
Abstract Dialectical Frameworks for Legal
Reasoning

Latifa AL-ABDULKARIM, Katie ATKINSON, Trevor BENCH-CAPON

Department of Computer Science, The University of Liverpool, UK

Abstract.

In recent years a powerful generalisation of Dung’s abstract argumen-

tation frameworks, Abstract Dialectical Frameworks (ADF), has been
developed. ADFs generalise the abstract argumentation frameworks in-

troduced by Dung by replacing Dung’s single acceptance condition (that
all attackers be defeated) with acceptance conditions local to each par-

ticular node. Such local acceptance conditions allow structured argu-

mentation to be straightforwardly incorporated. Related to ADFs are
prioritised ADFs, which allow for reasons pro and con a node. In this

paper we show how these structures provide an excellent framework for

representing a leading approach to reasoning with legal cases.

Keywords. case based reasoning, factors, argumentation frameworks

1. Introduction

Modelling reasoning using legal cases has been a central concern since the begin-
ning of AI and Law, and is also an important example of the study of computa-
tional argument applied to real problems. The leading approach to reasoning with
legal cases in AI and Law is represented by HYPO [4], CATO [2] and IBP [13].
Cases are represented as sets of factors, legally significant patterns of facts which
favour one side or the other. But there have also been attempts to formalise the
reasoning, including use of Dung’s abstract frameworks [15] in e.g. [18]. A signif-
icant development joining the empirical and formal approaches was [19], which
represented precedent cases as three rules, one offering the pro-plaintiff factors
as a reason to decide for the plaintiff, one giving the pro-defendant factors as a
reason to decide for the defendant, and one stating the priority between these two
rules, as determined by the actual decision in the case. Note here the rules include
all available factors and so offer the strongest available reasons for plaintiff and
defendant: a recent formalisation of this approach [16] allows for weaker rules for
the winner. Such broader rules, if sufficient to outweigh the opposing reasons,
permit a fortiori reasoning.

In recent years a powerful generalisation of Dung’s abstract argumentation
frameworks, Abstract Dialectical Frameworks (ADF), has been developed in [12]
and [11]. ADFs generalise the abstract argumentation frameworks introduced by



Dung [15] by replacing Dung’s single acceptance condition (that all attackers be
defeated) with acceptance conditions local to each particular node: for example
some nodes could be acceptable if at least one attacker were defeated. Such local
acceptance conditions allow structured argumentation to be straightforwardly
represented. Related to ADFs are prioritised ADFs (PADFs), which allow for
both pro and con reasons. In this paper we will explore the use of this new formal
framework for representing legal case based reasoning. As well as being useful for
reasoning with cases, this allows the strengths of ADFs to be seen in the context
of a significant application.

We define ADFs in section 2 and describe cased-based reasoning with factors
in section 3. Section 4 relates the two and section 5 describes the advantages of
doing so, and the next steps in our programme of work.

2. Abstract Dialectical Frameworks

Abstract Dialectical Frameworks (ADFs) were introduced in [12] and revisited in
[11]. ADFs provide a generalisation of Dung’s abstract argumentation frameworks
(AFs) [15]. ADFs, like AFs, consist of a set of nodes and directed links between
them, but whereas the links in an AF have a uniform interpretation, namely
defeat, the links in an ADF can be given a variety of interpretations. Moreover
in ADFs the nodes are statements in general, rather than specifically abstract
arguments. ADFs are defined in ([11]) as follows:

Definition 1: An ADF is a tuple ADF = < S,L,C > where S is the set
of statements (positions, nodes), L is a subset of S × S, a set of links and
C = {Cs∈S} is a set of total functions Cs : 2par(s) → {t.f}, one for each
statement s. Cs is called the acceptance condition of s.

With respect to C it is stated in [11] that “In many cases it is convenient
to represent acceptance conditions as propositional formulas.” Later [11] defines
a Prioritized ADF (PADF), in which the links are partitioned into support links
(L+) and attack links (L−), and C is replaced by >, a strict partial order (irreflex-
ive, transitive, antisymmetric) on S representing preferences among the nodes.
This structure is intended to reproduce exactly the Preference Based Argumen-
tation Frameworks of Amgoud and Cayrol [3], which augments an AF with an or-
dering on arguments. In [3] the preferences act like an oracle, and no explanation
or rationale is offered for the preferences. Moreover, they are given in advance,
not at run-time, so that the preference order cannot be argued for. In contrast,
reasoning transparently with these preferences is the whole point of legal case
based reasoning systems such as CATO and IBP. Attempts to justify preferences
in abstract argumentation systems have been made. For example, in Value Based
Argumentation [7] arguments are justified in terms of the values promoted by
the arguments concerned. A general framework for arguing about preferences is
provided in [17]. To represent legal CBR as modelled in AI and Law systems such
as [4], [2] and [13] we need to go beyond [3] and provide acceptance conditions
expressed in terms of precedent cases to enable the preferences so expressed to
be justified by reference to precedent cases. Moreover, we will not wish to insist



that the ordering on S is global to the PADF, but allow it to be local, so that
the influence of a factor may be properly contextualised. For example a particu-
lar factor may be relevant to several different issues, and so be linked to several
distinct elements of S, but the strength and nature of its support may vary for
these different nodes.

3. Factor Based Reasoning

The consensus that has developed in AI and Law is that legal reasoning passes
through a series of stages, moving from evidence to a final decision. Cases begin
with evidence. Evidence can, of course, conflict, and so it is necessary to resolve
these conflicts to come to a set of agreed facts. This stage is often adjudicated
by a jury rather than trained legal personnel, and the style of argumentation is
rather different. Moreover facts are usually considered settled when the case comes
before a higher court. For this reason, this stage is often considered as a separate
topic (e.g. [9]). The facts of cases exhibit enormous variety, and if we are to make
comparisons between them, so that the current case can be related to precedent
cases, we need to abstract from the particular facts to some intermediate concepts.
This idea goes back at least to Ross [20], but is also a key idea in contemporary
AI and Law (see e.g. [5] for a discussion). These intermediate concepts are often
termed factors and are stereotypical patterns of facts that are sufficiently abstract
to apply to a good number of cases, and which have some significance in the body
of case law, by favouring a particular side. In this stage the factors present in a
case are identified, and this may itself be a subject of argument [6]. The most
studied stage is the transition from factors to a legal decision. In [2], [8], [5] and
[16], cases are represented as collections of factors, some favouring the plaintiff
and some the defendant, which are then weighed to produce a decision.

In [2] factors are organised into a factor hierarchy. Base level factors, which
are the factors used to describe a case, are grouped under more abstract factors.
The presence of a factor in a case description is a reason why its abstract parent
is or is not present in that case, and so these reasons need to be balanced when
ascribing an abstract factor to the case. Several levels of abstract factor may be
found in CATO. In IBP the organisation is taken further. The highest level of
the hierarchy comprises not abstract factors but issues, and these form what is
termed in [13] a logical model. The difference in [13] is that issues relate to the
outcomes as a propositional function, rather than as a set of pro and con factors
that need to be weighed. The logical model (which like CATO relates to US Trade
Secret law) of [13] is shown in Figure 1.

This model can then be expanded downwards using the factor hierarchy of
CATO. Nodes can be merged since the leaves of the IBP logical model can be
made to correspond to abstract factors within the CATO hierarchy. Consider
the extract from CATO’s factor hierarchy shown in Figure 2. Confidential Re-
lationship (F114) maps directly, as does Improper Means (F110). So does F101
(Info Trade Secret), if we identify Information-Unique with F104 (Info Valuable),
which seems plausible given that Unique Product is its only factor. Info-Used
does not appear in the extract shown in Figure 2, but is included as an abstract



Figure 1. IBP Logical Mode from [5]

Figure 2. Extract From CATO Abstract Factor Hierarchy from [2]

factor (F112) in the complete hierarchy given in [2]. Although the full factor hi-
erarchy also contains additional base level factors, they do not raise any different
questions, and so we need not consider them here.

The hierarchy can be extended further downwards, so that we can make the
facts on which the factors depend explicit. The need to be able to argue about
which factors should be used to represent cases was the topic of [6]. Information
about the facts which relate to factors can either be gleaned from the factor
descriptions in Appendix 2 of [2], or by going back to the original case reports
(cf. [1]), and will be similar to that contained in the focal slots of HYPO [4].

Thus the hierarchy begins with issues: these form the logical model. Issues
are either satisfied or unsatisfied in particular cases, and the links between them
taken from the logical model are all “+”. At their lowest level, issues have links to
factors. Factors are either present or absent in a case, and upwards links to issues
(and more abstract factors) can be either “+” or “-”, so that we must regard the



Figure 3. Prioritied Abstract Dialectical Framework

structure as a PADF. The downwards links of the lowest level (base level) factors
are to facts and may also be either “+” or “-”. Facts are true or false with respect
to a given case, and form the leaves of the structure.

As an example of a PADF for reasoning about US Trade Secrets, consider
Figure 3. This is composed from extracts from the logical model of IBP, the
factor hierarchy of CATO, and some possible facts to justify the presence of
factors. The issue is Info Misappropriated. Factors are Improper Means, Info Used
and Confidential Relationship, Deception, Bribe, Reverse Engineered, Identical
Product, Knew Confidential and Non Specific. The remaining nodes are facts.

4. Relating to Prioritied Abstract Dialectical Frameworks

We can now explain the relationship between the diagram in Figure 3 and the
PADF as defined in [11]. The issues, factors and facts form the set S. Links are
those in the figure, partitioned into “+” and “-” links as required by the defi-
nition. All that remains is to define the acceptance conditions. We will specify
the acceptance conditions using Prolog procedures, which provide a set of clauses
each giving a sufficient condition for or against acceptance, expressing priority
through the ordering of these clauses. Propositional functions are represented us-
ing Prolog’s declarative semantics and priorities expressed using Prolog’s proce-
dural semantics. Priorities are needed since in legal CBR it is not always possible
to supply necessary and sufficient conditions. The clauses are formed from the
children of a node: the “+” links are reasons why an issue (factor, fact) is satisfied
(present, true) and the “-” links are reasons why an issue (factor, fact) is unsatis-
fied (absent, false). Taken together the links of a given polarity form the body of a
clause, as does every subset of the links of a given polarity. Finally the empty set
is also a clause giving the default value, which, in the context of reasoning with
cases, indicates the burden of proof. Thus in the case of Info Misappropriated
(abbreviated to infoMis in the code to fit the page width) where we have three
positive links in Figure 3, we get:



issue(infoMis,satisfied):- issue(improperMeans,present).

issue(infoMis,satisfied):- issue(confidentialRelationship,present).

issue(infoMis,satisfied):- issue(infoUsed,present).

issue(infoMis,satisfied):- issue(infoUsed,present),

issue(confidentialRelationship,present).

issue(infoMis,satisfied):- issue(improperMeans,present),

issue(confidentialRelationship,present).

issue(infoMis,satisfied):- issue(improperMeans,present),

issue(infoUsed,present).

issue(infoMis,satisfied):- issue(improperMeans,present),

issue(infoUsed,present),

issue(confidentialRelationship,present).

issue(infoMis,unsatisfied).

We now use the logical relations of the logical model to identify which of these
clauses are required. The two disjucts in the logical model correspond to the first
and fourth clauses, and the last clause provides the default. We can disregard the
rest since they are either subsumed or insufficient. Thus the acceptance condition
for Info Misappropriated is:

issue(infoMis,satisfied):- issue(improperMeans,present).

issue(infoMis,satisfied):- issue(infoUsed,present),

issue(confidentialRelationship,present).

issue(infoMis,unsatisfied).

Turning to factors we typically have reasons for both presence and absence of
a factor, but until we consider the precedent cases we do not know which reasons
should prevail. Thus at the outset we have, for InfoUsed :

factor(infoUsed,unknown):-factor(identicalProduct,present),

factor(reverseEngineered,present).

factor(infoUsed,present):-factor(identicalProduct,present).

factor(infoUsed,absent):-factor(reverseEngineered,present).

factor(infoUsed,absent).

This means that we can say whether InfoUsed is present or absent if we have
one, or neither, of the children factors, but if both are present the status of In-
foUsed is unknown. This is why we need the precedent cases. Suppose there is a
precedent with both factors present in which it was decided that the information
was not used. We might then conclude that reverseEngineered outweighs identi-
calProduct and express this as a priority between the second and third clauses:

factor(infoUsed,absent):-factor(reverseEngineered,present).

factor(infoUsed,present):-factor(identicalProduct,present).

factor(infoUsed,absent).

Note, however, that we cannot remove the first clause with certainty unless
we consider the case as a whole: if both of these factors are present and the case
was found for the plaintiff, this could be because the ImproperMeans factor was



also present. Since this issue is itself enough to justify finding for the plaintiff,

the information was misappropriated whatever the status of InfoUsed, and so this

precedent cannot establish priorities between factors related to that issue. Thus

our precedent should also be such that improperMeans is absent and confiden-

tialRelationship is present.

It may be that our precedents suffice only to provide partial acceptance con-

ditions. Consider ImproperMeans, and suppose we have a precedent with both

bribe and reverseEngineered, allowing us to see that bribe has priority, but no

precedents with both deception and reverseEngineered. Our acceptance condition

will now be:

factor(improperMeans,present):-factor(bribe, present).

factor(improperMeans,unknown):-factor(deception, present),

factor(reverseEngineered, present). .

factor(improperMeans,absent):-factor(reverseEngineered, present).

factor(improperMeans,present):-factor(deception, present).

factor(improperMeans,absent).

The ordering of the third and fourth clauses does not matter since, if both are

present, the second clause will apply and the third and fourth will not be tried.

Once we have a suitable precedent with both deception and reverseEngineered

present we can order the third and fourth clauses in accordance with the decision

in that case and discard the second clause.

The base level factors are resolved similarly, but with facts in the bodies of

the clauses. Very often these will be sufficient conditions. In Figure 3 apart from

knewConfidential, all the facts offer a single sufficient condition, comprising one

or two facts. We could easily add others: for example a defendant may deceive by

giving the plaintiff to understand that he represents a particular company without

an explicit lie, or there could be other ways of showing that two products were

identical. The acceptance condition for knewConfidential is a bit more interesting.

The intention here is that if the defendant has signed a non disclosure form it

shows that he knew the information to be confidential, unless there is no specific

mention of the information in the form, in which case he may argue that he did

not know this particular information was confidential. This defence presupposes

that there was a form which did not mention the information: thus we need:

factor(knewConfidential,absent):- fact(signed,form,defendant),

fact(notMentioned,form,product).

factor(knewConfidential,present):- fact(signed,form,defendant).

factor(knewConfidential,absent).

Essentially we have here a form of exception. The reasons are not independent.

The question of whether the product was specifically mentioned arises only if there

was a signed form, and provides a possible exception to the general rule expressed

in the second clause. Note that in Prolog the most specific clause appears first.



5. Discussion and Future Work

5.1. Advantages

There are three types of advantage of considering case-based reasoning in terms of
PADFs. There are advantages in terms of the theoretical aspects of computational
argumentation, advantages in terms of the expressiveness of the representation,
and practical advantages in terms of building systems.

The theoretical advantages arise once we are able to see the structures re-
quired for legal case-based reasoning as ADFs because we are able to take advan-
tage of the results developed for ADFs and apply them to legal case-based reason-
ing. Thus for example, the correspondences between ADFs and AFs identified in
[11] can be directly carried over to factor-based reasoning. Equally the complex-
ity results for ADFs in [11] can be applied to legal CBR systems. There is much
current activity in the theoretical argumentation community relating to ADFs
and seeing legal CBR in terms of ADFs allows the fruits of these endeavours to
be enjoyed by the AI and Law community also.

The advantages with respect to expressiveness come from the more natural
representation offered by ADFs especially where we have both pro and con rea-
sons. Using AFs we are restricted to only one kind of acceptance condition: the
parent is accepted if, and only if, all the children are rejected: that is, the chil-
dren represent a disjunction of potential defeaters. In order to represent the ac-
ceptance condition for InfoMisappropriated using standard AFs, we would need
to rename ImproperMeans properMeans, and introduce a node for noConfiden-
tialInformationUsed attacking InfoMisapprpriated and attacked by InfoUsed and
ConfidentialRelationship. The factors thus have to be expressed in an unnatural
fashion to give them the right polarity, and additional factors introduced to arti-
ficially link conjuncts. Moreover, whereas the support between elements needs to
be represented as an attack on an attacker in a standard AF (so introducing an
additional element and disguising the supportive nature of the relationship), sup-
port is expressed directly in a PADF by using a “+” link. This is not a criticism
of AFs for their original purpose, but rather a consequence of AF nodes being
arguments, whereas ADFs nodes are statements, with the arguments encapsu-
lated in the acceptance conditions. Since we are dealing with the satisfaction of
issues, the presence and absence of factors and the truth of facts, we think that
ADFs, or more particularly PADFs, are better suited for our purposes. The key
to this is the flexibility of PADFs, which means that the most straightforward
representation can be used, without the need to contort the information into a
prescribed form. Additionally, PADFs provide an excellent way of handling the
need to reason with portions of precedents, identified by Branting [10], but never
really satisfactorily addressed. This is what enables us to go beyond the a for-
tiori reasoning of [19] without resorting to the apparently arbitrary choices of
[16]. Moreover, as we have seen above, PADFs can be used to represent uniformly
not only propositional functions, but, where necessary and sufficient conditions
cannot be specified, reasons for and against, which need be weighed to reach a
decision, also.

The practical advantages step from the closeness of the representation to an
executable form. Because the acceptance conditions are represented as Prolog



procedures, we can regard the set of acceptance conditions as a Prolog program.
All nodes are associated with a procedure with that node as the head of the
clauses and its children form the bodies. These children will have acceptance
conditions comprising procedures in which they are the heads and their children
form the bodies. Thus each level is defined in terms of the next level down. When
we reach the leaves we are confronted by facts. These can be supplied using
whatever interface we choose: a set of cases from a file; interactively using a form
or by asking questions; or even, if suitable software is available, by extracting
the facts from a description of the case. Thus the move from the analysis to an
executable program is direct and immediate: debugging, modification and revision
can be performed on the representation and then mechanically transferred to the
executable program, with all the software engineering benefits that this affords.

5.2. Planned Evaluation

The initial evaluation will be only on the issue and factor part of the structure as
this can draw on currently available analysis, and enables direct comparison with
existing systems. Because the full 148 case data set used in [13] is not publicly
available, we will use the the subset of 33 cases collected from published sources
by Alison Chorley and used to evaluate the Agatha system in [14].

We will take the nodes and links for our PADF from the logical model of
[13] extended through abstract factors to base level factors in Figures 3.2 and 3.3
of [2]. We will then perform a set of tests using the cases from [14]. The results
can then be compared with those achieved by Agatha in [14] and by IBP in [13].
Moreover the evaluation of IBP also tested a version of CATO (NoSignDist-BUC
which used the best untrumped case, allowing CATO’s factor hierarchy to be used
to downplay distinctions where appropriate) and a version of HYPO (Hypo-BUC,
which used the best untrumped case with a flat set of factors). Both Agatha and
IBP achieved a success rate of over 90%, with very few abstentions. NoSignDist-
BUC made more errors and had more abstentions, giving a success rate of 77.8%.
Hypo-BUC made fewer errors than either, but abstained in a very large number
of cases, so that its success rate was only 66.3%. Because our program will benefit
from the structure taken from IBP, and also recognises the need to consider the
contribution of a factor in the context of particular issues, we would expect the
performance to be comparable to that of IBP and Agatha.

The next step will be to supply the fact layer. We can take some guidance
from the focal slots of HYPO, but in the main we will need to return to the
original decisions and oral transcripts which we will analyse using the methods
of [1]. Our expectation is that this will achieve better results than the program
which stops at factors, since taking the ascription of factors on trust may miss
some important nuances.

5.3. Concluding Remarks

The Abstract Dialectical Frameworks of [11] provide a powerful generalisation of
Dung’s Abstract Argumentation Frameworks [15]. In this paper we have shown
that they provide a natural way to express in a formal manner reasoning with



legal cases using factors developed over the years through important practical
systems such as HYPO, CATO and IBP.

References

[1] L. Al-Abdulkarim, K. Atkinson, and T.Bench-Capon. From oral hearing to opinion in the

us supreme court. In Proceedings of JURIX 2013, pages 1–10, 2013.

[2] V. Aleven. Teaching case-based argumentation through a model and examples. PhD thesis,
University of Pittsburgh, 1997.

[3] L. Amgoud and C. Cayrol. On the acceptability of arguments in preference-based ar-

gumentation. In Proceedings of the Fourteenth Conference on Uncertainty in Artificial
Intelligence, pages 1–7, 1998.

[4] K. Ashley. Modelling Legal Argument: Reasoning with Cases and Hypotheticals. Bradford

Books/MIT Press, Cambridge, MA, 1990.
[5] K. Ashley and S. Brüninghaus. A predictive role for intermediate legal concepts. In

Proceedings of JURIX 2003, pages 1–10, 2003.

[6] K. Atkinson, T. Bench-Capon, H. Prakken, and A. Wyner. Argumentation schemes for
reasoning about factors with dimensions. Proceedings of 26th International Conference

on Legal Knowledge and Information Systems (JURIX 2013), 2013.

[7] T. Bench-Capon. Persuasion in practical argument using value-based argumentation
frameworks. Journal of Logic and Computation, 13(3):429–448, 2003.

[8] T. Bench-Capon and G. Sartor. A model of legal reasoning with cases incorporating
theories and values. Artificial Intelligence, 150(1-2):97–143, 2003.

[9] Floris J Bex. Arguments, stories and criminal evidence: A formal hybrid theory, vol-

ume 92. Springer, 2011.
[10] K. Branting. Reasoning with portions of precedents. In Proceedings of the Third Inter-

national Conference on Artificial Intelligence and Law, pages 145–154, 1991.

[11] G. Brewka, H. Strass, S. Ellmauthaler, J.P. Wallner, and S. Woltran. Abstract dialectical
frameworks revisited. In 23rd International Joint Conference on Artificial Intelligence,

2013.

[12] G. Brewka and S. Woltran. Abstract dialectical frameworks. In Principles of Knowledge
Representation and Reasoning: Proceedings of the Twelfth International Conference, 2010.

[13] S. Brüninghaus and K. Ashley. Predicting outcomes of case-based legal arguments. In 9th

International Conference on Artificial Intelligence and Law, pages 233–242, 2003.
[14] A. Chorley and T. Bench-Capon. An empirical investigation of reasoning with legal cases

through theory construction and application. Artif. Intell. Law, 13(3-4):323–371, 2005.
[15] P. M. Dung. On the acceptability of arguments and its fundamental role in nonmonotonic

reasoning, logic programming, and n-person games. Artificial Intelligence, 77:321–357,
1995.

[16] J. Horty and T. Bench-Capon. A factor-based definition of precedential constraint. Artif.

Intell. Law, 20(2):181–214, 2012.

[17] S. Modgil. Reasoning about preferences in argumentation frameworks. Artif. Intell.,
173(9-10):901–934, 2009.

[18] H Prakken. From logic to dialectics in legal argument. In Proceedings of the 5th Inter-
national Conference on Artificial Intelligence and Law, pages 165–174, New York, NY,
USA, 1995. ACM.

[19] H. Prakken and G. Sartor. Modelling reasoning with precedents in a formal dialogue game.

Artif. Intell. Law, 6(2-4):231–287, 1998.
[20] A. Ross. Tu-tu. Harvard Law Review, 70:812–825, 1961.


