
Realising ANGELIC Designs Using
Logiak

Katie Atkinsona, Trevor Bench-Capona, Tom Routenb, Alejandro Sánchezb

Stuart Whittlec, Rob Williamsc and Catriona Wolfendenc

a Department of Computer Science, The University of Liverpool, UK:
b Things Prime GmbH, Basel, Switzerland. routen@mangologic.com:

c Weightmans LLP, Liverpool, UK

Abstract. ANGELIC is a methodology for encapsulating knowledge of a
body of case law. Logiak is a system intended to support the develop-

ment of logic programs by domain experts, and provides an excellent en-

vironment for the rapid realisation of ANGELIC designs. We report our
use of Logiak to realise ANGELIC designs, using both Boolean factors

and factors with magnitude.

1. Introduction

The ANGELIC methodology for designing systems intended to encapsulate case
law was described in [1]. In partnership with the UK law firm, Weightmans, this
methodology was used to build a substantial application designed to support
decisions as to whether or not claims for compensation for Noise Induced Hearing
Loss (NIHL) should be contested [2]. Realising the design required considerable
effort in [2] and a custom built interface had to be produced from scratch. To
address these problems we explored the use of a target implementation platform,
Logiak, to enable rapid and convenient realisation of the design, and to supply a
user interface as part of the package.

Logiak has been used to implement two ANGELIC designs. First we re-
implemented the design for NIHL of [2]. Then as part of the exploration of ex-
tending ANGELIC to handle factors with magnitude we re-implemented the de-
sign described in [6] which added magnitudes to the well known US Trade Secrets
program CATO [3]. A longer version of this paper [4] which supplies additional
details can be found at https://cgi.csc.liv.ac.uk/research/techreports/.

2. ANGELIC and Logiak

The ANGELIC methodology described in [1] is designed to encapsulate case law
knowledge to be used in factor based reasoning systems [5]. The methodology is
based on traditional knowledge elicitation techniques, drawing the information
from a variety documents under the guidance of a domain expert. The knowledge



is presented in a form similar to the abstract factor hierarchy of CATO [3]. How-
ever, each node also has a set of acceptance conditions which state precisely how
children relate to their parent node and enable the structure to be interpreted
as an Abstract Dialectical Framework (ADF) [7]. Thus the design document pro-
vides both the advantages of a hierarchical structure, and a fine grained, domain
relevant, partitioning of the knowledge base, while having the formal properties
of the ADF. A fuller description of the stages of the methodology can be found in
[2], and several examples of design structures in [1]. Some adaptations were made
to provide what was needed for Logiak, most notably the association of questions
with each of the base level factors to support the provision of an interface. More
changes were made to enable ANGELIC to accommodate factors with magnitude.
The most significant of these was the use of a limited number of design patterns
as the acceptance conditions.

Logiak, produced by Things Prime GmbH, is a system with two main aspects:

• Firstly, it is a “no code” environment within which it is possible to create
systems, including mobile systems, by configuration only.

• Secondly, as its name suggests, it is a system concerned to facilitate the
representation of complex decision logic.

The design of Logiak has been influenced by its deployment in projects which
use mobile technology to support often poorly-trained health workers in under-
resourced settings to nevertheless follow best practice in diagnostic and treatment
logic. Users include Médicines sans Frontières. Diagnosis and treatment logic
can be very complex logic indeed and, while the WHO’s Digital Health Guide-
line (www.who.int/reproductivehealth/publications/digital-interventions-health-
system-strengthening/en/) affirms the use of decision support software to improve
the quality of care, it remarks on “the importance of ensuring the validity of the
underlying information, such as the algorithms and decision-logic”.

Logiak permits explicit representation of both procedural and declarative
logic and clearly separates the two. In Logiak, one defines “processes” in two
parts: “nodes” and “conditions”. The “nodes” are sequential and each represents
either an interaction with the user (e.g. obtaining input) or a background action
(e.g. updating a variable). A Process is therefore a sequence of such nodes exe-
cuted one after the other. However, the execution can be affected by the speci-
fication of “preconditions” for nodes or groups of nodes (if a precondition is not
true, the node is not executed). Such conditions are defined purely declaratively,
either in terms of values of variables or responses from the user. Additionally,
and importantly, one can define “meta-conditions” – i.e. conditions can be logical
combinations of other conditions.

Experience has shown that the clean separation of the declarative from the
procedural means that it is straightforward for domain experts to become fluent
in specifying the fundamental logic of a Process.

3. Noise Induced Hearing Loss (NIHL)

Hearing loss induced by noise to which workers are subjected as part of their
employment is widespread and it is possible for workers to make claims for com-



pensation against negligent employers. Weightmans act for employers and their
insurance companies by advising on whether claims should be settled or con-
tested. The NIHL application was implemented in Logiak as a proof of concept
of the compatibility of ANGELIC and Logiak, and to demonstrate the interface
produced from Logiak.

Table 1. Selected nodes from NIHL design document

ID Factor Children Conditions Description

20 Breach of Duty

26 Employee told of

Risks

27 Methods to

reduce noise

28 Protection zone

29 Health

surveillance

30 Risk assessment

REJECT IF

Employee told of

Risks AND

Methods to

reduce noise AND

Protection zone

AND Health

Surveillance AND

Risk assessment

ACCEPT otherwise

The employer did not

follow the code of

practice in some

respect.

28 Protection zone Base Level Q6 Yes

Employer provides

methods to identify

areas where noise

level are high

3.1. Design

The design document used for the NIHL application was essentially the same as
that produced in [2]. The only difference was that the base level factors were
now associated with a question to be posed to the user. A set of questions and
possible responses, taken from the check-list document used in the elicitation
and the interface designed for [2], were supplied so that the interface can also be
generated from the document. The rows for the node BreachOfDuty and one of
its base level children are shown in Table 1. Question 6, used to give a value to
Protection zone, was Did the employer fix protection zones? Yes/No. This design
was then realised using Logiak as described in the next section.

3.2. Realisation

Using Logiak to create a functioning interactive system from the ANGELIC spec-
ification of NIHLwas largely a matter of (simply) transcribing the design docu-
ment elements. The first kind of transcription is to take the questions associated
with base level factors and enter them into a Logiak Process, to create a user
dialogue (shown as Figure 1 of [4]).

The second (and more interesting) “transcription” relates to the logic: one
defines the conditions in Logiak, in a way which closely mirrors the acceptance
conditions defined in the ANGELIC specification. In Logiak, one can define condi-
tions of various types. The simplest are those defined on the basis of user responses



to questions, and so correspond directly to ANGELIC “base level factors”. For
example, for the yes/no question “Did the employer fix protection zones?” we
define a condition named “Protection Zone” which is true if and only if the user
responded affirmatively to said question (Figure 2 of [4]).

Using these conditions (ANGELIC base level factors), in Logiak we can de-
fine “meta conditions” which are logical combinations of other conditions. For
example, for the ANGELIC “Breach of Duty” conditions, we defined a Logiak
meta-condition “No breach of duty” (shown in Figure 3 of [4]), which is true if all
base conditions relating to employer duties are satisfied and false otherwise. We
then defined a meta-condition “Breach of Duty” which is true if the “No breach
of duty” is false.

This indicates that the only aspect of implementing a system in Logiak based
on ANGELIC which is not effectively transcribing the ANGELIC methodology
output in a one-to-one manner, is in mapping the accept-reject logic of ANGELIC
into declarative logic. ANGELIC makes use of defaults, for example, whereas in
Logiak all conditions must be explicit. In practice, this poses little difficulty.

After these two kinds of “transcription” from ANGELIC, one has defined an
interactive process in Logiak which can be delivered either on the web or as a
mobile app without any further programming. Users can respond to the questions
and Logiak will compute the logic dictated by the conditions. Within the Logiak
environment, one can interact with a process defined to check and debug the logic
as portrayed in Figure 1. The interface that will be seen by end users is shown in
the left hand pane. If desired, the question shown to users can be accompanied
by explanatory text and pictures.

Figure 1. Executing the Process in the debugger

4. CATO with Magnitudes

The CATO application used factors with magnitude as well as Boolean factors.
The need for some factors to have magnitude has become widely recognised in AI
and Law: in particular the need for magnitudes in CATO was discussed in [6].



Table 2. Abstract Factors in CATO. LM is Legitimate Means and QM is Questionable Means

Parent Type Value Child 1 Child 2 Condition Pattern

Known Boolean LM Limitations KnownOutside ThresholdException2

IllegalMethods Boolean QM Criminal Dubious Or

Table 3. Base Level Factors in CATO application

Factor Type Question Pattern

AgreedNotToDisclose Boolean
Did the defendant agree

not to disclose?
QueryTheUser1

SecurityMeasures Magnitude

On a scale of 0-10, how strong

were the security measures

taken by the plaintiff?

QueryTheUser3 (10)

4.1. Design

To adapt to factors with magnitude, the Boolean design used in [1] was rewritten
with some of the base level factors given magnitudes. This involved some changes
to the original design, in order that the acceptance conditions could be written so
as to accommodate non-Boolean factors. One change was to rewrite the original
ADF of [1] as a 2-regular ADF (shown in full in [6]) in which every parent node has
exactly two children. This facilitates implementation by making the treatment of
nodes more uniform. This design was implemented in Prolog [6], but the code was
extremely procedural and rather laborious to construct because a fine grained level
of control had to be imposed. What this exercise did achieve, however, was the
identification of a limited number of patterns for acceptance conditions. Building
on [6], twelve patterns were identified for the current exercise. The twelve patterns
were And, Or, Weighted Sum, Weighted Difference, 2 kinds of exception, 3 uses
of thresholds and 3 varieties of Query the User. For details of the patterns see [4].

Instead of acceptance conditions, each node is now associated with one of
these twelve patterns, showing how the parent relates to its children. The base
level factors are associated with a question and one of the Query the User pat-
terns. Note that the patterns require the specification of weights and thresholds.
These were specified for values rather than individual factors, and so each factor
needs to be associated with a value. We used the five values identified for CATO
in [8]. The weights and thresholds can be set to reflect the relative importance
of the values but we used equal weights and thresholds. Effects of varying the
weights and thresholds are discussed in [6]. Example nodes for abstract factors
are shown in Table 2, and example base level factors are shown in Table 3.

4.2. Realisation

Within Logiak, a Process can contain not only interactions, such as the ques-
tions to the user as described above, but also actions. Actions are Process steps
which happen in the background without user interaction and can include, for
example, the creation and updating of variables. Conditions can be defined on the
values of such variables, just as they can be defined on user responses. Actions
which update numeric variables can use an expression language and the task of



reflecting ANGELIC’s use of factors became effectively the inclusion of variable
update actions using expressions which implement the patterns described above,
making it a quasi-mechanical process. The implementation in Logiak could be
simplified by a direct association of a magnitude with each Condition represent-
ing an ANGELIC factor, and implementing the “patterns” above, not as explic-
itly constructed expressions but as system operators. This would also hide the
detailed expressions from the implementer, which would be more in line with the
“no code” ethos of the system.

5. Discussion and Concluding Remarks

Both implementations were evaluated against the applications described in [2] and
[6]. They were run using the same test data and produced fully correct results. The
close structural correspondence between Logiak and ANGELIC greatly facilitated
the verification of the implementation against the design. Moreover the discipline
imposed by the implementation meant that any imperfections and unclarities
could be detected and resolved. The CATO exercise threw up 15, mostly minor,
queries, leading to a better design. Moreover, the immediate availability of a
user interface meant that end users could be involved in evaluation. Weightmans
provided positive feedback on the NIHL application.

The ability to rapidly turn the design into a useable application greatly en-
hances the development process, by identifying problems at early stage so that the
design can be refined, and by enabling end users and domain experts to participate
in the process using the interface which is part of the Logiak package. Further,
implementation in Logiak means that it is unnecessary to develop a separate user
interface, which required a substantial additional effort for NIHL [2]. Providing a
straightforward way of implementing ANGELIC designs is an important addition
to the methodology, greatly increasing its practical usability.

References

[1] L Al-Abdulkarim, K Atkinson, and T Bench-Capon. A methodology for designing systems
to reason with legal cases using ADFs. AI and Law, 24(1):1–49, 2016.

[2] L Al-Abdulkarim, K Atkinson, T Bench-Capon, S Whittle, R Williams, and C Wolfenden.
Noise induced hearing loss: Building an application using the angelic methodology. Argu-

ment & Computation, 10(1):5–22, 2019.
[3] V. Aleven. Teaching case-based argumentation through a model and examples. PhD thesis,

University of Pittsburgh, 1997.

[4] K Atkinson, T Bench-Capon, Routen T, Alejandro Sánchez, Stuart Whittle, Rob Williams,

and Catriona Wolfenden. Implementing ANGELIC designs using logiak. Technical Report
ULCS-19-002, University of Liverpool, 2019.

[5] T Bench-Capon. HYPO’s legacy: introduction to the virtual special issue. Artificial Intel-
ligence and Law, 25(2):205–250, 2017.

[6] T Bench-Capon and K Atkinson. Lessons from implementing factors with magnitude. In

Proceedings of JURIX 2018, pages 11–20, 2018.
[7] G Brewka and S Woltran. Abstract Dialectical Frameworks. In Twelfth International

Conference on the Principles of Knowledge Representation and Reasoning, 2010.
[8] A Chorley and T Bench-Capon. An empirical investigation of reasoning with legal cases

through theory construction and application. AI and Law, 13(3):323–371, 2005.


