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Abstract. By gaining insight into the structure and behaviours of otgj@rawn at
random from a general class, it is often possible to develgprithms and tech-
nigues which ameliorate the computational difficulty of id@m questions arising
in the general case. In this paper we present a number of ages for the random
generation of/alue-based argumentation framewoikaFs) built onn arguments
and usingk values. Via an empirical study we consider the behaviouhefasso-
ciated randonvars with respect to the issue of how many arguments within them
have the property of beingobjectively acceptéd Our studies indicate that the
property of having no objectively accepted argument exhibiso-called “phase-
transition effect”, similar in nature to those observed emyother well-established
Al studies.
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Introduction

An understanding of the characteristics underlying tylgitstances of a computational
problem may provide useful insight into the developmenteaisible algorithmic meth-
ods. As a result, even notionally intractable problems maydund to have efficient
average-caseolutions, provided that the most demanding instances fyiven algo-
rithm are comparatively rare. A well-known example of thiepomenon is deciding if
a propositional formula, presenteddnr, is satisfiable. Despite its status as a canonical
NP—complete problem, as shown by Wu & Tang [1], this has an @escase polynomial
time algorithm (under one of the standard models for randmtances o NF formulae
involving n propositional variables, i.e. that of Goldberg [2]).

There has been considerable recent activity dedicatedpects of algorithmic
methods applied to the abstract argumentation framewx#kformalism proposed by
Dung [3], almost without exception this has engaged withidging so-called “tractable
fragments”: that is, special cases which admit efficientsivoase algorithms for some
decision problems. Thus, Dung [3] already identifeEyclic AFs as such a fragment,
Dunne [4] (bipartitears) and Coste-Marquist al. [5] (symmetric AFs) extend the
range of classes. Recently more general mechanisms engltiee-width” and “clique-
width” parameters have been shown to offer promising charitics in work of Ord-
nyiak & Szeider [6], and Dvorakt al.[7,8]. In contrast, however, the potential use of
average-case solution techniques has been largely unveééoged.



There are, of course, a number of reasons one could advaegel&in this appar-
ent oversight. Not least among these is the often formidetidélenge posed iformally
demonstrating that a proposed approadhdeedeffective: average-case analyses tend-
ing to be significantly more demanding that their worst-casenterparts. In order to
address such issues one can consider providing suppottidgnee viaempirical ap-
proaches. Recent work of Atkinset al.[9] describes a suite of methods through which
random instancesf divers forms ofAFs may be generated. Among these, in addition
to standardrrs are value-based frameworks\f) as described in Bench-Capon [10],
andextendedhFs as proposed in Modgil [11]. Such approaches offer a basis which
empirical studies can be constructed and the behaviouypical” frameworks assessed.

Our aim in this paper is to consider a number of propertieanflomvars — both
under uniform allocation of values to arguments and withia tbiased” methods. Our
results offer strong empirical support that a number of kmaviractable decision prob-
lems regardingAFs in fact may be solved by average-case polynomial time elkgos.

In the remainder of this paper we review background definstim Sect. 1 and describe
a number of models of randomnFs in Sect. 2. In Sect. 3 we present empirical evi-
dence regarding the characteristics of randams with respect to a number of specific
properties. Conclusions and directions for further wokkaffered in Sect. 5.

Prior to presenting our results, however, we briefly moévdie choice of Bench-
Capon’svAF abstractioh as of particular importance from the viewpoint of develapin
efficient average-case solutions. T¥re= model offers two significant features of inter-
est. Firstly, from the perspective of “random generatiothods”, as discussed in detalil
in Atkinson et al. [9] and summarised in Sect. 2, unlike standar$ which may for
such purposes be considered as directed graph structures)k@er of non-trivial issues
arise in regard to botenumeratiorand random generation matters. Secondly, again in
contrast to classicalFs, until quite recently no useful tractable fragmentvefs had
been identified. Thus, as shown by Dunne [4], graph structures as basic ag/tireas
(even under the condition that no value is common to threearerarguments) fail to
reduce the computational complexity of standesg decision questions from ther,
coNP—complete status of the unrestricted case. Given thistgtyaleveloping efficient
average-case methods would be particularly beneficial.

1. Background.

The following concepts were introduced in Dung [3].

Definition 1 Anargumentation framewortaF) is a pair H = (X, A), in whichX is a
finite set oirgumentaind A C X' x X is theattack relationshifor . A pair (z, y) € A
is referred to as{ is attacked by:’ or * x attacksy’. z € X is acceptable with respect
to S if for everyy € X that attackse there is some € S that attacksy; S is conflict-
freeif no argument inS is attacked by any other argument th A conflict-free sefS
is admissibleif everyy € S is acceptable w.r.t5; S is a preferred extensioif it is a

1t has been claimed that the semantics operatingairs may lead to inconsistent conclusions. Although,
to the authors’ knowledge this is an open question, we natetlie alleged demonstration of “inconsistency”
from [12] is comprehensively refuted in [13].

2The first such fragments are presented in work of Dunne [1dim et al. [15].



maximal (with respect ta) admissible set; An argumentis credulously accepteif
there issomepreferred extension containing it;is sceptically accepteilitis a member
of everypreferred extension.

Bench-Capon [10] develops the concept of “attack” from Dsimgodel to take account
of values and thereby distinguish notions of attack feuncessfuhttack.

Definition 2 A value-based argumentation framewdqrkaF), is defined by a triple
HV) = (H(X,A),V,n), whereH (X, A) is anAF, V = {v1, v, ..., v} a set ofk
valuesandn : X — V a mapping that associates a valyér) € V with each argu-
mentz € X. Anaudiencdor a var (X, A, V,n), is a binary relationR C V x V whose
(irreflexive) transitive closureR*, is asymmetric, i.e. at most one @f, v’), (v', v) are
members oR* for any distinctv, v’ € V. We say that; is preferred ta; in the audience
R, denotedv; =x v;, if (v;, v;) € R*. We say thatv is a specificaudience ifx yields a
total ordering ofV. The notatiord/ is used for the set of all specific audiences oy¥er

A standard assumption from [10] which we retain in our subsetjdevelopment is the
following:
Multivalued Cycles AssumptigriCA)
For anysimple cycleof argumentsin &ar, (X, A, V, n), —i.e. a finite sequence of argu-
mentsy1 vz - - . YiYit1 - - - Yr With y1 = o, {01, ., g1} = r—1,@and{y;, y;41) € A
for eachl < j < r —there are arguments andy; for whichn(y;) # n(y;).

In less formal terms, this assumption states every simplkedy A (V) uses at least
two distinct values.

UsingVvAFs, ideas analogous to those introduced in Defn. 1 are giveelafvising
the concept of “attack” using that sficcessfuhttack with respect to an audience. Thus,

Definition 3 Let (X, A, V,n) be avaF and’R an audience. For argumenis y in X,
is asuccessful attacin y (or  defeatsy) with respect to the audien@eif: (z,y) € A
andit is notthe case that(y) > 7(z).

Replacing “attack” by “successful attack w.r.t. the audeR”, in Defn. 1 yields def-
initions of “conflict-free”, “admissible set” etc. relatinto value-based systems, eq.
is conflict—free w.r.t. to the audiende if for eachz, y in S it is not the case that
successfully attacks w.r.t. R. It may be noted that a conflict-free set in this sense is
not necessarily a conflict-free set in the sense of Defn.rlz fandy in .S we may have
(z,y) € A, provided that)(y) == n(z), i.e. the value promoted by is preferred to
that promoted by for the audienc&.

Bench-Capon [10] proves that every specific audienciduces a unique preferred
extension within its underlyingar: for a givenvar, H(V), we useP(H(V), ) to denote
this extension. Analogous to the concepts of credulous egtieal acceptance, WAFs
the ideas obubjectiveandobjectiveacceptance arise.

Subjective AcceptancgsBA)

Instance: H(X, A, V,n) andz € X.

Question: Is there a specific audience, for whichz € P({(X, A, V, 1), a)?
Objective Acceptance(OBA)

Instance: H(X, A, V,n) andz € X.

Question:Isz € P((X, A, V,n), a) for everyspecific audience?



As we have noted earlier, the complexity A (NP—complete) andBA (CONP—
complete) is known to be unchanged under quite extremeatests on the form of
instances as shown in Dunne [4].

2. Models of RandomvAFs.

In Atkinsonet al. [9] several distinctive features concerning “uniform gexten meth-
ods” (that is, those for which, givei andk, eachn argument/Ar using exactlyt val-
ues is equally likely to be reported) are identified and dised. The basic algorithm
presented is reproduced as Algorithm 1.

Algorithm 1 Random Generation ofaFs (from [9])
1: Input: (n,k,p) (p €1[0,1],n >0,1 <k <n)

22X = {z1,..., o}

X = 0for1<iqi<k;

4 A = 0

5 n; = 0for1<i<Ek;

6: V= {v,v9,...,0};

7: n := Random mapping ok’ to V; /* Implementation discussed in sequel. *//
g fori=1;i<k;i++do

90 X ={zeX : nx)=uv};

100 (X;,A;) := RandomacyclicAF;

11 A= AUA;

12: end for

13 fori=1;i<k;i++do

14:. forj=i+1;j<k;j++do

15: for eachs € X; do

16: for eacht € X do

17: b := Uniformly randomly chosen real value in the inter{@l1);
18: if b < pthen

19: A= AU {{s,t)};

20: end if

21 b := Uniformly randomly chosen real value in the inter{@l1);
22: if b < pthen

23: A= AU {{t,s)};

24: end if

25: end for

26: end for

27:  end for

28: end for

29: return ((X, A), V,n);

A significant factor in the nature of the output reported hig glgorithm concerns
the implementation of (I. 7). For our experimental studiesagnsidetwo distinct ap-
proaches.

VM1. The mapping; : X — Vis formed by



a. Uniformly at random choosinggartition, « = (ay, as, ..., a;) € N¥, of n
into £ non-increasing and non-zero parts. That is, for which> a;,1 > 1
(foreachl < i < k)andYF_, a; = n.

b. Uniformly at random choosing; arguments fromY¥ whose value will be
fixed tov;.

VM2. Foreachz € X inturn setp(z) = v in such a way thaP[n(z) = v] = 1/|V|.

We note that the rationale supporting the first of these nutifgM1) is that (wherm in
Algorithm 1 is fixed at).5) this approach isiniformwhereas VM2 fails to be so. While
the reasons are discussed more fully in [9], this arises fhenfact that for the purposes
of uniform generation the significant factor is the relativenbersof arguments with a
given value and nawhich specifiarguments these are. We note that while the expected
number of arguments with any given value using VM24s|X|/|V| = n/k, this isnot
the case w.r.t. (VM1). The main problem with (VM1) is that isplementation, even
for moderate values af andk, can be prohibitively slow. As we shall outline in the
following section, however, in terms @AF characteristics it turns out that (VM1) and
(VM2) have similar behaviour.

We shall subsequently uge){’}fp (wherevm is one of (VM1)-(VM2) above) to
denote the random variable defined by the output of Alg. 1rgimput (n, k, p) and
constructing the value mappingyia the method specified M.

3. Properties of “almost all” VAFs.

Using Alg. 1 configured using each of the methods (VM1)—(Vjetermine the value
mappingy, we examine average-case behaviours in relation to theitxmpg’é"A : Nx
N x [0,1] — [0, 1] given by

pOBA(n. k,p) = Prob[HYM has at least onebjectively acceptedrgument.

We observe that, in principle, one is dealing wiblir quantities: the triplén, k, p)
and the outcome being analysed. In order to present outcdoraesaccessiblgraphical
form, however, it is useful to note that by considering thgk valuen? + k we are able
to combinen and k without loss of information. Recalling that < k£ < n, the value
n? + k uniquely determinesén, k): givenm = n? + k, n is recovered by /m |, and
(consequently} viam — (|/m])2.

The following experiment was carried out:

Experiment: This considered each € {100, 150,200, 250, 300, 350,400} and6 <

k < 20. For the value partition method VM2 alD5 = 7 x 15 pairs(n, k) were ex-
amined, while with VM1 only thel8 cases froom < 350 and6 < k < 8.3 In each
case,100 VAFs were sampled frori{ Y} ' for eachp, the range of being defined in
terms of multiples ofog(n +&)/(200(n + k) (wherelog is the natural logarithm). These
multiples ¢n) label thez-axis of the various output plots given below.

3The value mapping mechanism required for VM1, involves @oam partition generation algorithm whose
run-time is fromO (n*+1). Background to this is discussed in Atkinseral[9].



In each of thel00 trials with a fixed(n, k£, p) the number of occasions in which at
least one objectively accepted argument was “discovered’necorded. Given that it is
infeasible exhaustively to enumerate allspecific audiences for larger valuesigfa
randomly chosen sample b# ordering were chosen so that an argument was reported as
“objectively accepted” if every such audience led to itssmtance’. The y-axis describes
the proportionS /100 where S is the number of cases ir00 instances which report at
least oneoBA argument. For reasons of space we concentrate on resultdf@noting
that VM1 has similar (though not identical) characteristic

In Figure 1 the effect of varying with £ = 20 is shown, while Figure 2 illustrates
the behaviour resulting for = 400 andk varying.
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Figure 1. Objective Acceptance — VM2 behaviour with= 20 andn € {100, 200, 300, 400}

As is seen in Figure 1, the transition from “almost every” &tmost none” becomes
more pronounced as increases for a fixed, with a similar effect ag increases being
noticeable in Figure 2

The behaviour of VM1 and VM2 lends support to the following,

Conjecture 1 For X € {VM1, VM2}, for all k € N, there is apositive constant
60X € R* for which

. x alogn - . x
nl;n;o POBA (n,k, . > = 0ifa>6;

. x alogn
", POBA ( S )

“Note that whereas there is a small chance of arguments beingéctly reported as objectively accepted,
whenever an argument is reportednashaving this property, such reports are guaranteed to beatecu

1 ifoz<9£(
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Figure 2. Objective Acceptance — VM2 behaviour with= 400 andk € {10, 15,20}

Notice that the outcomes from the experiments suggest ardgi 0;° of
0.00375 < Oy < 0.02875 5 0.00375 < Oyare < 0.02

(Recall that the labelling of the-axis in these figures definesultiplesof 1,/200.)

4. Towards an Analytic Verification of Empirical Behaviour.

Consider the value partition method defined throwgh2: that is, in which each ar-
gument is allocated a specific valug, with probability1/|V| independently of other
choices made. We state the following properties withoubp¢fmr space reasons).

Lemmal Let D, ,(X,.A) be the random variable corresponding to acyclic AF with
n argumentsY and attacks included independently with probabifityLet g(n, p) de-
note theexpected sizef the grounded extension 6%, ,,. Theng(n, p) satisfies

g(l,p) = 1; g(n,0) = n; g(n1) =1

o) = SO (- EEEE0) (1)) )

p p

1 1
Lemma 2 g (n, a Ogn) ~ r (1 — —>

n alogn ne

and, for fixedp, g(n,p) =~ C,logn, with C,, dependent op.

Coupling Lemma 1 with the following property of objectivedgcepted arguments sug-
gests not only an approach to analytically confirming erisgeissues for these within

VAFS but also hints at a potentially fasterage-casalgorithm for deciding whether an

argument isnot so accepted.

Lemma 3 Let (X, A,V,n) be anyvar and z an argument inX. If z is objectively
acceptable then no attackgrof z belongs toG, ).



Hence, via Lemma 3, a basic algorithm for decidinoBa, is: test ify € G, for each
y € {z}~, reporting—OBA(H, z) if any suchy is found.

5. Conclusions and development.

The focus of this paper has reviewed random bases for catisigwvAFs. The long term
aim of this approach is to exploit the behaviour observeduidigg the design of effi-
cientaverage-casalgorithms. To illustrate its viability we have presentgaraliminary
experimental study of one property: the likelihood of aneatively accepted argument
being present. The outcomes offer strong indications thatdled “phase-transition be-
haviours” arise, irrespective of how value mappings arestranted. Overall our interest
is in identifying characteristics by which a wide rangevaf problems may be consid-
ered, e.gsBA, counting questions, etc.

There are, of course, a wide variety of proposals for devatats of Dung'sarF
abstraction. The ideas promoted in the current article meli/prove fruitful within this
more general context and, in principle, add a range of ingmbilgorithm design tech-
niques whose applicabilty to the abstraetsphere has, to date, been barely addressed.
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