool. The results are formulated and
used at the symbolic level of . Optimization for path
planning, robust feedback control or a low complexity
numerical dynamical model may all be tools that are
available in O.

B is important since Boolean values of primitives in σ in
prediction (simulation) outcomes must be inferred by some
continuous computations that cannot be performed elsewhere
except in the continuous engine Ω . B contains a Boolean
valued functional, by example “will the agent body be within
the allowed boundary if it carries on moving the same way
for the next 10s” is an evaluation that is not done in symbolic
computation but using M, S and B: the statement is converted
into a symbolic first-order logic statement for Σ .

Finally L is a library of auxiliary computations with
continuous quantities: for instance equation solvers for linear
systems of equations, nonlinear equation solvers and generic
nonlinear optimizers. Use of L by the agent assumes that the
agent is capable of setting up problems in Σ by first
abstracting them and picking a solution tool from L.
It is evident that Σ and Ω run hand-in-hand, i.e. the Σ
frequently delegates computations to Ω, and then uses the
output from Ω to continue deliberation of prescribe action.

There are many ways to implement the agent architecture
described above. Ideally a single language should be used for
all the components to permit multi-platform implementation
but there are both practical and legacy issues that make
realization biased towards software systems that have tools
available and which would be far too expensive to reproduce.
For instance the MATLAB family of toolboxes provides a
rich set of numerical processing, optimization and simulation
algorithms that can be exploited. Similarly the Java
environment has numerous software components in the area
of agent reasoning that may be implemented directly. The
following table provides some possible options for the
software platform to be used for the implementation of the
agent architecture outlined.

Π platform Σ platform Ω platform
C C C
C++ C++ C++
Java Java Java
MATLAB Java MATLAB
SIMPOL SIMPOL SIMPOL

4. J2M IMPLEMETATION

In the following we describe a possible software
implementation in terms of MATLAB+Java+MATLAB

(J2M) that has the advantage of minimal programming effort
due to the rich set of programming tools presently available.
Within the J2M implementation, the Π and Ω platforms are
developed within MATLAB, whilst the Σ platform is
exclusively developed using Java. Although it is theoretically
possible to form a rational engine within a MATLAB
framework, since MATLAB does not allow for multi-
threaded code execution, this would be a restricting factor.
Also, to do so would neglect the existing frameworks which
have been developed in more suitable languages. A
description of the J2M will follow, within which we are
assuming the implementation of a physical agent, that is one
for which are not empty.

Sensor data, , may relate to position and velocity
information given in some coordinate frame, as would be
required for roving vehicles such as UAVs or AUVs. may
also relate to other functional data types such as temperature
and pressure information, extracted from relevant sensors.
The way in which is communicated to Σ is critical, since Σ
must be in the position to update W correctly based upon
information received via . W is updated as a consequence of

, from which Σ will evaluate the appropriate actions and this
may instantiate invocations of Ω.

During the rational agent deliberation cycle, a point may be
reached wherein calls to the continuous engine are required.
Instances of these calls have already been entered upon; here
we shall concentrate on the data flow. The continuous engine
is constructed within MATLAB and consequently all
functionality of this system is achieved through use of the
appropriate m-files. Σ requests execution of a component
from Ω, either S, O, B or L, dependent upon the solution
sought by the deliberation cycle occurring within Σ. Ω needs
to return abstracted first-order logic statements about the
future under the conditions of some actions hypothetically
being taken. Here logical statements are arrived at not solely
by logic derivations but by (1) continuous time simulations
(2) abstracting first-order logic statements of the form “if I
do this then that happens” format. The logic statements
obtained by Ω can then be used by Σ for deliberative
planning and commitment to actions.

The physical engine, Π, is an element within an environment;
this environment may be purely numerical, instantiated
within a virtual world or a true dynamic real world
environment. Regardless of construct, the physical engine is
capable of extracting relevant abstract data from the inhabited
world, using , and communicate those to the rational engine.
This is not the only interaction mechanism Π has with Σ: the
Σ can activate components if it concludes that by logical
inference. Within the developed implementation, the physical
engine continually passes sensory information to the rational
engine, which is used to update W, though the rational engine
may chose to ignore information it receives.

Actions executed by Ω are conditional upon input from Σ,
and in turn Σ expects some form of result. Consequently we
are presented with the need for more elaborate
communications protocols to ensure efficient interaction

between Σ and Ω. Messaging from Σ is of the form
<mc,cc,rc>, whereby mc is a character string specifying the
particular m-file to be executed, based upon the data
encapsulated within cc and expecting the number of returned
evaluations to be the number specified within rc. Return
dialog from Ω to Σ is in a similar format, of the form <mr,rr>,
wherein mr signifies the m-file which was executed and rr the
result of the routine.
In the same way that Π acts to ‘push’ data to Σ, Σ prescribes
action for Π: here Σ prescribes the initiation of Δ which acts

directly upon . Δ executes without additional action from Σ,
using internal feedback devices, though Σ is capable of over-
riding the execution of a Δ.

All engines run concurrently: Π is continuously feeding data
to Σ, which prescribes action to Π and invokes intermittent
communication with Ω. A schematic of the J2M construct,
indicating interaction of the three agent engines, is given
within Figure 1.

Fig 1: J2M Construct and data flow between agent engines

5. ABSTRACTIONS USING NLP

Knowledge representation within a hybrid-software agent
system is an important concern since encapsulated knowledge
must be uniform across the system. The process of
abstraction for use within an agent system, commonly
developed via anthropomorphism, may be aided using natural
language programming techniques. NLP may be used not
only to help link abstraction and agent deliberation, but to
link the physical and continuous engines to a unified
ontology. As an illustration, the following tables list some of
the abstractions available to 6DOF spacecraft, in
natural language programming (NLP) produced in sEnglish.
The sentences listed are sEnglish code that unambiguously
compile into MATLAB.

Some perception abstractions of a GEO satellite agent:

 Inside target region Bt.
 Moving away from the Earth.
 Being approached by debris from direction D

Some open-loop action abstractions of a GEO satellite agent:

 Applying thrust vector Uv for period T.
 Switching to new control configuration Cc2.
 Executing plan to approach target region

Some closed-loop action abstractions of a GEO satellite
agent:

 Regulating my attitude to constant Av0.
 Using thruster feedback control to track orbit O within

cluster frame Cf.

 Using sliding mode feedback control to regulate position
Pa.

Fig 2: sEnglish Sentences Editor: Natural Language
Programming for agents via structured sentences.

Some communications abstractions of a GEO satellite agent:

 Sending message M to ground control centre Co.
 Receiving message Mr from ground control centre Co.
 Receiving message Mr from agent A32.

Linking the NLP abstractions to the agent reasoning engine,
developed in Java, is based upon exploiting the NLP
abstractions and ontology developed within the sEnglish
authoring suite[16, 17].

The implemented Java parser utilizes a similar BDI syntax to
that of the Jason language [5] and is presented within [18].
For further details the interested reader is referred to the
publication, here it is intended to highlight the link between
such a language and the sEnglish ontology and abstractions.
The simple instance of the agent using a percept update to
evaluate if it is within a target region, expressed by the listed
σ1 abstraction as “inside target region Bt” may be completed
by:

+stateinfo(L) : {True} <-

calculate(comp_distance(L), Val),
*result(comp_distance(L), V1),
+bound_info(V1);

+bound_info(in) : {B inside target region Bt (out)} <-

-bound_info(out),
 remove_shared(inside target region Bt (out)),
 assert_shared(inside target region Bt (in));

The above may be read as: If it is believed that state
information L has been received, then do the following: call
the function ‘comp_distance’ with L as the argument and
request a return value. Assign the returned value to V1 and
use this to assess bound_info. Upon the belief addition that
bound_info is ‘in’ and under the condition that previously it
was believed ‘inside target region Bt’ was false, remove the
belief addition of bound_info(in), remove the shared belief
‘inside target region Bt (out)’ and assert that the shared
belief ‘inside target region Bt (in)’.

Implementation of an achieve goal, for instance the execution
of an open loop control plan that links to the α3 abstraction
“Executing plan to approach target region”, may be
completed by:

+!get_to_centre[perform]:{B inside target region Bt(out)}
<-

query(plan_to_approach_target_region(P)),
* plan_to_approach_target_region(P),
perf(execute(P)),

which may be read as: given the achieve goal addition of ‘get
to centre’, under the condition that it is believed that the
agent is outside of the target region, then do the following:
query the availability of an existing and valid plan to
approach target region. Wait until the literal representing the
plan exists and then execute plan to approach target region.

These examples of linking NLP developed abstractions to the
Java agent programming lead to the actual implementation of
a Σ request such as ‘execute plan to approach target
region(P)’ by Π. Here sEnglish is exploited to enable this
link: the same ontology used to provide for abstraction may
be used within NLP to develop concise, sentence based,
executable code using the Sentence Editor shown in Figure 2.
Upon compilation, a meaningful set of linked functions are
generated from structured sentences and these may be
directly implemented. For this example, structured sentences
were formulated relating to the required agent skills using a

shared ontology: upon being initiated with plan P, the mfile
‘execute_plan_to_approach_target_region’, will commence
implementation of plan P. Further details of sEnglish
development and implementation may be found in [16, 17].

6. AN EXAPLE IMPLEMENTATION

An example implementation of the presented J2M agent
framework has been developed based upon a spacecraft
agent, tasked with acquiring and tracking a geostationary
orbital location upon a failed orbital insertion. The spacecraft
agent is availed with numerous possible control
methodologies, afforded by the considerable amount of
literature available on the subject of spacecraft control,
inclusive of planning, adaptive and reactive control systems
[16,19-24]. It is the task of the reasoning engine to select an
appropriate control methodology to deal with the presented
scenario, perform the appropriate control and analyse the
resultant output in order to improve performance. Concurrent
to the control requirements, the spacecraft agent is tasked
with monitoring internal systems and reacting accordingly to
any diagnostics made. Within simulation, the actuators
present the agent with situations of gain reduction and
propellant supply issues resulting from supply valves being
stuck open/closed and a fuel-line breach.

The agent world is developed within Simulink (MATLAB),
and is inclusive of disturbances resulting from Earth
oblateness (triaxiality), solar radiation pressure and Luni-
Solar third-body perturbations [25]. The agent is not aware of
these impacting factors: within the continuous engine, Ω, the
relevant physics engine for internal simulation is based upon
the Hill equations, a simplification of the orbital dynamics
with respect to the desired orbital location [26]. Whilst not
essential, it was chosen to include a VRML world to aid
visualization of the dynamical processes occurring as a result
of agent action or inaction. The agent world is initialized with
a state representative of a failed orbit insertion, in a circular
orbit with a 10km position error from the nominal
geostationary point.

Upon activation, the agent system adopts the ‘achieve goal’
of reaching a specified geostationary point. There are
numerous methods to achieve this, involving various degrees
of control complexity. Within the implementation, the agent
was provided with the ability to perform model based (fuel)
optimal path planning under varying actuator bounds; the
output being a fuel optimal path and a set of thruster
sequences to achieve this. The agent may directly implement
the open loop set of thruster sequences or use a path
following scheme applied to the optimal path. The agent was
also availed with a sliding mode feedback controller for point
tracking.

The reactive logical actions dealing with discrete thruster
fault instances such as valve failure are not the prime focus
here; we wish to examine the nature and potential of the
continuous engine and this is highlighted primarily within the
reduced thruster gain and total thruster loss scenarios. Both of
these scenarios represent cases where generated plans may

become obsolete due to an inability to output a desired thrust
level. Whilst path following schemes may be executed using
traditional feedback control methods, the prescribed path may
no longer be achievable; either in physical trace or within a
temporal bound.

Online evaluation of plan suitability may be achieved via the
continuous engine: here we test the validity of an existing
plan within rapid simulation, based upon perceived actuator
capabilities. Such testing actions may endow the agent with
temporal reachability knowledge; essential in scenarios
where timeliness is critical, such as avoidance manoeuvres.
An example algorithm of this process (note this is not the
agent reasoning cycle) may be as follows:
1) Agent obtains optimal path from continuous engine
2) Agent executes plan
3) Agent perceives non-nominal thruster gain(s)
4) Agent tests current plan, based upon perceived thruster

gains, using the continuous engine
a) If agent enters target region within the temporal

constraint then plan execution continues
b) If not then the situation must be anaylsed to seek a

new solution based upon available resources
5) Upon entering target bound, regulatory control is

initiated

Item 4 represents the most elaborate usage of the continuous
engine; it is where the agent may evaluate both current
implementations and possible solutions. Alternative
solutions, in the event of initial plan failure, may involve
extending the time horizon forward or investigation of
control reconfiguration to circumvent usage of a faulty
thruster. Upon obtaining an appropriate solution, this may
then be implemented by the agent. Example output of plan
testing under varying actuator efficiencies is displayed within
Figures 3 and 4. For each test, a Boolean result is returned to
indicate to the rational engine if a particular plan is still valid,
under the current system capabilities.

Fig 3: Test pass for existing plan to enter target bound: a

boolean 1 is returned to Σ by Ω

Within implementation, the Simulink environment was
configured to randomly generate thruster failure modes; in
addition a particular actuator was configured to exhibit a
continually decreasing gain. Upon agent activation, plan
generation was triggered; once this plan was complete, the
agent implemented the plan whilst dealing with any thruster
failure modes. During plan execution, the low gain thruster
was detected, triggering a plan test. Thrusters less than 98%
efficient were perceived to ‘miss’ the target region when
implementing the optimal open loop thrust sequences,
initiating an alternative plan generation.

Fig 4: Test fail for existing plan to enter target bound: a

boolean 0 is returned to Σ by Ω

The path following control method was observed to be more
robust to gain reduction, however it was observed to fail
temporal requirements under very low thruster efficiencies.
Within the geostationary example, temporal constraints were
not overly stringent: this resulted in an initial favoured agent
response of extending the permissible time horizon for target
region intersection. However, upon diagnosing a continually
degrading thruster, control reconfiguration was initiated and
plans reformatted for the new configuration. Once the path
following control scheme was completed, either using open
loop or feedback methods, the control type was switched to
that of point tracking and the agent remained within the
desired orbital bound. Figure 5 shows the VRML output for
the agent system upon initialisation and entering the point
tracking mission phase; note that scales have been altered
within the VRML display.
Throughout the implementation, the Java based reasoning
engine prescribed action based upon abstractions formed
through an interface to the physical agent; further
abstractions were evaluated by complex processes within the
continuous engine. These abstractions were used within a
logical framework to generate appropriate decisions, whilst
concurrently maintaining an explicit knowledge base of
action, intent and capability.

Fig 5: VRML output depicting pre and post activation of

agent based control system

CONCLUSIONS

This paper has discussed and presented a theoretical physical
agent framework that uses agents with the ability to predict
and abstract out the future for decision making. This new
framework brings improvements to prior agent based
approaches in terms of:
1. Reduced computational complexity under changing
dynamics, including system degradation.
2. Aided abstraction programming and potential verifiability
of the resulting hybrid system of agent-environment
interaction.
3. Improved control performance and the ability to handle
hybrid system situations not considered by the agent
programmer.

REFERENCES

[1] Michael Wooldridge and Nicholas R. Jennings, Intelligent
Agents: Theory and Practice. Knowledge Engineering Review
Journal, 1995, volume 10, pp 115-152.
[2] Anand S. Rao and Micheal P. Georgeff, Formal Models and
Decision Procedures for Multi-Agent Systems. Technical note 61:
Australian Artificial Intelligence Institute, June 1995.
[3] H. Van Dyke Parunak, Practical And Industrial Applications of
Agent-Based Systems, 1998.
[4] Georgeff, M. P. and Lansky, A. L. (1987). Reactive Reasoning
and Planning. In Proceedings of the Sixth National Conference on
Artificial Intelligence (AAAI-87), pages 677-682, Seattle, WA.
[5] Rafael H. Bordini, Jomi F. Hubner and Micheal Wooldridge,
Programming Multi-Agent Systems in AgentSpeak Using Jason.
Published by John Wiley and Sons, 2007.
[6] Fabio Bellifemine, Giovanni Caire and Domonic Greenwood,
Developing Multi-Agent Systems With Jade. Published by John
Wiley and Sons, 2007.

[7] Sandor M. Veres, Autonomous Control Systems Using Agents:
An Introduction. In, Proceedings of IEE Workshop on Agent Based
Control Systems. IET (IEE), 1-10 (2005).
[8] R. Brooks, A Robust Layered Control System for a Mobile
Robot. Robotics and Automation, IEEE Journal in Robotics and
Automation,Vol. 2, No. 1, March 1986.
[9] Sandor M. Veres and Aron G Veres, Learning and Adaptation in
Physical Agents. In, 9th IFAC Workshop Adaptation and Learning
in Control and Signal Processing (ALCOSP'07), St Petersburg,
Russia, 29-31 Aug 2007.
[10] Sandor M. Veres and Aron G. Veres, Learning and Adaptation
of Skills in Autonomous Physical Agents. In, 17th World Congress of
International Federation of Automatic Control, Seoul, Korea, 6-10
Jul 2008. Seoul, Korea, Elsevier - Pergamon Press, 6pp, 2671-2676.
[11] Michael Wooldridge, An Introduction to MultiAgent Systems.
Published by John Wiley and Sons, 2002.
[12] K. L. Myers, Procedural Reasoning System User’s Guide: A
Manual for Version 2.0. Technical report, Artificial Intelligence
Center, SRI International, Menlo Park, CA, 2001.
[13] Belta, C., V. Isler, and G. Pappas, Discrete Abstractions for
Robot Motion Planning and Control in Polygonal Environments.
IEEE Transactions on Robotics, 2005. 21(5): p. 864-874
[14] Fainekos, G.E., S.G. Loizou, and G.J. Pappas. Translating
Temporal Logic to Controller Specifications. in Proceedings of the
45th IEEE Conference on Decision & Control. 2006. San Diego,
CA, USA,
[15] Marius Kloetzer and Calin Belta, A Fully Automated
Framework for Control of Linear Systems from LTL Specifications.
In Hybrid Systems: Computation and Control (2006), pp. 333-347.
[16] Sandor M. Veres and Nicholas K. Lincoln, Sliding Mode
control for Agents and Humans. In Proceedings, TAROS'08,
Towards Autonomous Robotic Systems 2008, Edinburgh, UK, 1-3
Sept 2008. Edinburgh, UK, IC London, 13pp, 61-73.
[17] Sandor M Veres, Natural Language Programming of Agents
and Robotic Devices: Publishing for humans and machines in
sEnglish. Published by SysBrain, London, 2008, ISBN 978-0-
9558417-0-5.
[18] Louise A. Dennis, Michael Fisher, Nicholas Lincoln, Alexei
Lisitsa and Sandor M. Veres, Agent Based Approaches to
Engineering Autonomous Space Software. In Proc. Workshop on
Formal Methods for Aerospace. Electronic Proceedings in
Theoretical Computer Science 20. March 2010.
[19] S. M. Veres, S. B Gabriel, D. Q Mayne and E. Rogers, Analysis
of Formation Flying Control of a Pair of Nano-satellites. AIAA
Journal of Guidance, Control, and Dynamics, 25 (5). pp. 971-974.
[20] R. Pongvthithum, S. M. Veres, S. B. Gabriel and E. Rogers,
Universal Adaptive Control of Satellite Formation Flying,
International Journal of Control, Volume 78(1), January 2005
[21] D. Ya. Rokityanski and S.M. Veres, Application of Ellipsoidal
Estimation to Satellite Control. Mathematical and Computer
Modelling of Dynamical Systems, 11, (2), pages 239-249 (2005).
[22] N.K. Lincoln and S.M. Veres. Components of a Vision Assisted
Constrained Autonomous Satellite Formation Flying Control
System. International Journal of Adaptive Control and Signal
Processing, 21(2-3):237–264, October 2006.
[23] S.M. Veres, (2006) Autonomous formation flying of satellite
robots: the mechanical control layer. In Proceedings, TAROS 2006:
Towards Auton. Robotic Systems, Guildford, UK, 4-6 Sep 2006.
[24] S.M. Veres, Thanapalan, K., Gabriel, S. and Rogers, E. (2006)
Reconfigurable Controller Design For Operational Safety in
Satellite Formation Flying. In Proceedings, International Control
Conference 2006, Glasgow, Scotland, UK, 30 Aug - 1 Sept, 2006.
[25] David A. Vallado and Wagne D. McClain, Fundamentals of
Astrodynamics and Applications (Space Technology Library).
Published by Springer Link, 2001.
[26] Marcel J. Sidi, Spacecraft Dynamics and Control, Published by
Cambridge University Press,1997.

http://eprints.soton.ac.uk/23735/�
http://eprints.soton.ac.uk/23735/�
http://eprints.soton.ac.uk/49913/�
http://eprints.soton.ac.uk/49913/�
http://eprints.soton.ac.uk/66022/�
http://eprints.soton.ac.uk/66022/�
http://eprints.soton.ac.uk/66023/�
http://eprints.soton.ac.uk/66023/�
http://eprints.soton.ac.uk/23291/�
http://eprints.soton.ac.uk/23291/�
http://eprints.soton.ac.uk/43846/�
http://eprints.soton.ac.uk/43846/�
http://eprints.soton.ac.uk/43870/�
http://eprints.soton.ac.uk/43870/�

